Source code for pyscf.adc.dfadc

#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

[docs] def get_ovvv_df(myadc, Lov, Lvv, p, chnk_size): ''' Returns approximate ovvv integrals used in restricted implementation''' nvir = myadc._nvir naux = myadc.with_df.get_naoaux() Lvv = Lvv.reshape(naux,nvir*nvir) nocc = Lov.size//(naux*nvir) Lov = Lov.reshape(naux,nocc,nvir) if chnk_size < nocc: Lov_temp = np.ascontiguousarray(Lov.transpose(1,2,0)[p:p+chnk_size].reshape(-1,naux)) else: Lov_temp = np.ascontiguousarray(Lov.transpose(1,2,0).reshape(-1,naux)) ovvv = np.dot(Lov_temp, Lvv) ovvv = ovvv.reshape(-1, nvir, nvir, nvir) return ovvv
[docs] def get_ovvv_spin_df(myadc, Lov, Lvv, p, chnk_size): ''' Returns approximate ovvv integrals (different spin cases) used in unrestricted implementation ''' nocc = Lov.shape[1] nvir_1 = Lov.shape[2] nvir_2 = Lvv.shape[1] naux = myadc.with_df.get_naoaux() Lvv = Lvv.reshape(naux,nvir_2*nvir_2) Lov = Lov.reshape(naux,nocc,nvir_1) if chnk_size < nocc: #Lov_temp = np.ascontiguousarray(Lov.T[:,p:p+chnk_size,:].reshape(-1,naux)) Lov_temp = np.ascontiguousarray(Lov.transpose(1,2,0)[p:p+chnk_size].reshape(-1,naux)) else: Lov_temp = np.ascontiguousarray(Lov.transpose(1,2,0).reshape(-1,naux)) ovvv = np.dot(Lov_temp, Lvv) ovvv = ovvv.reshape(-1, nvir_1, nvir_2, nvir_2) #vvvv = np.ascontiguousarray(vvvv.transpose(0,2,1,3)).reshape(-1, nvir, nvir * nvir) return ovvv
[docs] def get_vvvv_df(myadc, Lvv, p, chnk_size): ''' Returns approximate vvvv integrals used in restricted implementation''' nvir = myadc._nvir naux = myadc.with_df.get_naoaux() Lvv = Lvv.reshape(naux,nvir,nvir) if chnk_size < nvir: Lvv_temp = np.ascontiguousarray(Lvv.T[p:p+chnk_size].reshape(-1,naux)) else: Lvv_temp = np.ascontiguousarray(Lvv.T.reshape(-1,naux)) Lvv = Lvv.reshape(naux,nvir*nvir) vvvv = np.dot(Lvv_temp, Lvv) vvvv = vvvv.reshape(-1, nvir, nvir, nvir) vvvv = np.ascontiguousarray(vvvv.transpose(0,2,1,3)).reshape(-1, nvir, nvir * nvir) return vvvv
[docs] def get_vvvv_antisym_df(myadc, Lvv, p, chnk_size): ''' Returns approximate antisymmetrized vvvv integrals (alpha/beta spin) used in unrestricted implementation''' naux = myadc.with_df.get_naoaux() nvir = Lvv.shape[1] ind_vv_g = np.tril_indices(nvir, k=-1) if chnk_size < nvir: Lvv_temp = np.ascontiguousarray(Lvv.T[p:p+chnk_size].reshape(-1,naux)) else: Lvv_temp = np.ascontiguousarray(Lvv.T.reshape(-1,naux)) Lvv = Lvv.reshape(naux,nvir*nvir) vvvv = np.dot(Lvv_temp, Lvv) vvvv = vvvv.reshape(-1, nvir, nvir, nvir) vvvv = vvvv.transpose(0,2,1,3).reshape(-1, nvir, nvir, nvir) vvvv -= vvvv.transpose(0,1,3,2) vvvv = np.ascontiguousarray(vvvv[:, :, ind_vv_g[0], ind_vv_g[1]]) return vvvv
[docs] def get_vVvV_df(myadc, Lvv, LVV, p, chnk_size): ''' Returns approximate vvvv integrals (mixed spin) used in unrestricted implementation''' naux = myadc.with_df.get_naoaux() nvir_1 = Lvv.shape[1] nvir_2 = LVV.shape[1] if chnk_size < nvir_1: Lvv_temp = np.ascontiguousarray(Lvv.T[p:p+chnk_size].reshape(-1,naux)) else: Lvv_temp = np.ascontiguousarray(Lvv.T.reshape(-1,naux)) LVV = LVV.reshape(naux,nvir_2*nvir_2) vvvv = np.dot(Lvv_temp, LVV).reshape(-1,nvir_1,nvir_2,nvir_2) vvvv = np.ascontiguousarray(vvvv.transpose(0,2,1,3)).reshape(-1, nvir_2, nvir_1, nvir_2) return vvvv