Source code for pyscf.adc.radc_ea

# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Samragni Banerjee <samragnibanerjee4@gmail.com>
#         Alexander Sokolov <alexander.y.sokolov@gmail.com>
#

'''
Restricted algebraic diagrammatic construction
'''
import numpy as np
import pyscf.ao2mo as ao2mo
from pyscf import lib
from pyscf.lib import logger
from pyscf.adc import radc
from pyscf.adc import radc_ao2mo
from pyscf.adc import dfadc
from pyscf import __config__
from pyscf import df
from pyscf import symm


[docs] def get_imds(adc, eris=None): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(adc.stdout, adc.verbose) if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method t1 = adc.t1 t2 = adc.t2 t1_2 = t1[0] eris_ovvo = eris.ovvo nocc = adc._nocc nvir = adc._nvir e_vir = adc.mo_energy[nocc:].copy() idn_vir = np.identity(nvir) if eris is None: eris = adc.transform_integrals() # a-b block # Zeroth-order terms M_ab = lib.einsum('ab,a->ab', idn_vir, e_vir) # Second-order terms t2_1 = t2[0][:] M_ab -= 1.5 * 0.5 * lib.einsum('lmad,lbdm->ab',t2_1, eris_ovvo,optimize=True) M_ab += 0.5 * 0.5 * lib.einsum('mlad,lbdm->ab',t2_1, eris_ovvo,optimize=True) M_ab += 0.5 * 0.5 * lib.einsum('lmad,ldbm->ab',t2_1, eris_ovvo,optimize=True) M_ab -= 0.5 * 0.5 * lib.einsum('mlad,ldbm->ab',t2_1, eris_ovvo,optimize=True) #M_ab -= 0.5 * lib.einsum('lmad,lbdm->ab',t2_1, eris_ovvo,optimize=True) M_ab -= 1.5 * 0.5 * lib.einsum('lmbd,ladm->ab',t2_1, eris_ovvo,optimize=True) M_ab += 0.5 * 0.5 * lib.einsum('mlbd,ladm->ab',t2_1, eris_ovvo,optimize=True) M_ab += 0.5 * 0.5 * lib.einsum('lmbd,ldam->ab',t2_1, eris_ovvo,optimize=True) M_ab -= 0.5 * 0.5 * lib.einsum('mlbd,ldam->ab',t2_1, eris_ovvo,optimize=True) #M_ab -= 0.5 * lib.einsum('lmbd,ladm->ab',t2_1, eris_ovvo,optimize=True) del t2_1 cput0 = log.timer_debug1("Completed M_ab second-order terms ADC(2) calculation", *cput0) #Third-order terms if(method =='adc(3)'): eris_oovv = eris.oovv if isinstance(eris.ovvv, type(None)): chnk_size = radc_ao2mo.calculate_chunk_size(adc) a = 0 for p in range(0,nocc,chnk_size): eris_ovvv = dfadc.get_ovvv_df(adc, eris.Lov, eris.Lvv, p, chnk_size).reshape(-1,nvir,nvir,nvir) k = eris_ovvv.shape[0] M_ab += 4. * lib.einsum('ld,ldab->ab',t1_2[a:a+k], eris_ovvv,optimize=True) M_ab -= lib.einsum('ld,lbad->ab',t1_2[a:a+k], eris_ovvv,optimize=True) M_ab -= lib.einsum('ld,ladb->ab',t1_2[a:a+k], eris_ovvv,optimize=True) del eris_ovvv a += k else : eris_ovvv = radc_ao2mo.unpack_eri_1(eris.ovvv, nvir) M_ab += 4. * lib.einsum('ld,ldab->ab',t1_2, eris_ovvv,optimize=True) M_ab -= lib.einsum('ld,lbad->ab',t1_2, eris_ovvv,optimize=True) M_ab -= lib.einsum('ld,ladb->ab',t1_2, eris_ovvv,optimize=True) del eris_ovvv cput0 = log.timer_debug1("Completed M_ab ovvv ADC(3) calculation", *cput0) t2_2 = t2[1][:] M_ab -= 0.5 * 0.5 * lib.einsum('lmad,lbdm->ab',t2_2, eris_ovvo,optimize=True) M_ab += 0.5 * 0.5 * lib.einsum('mlad,lbdm->ab',t2_2, eris_ovvo,optimize=True) M_ab += 0.5 * 0.5 * lib.einsum('lmad,ldbm->ab',t2_2, eris_ovvo,optimize=True) M_ab -= 0.5 * 0.5 * lib.einsum('mlad,ldbm->ab',t2_2, eris_ovvo,optimize=True) M_ab -= 0.5 * lib.einsum('lmad,lbdm->ab',t2_2, eris_ovvo,optimize=True) M_ab -= 0.5 * 0.5 * lib.einsum('lmbd,ladm->ab',t2_2,eris_ovvo,optimize=True) M_ab += 0.5 * 0.5 * lib.einsum('mlbd,ladm->ab',t2_2,eris_ovvo,optimize=True) M_ab += 0.5 * 0.5 * lib.einsum('lmbd,ldam->ab',t2_2, eris_ovvo,optimize=True) M_ab -= 0.5 * 0.5 * lib.einsum('mlbd,ldam->ab',t2_2, eris_ovvo,optimize=True) M_ab -= 0.5 * 1.0 * lib.einsum('lmbd,ladm->ab',t2_2,eris_ovvo,optimize=True) t2_1 = t2[0][:] log.timer_debug1("Starting the small integrals calculation") temp_t2_v_1 = lib.einsum('lned,mlbd->nemb',t2_1, t2_1,optimize=True) M_ab -= 0.5 * lib.einsum('nemb,nmae->ab',temp_t2_v_1, eris_oovv, optimize=True) M_ab -= 0.5 * lib.einsum('mbne,nmae->ab',temp_t2_v_1, eris_oovv, optimize=True) M_ab += 0.5 * lib.einsum('nemb,maen->ab',temp_t2_v_1, eris_ovvo, optimize=True) M_ab += 0.5 * lib.einsum('mbne,maen->ab',temp_t2_v_1, eris_ovvo, optimize=True) M_ab += 0.5 * lib.einsum('nemb,neam->ab',temp_t2_v_1, eris_ovvo, optimize=True) M_ab -= 0.5 * lib.einsum('name,nmeb->ab',temp_t2_v_1, eris_oovv, optimize=True) M_ab -= 0.5 * lib.einsum('mena,nmeb->ab',temp_t2_v_1, eris_oovv, optimize=True) M_ab += 0.5 * 2. * lib.einsum('name,nbem->ab',temp_t2_v_1, eris_ovvo, optimize=True) M_ab += 0.5 * 2. * lib.einsum('mena,nbem->ab',temp_t2_v_1, eris_ovvo, optimize=True) M_ab += 0.5 * lib.einsum('nbme,mean->ab',temp_t2_v_1, eris_ovvo, optimize=True) del temp_t2_v_1 temp_t2_v_2 = lib.einsum('nled,mlbd->nemb',t2_1, t2_1,optimize=True) M_ab += 0.5 * 2. * lib.einsum('nemb,nmae->ab',temp_t2_v_2, eris_oovv, optimize=True) M_ab -= 0.5 * 4. * lib.einsum('nemb,maen->ab',temp_t2_v_2, eris_ovvo, optimize=True) M_ab += 0.5 * 2. * lib.einsum('mena,nmeb->ab',temp_t2_v_2, eris_oovv, optimize=True) M_ab -= 0.5 * 4. * lib.einsum('mena,nbem->ab',temp_t2_v_2, eris_ovvo, optimize=True) del temp_t2_v_2 temp_t2_v_3 = lib.einsum('lned,lmbd->nemb',t2_1, t2_1,optimize=True) M_ab -= 0.5 * lib.einsum('nemb,maen->ab',temp_t2_v_3, eris_ovvo, optimize=True) M_ab += 0.5 * 2. * lib.einsum('nemb,nmae->ab',temp_t2_v_3, eris_oovv, optimize=True) M_ab += 0.5 * 2. * lib.einsum('mena,nmeb->ab',temp_t2_v_3, eris_oovv, optimize=True) M_ab -= 0.5 * lib.einsum('mena,nbem->ab',temp_t2_v_3, eris_ovvo, optimize=True) del temp_t2_v_3 temp_t2_v_8 = lib.einsum('lned,mled->mn',t2_1, t2_1,optimize=True) M_ab += 2.* lib.einsum('mn,nmab->ab',temp_t2_v_8, eris_oovv, optimize=True) M_ab -= lib.einsum('mn,nbam->ab', temp_t2_v_8, eris_ovvo, optimize=True) del temp_t2_v_8 temp_t2_v_9 = lib.einsum('nled,mled->mn',t2_1, t2_1,optimize=True) M_ab -= 4.* lib.einsum('mn,nmab->ab',temp_t2_v_9, eris_oovv, optimize=True) M_ab += 2. * lib.einsum('mn,nbam->ab',temp_t2_v_9, eris_ovvo, optimize=True) del temp_t2_v_9 log.timer_debug1("Completed M_ab ADC(3) small integrals calculation") log.timer_debug1("Starting M_ab vvvv ADC(3) calculation") if isinstance(eris.vvvv, np.ndarray): temp_t2 = adc.imds.t2_1_vvvv M_ab -= 0.5 * 0.25*lib.einsum('mlaf,mlbf->ab',t2_1, temp_t2, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('mlaf,lmbf->ab',t2_1, temp_t2, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('lmaf,mlbf->ab',t2_1, temp_t2, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('lmaf,lmbf->ab',t2_1, temp_t2, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('mlaf,mlfb->ab',t2_1, temp_t2, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('mlaf,lmfb->ab',t2_1, temp_t2, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('lmaf,mlfb->ab',t2_1, temp_t2, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('lmaf,lmfb->ab',t2_1, temp_t2, optimize=True) M_ab -= 0.5 * lib.einsum('mlaf,mlbf->ab',t2_1, temp_t2, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('mlad,mlbd->ab', temp_t2, t2_1, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('mlad,lmbd->ab', temp_t2, t2_1, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('lmad,mlbd->ab', temp_t2, t2_1, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('lmad,lmbd->ab', temp_t2, t2_1, optimize=True) M_ab -= 0.5 * lib.einsum('mlad,mlbd->ab', temp_t2, t2_1, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('lmad,mlbd->ab',temp_t2, t2_1, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('lmad,lmbd->ab',temp_t2, t2_1, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('mlad,mlbd->ab',temp_t2, t2_1, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('mlad,lmbd->ab',temp_t2, t2_1, optimize=True) del temp_t2 eris_vvvv = eris.vvvv eris_vvvv = eris_vvvv.reshape(nvir,nvir,nvir,nvir) M_ab -= lib.einsum('mldf,mled,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab += lib.einsum('mldf,lmed,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab += lib.einsum('lmdf,mled,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab -= lib.einsum('lmdf,lmed,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab += 0.5*lib.einsum('mldf,mled,aefb->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab -= 0.5*lib.einsum('mldf,lmed,aefb->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab -= 0.5*lib.einsum('lmdf,mled,aefb->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab += 0.5*lib.einsum('lmdf,lmed,aefb->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab += 2.*lib.einsum('mlfd,mled,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) M_ab -= lib.einsum('mlfd,mled,aefb->ab',t2_1, t2_1, eris_vvvv, optimize=True) eris_vvvv = eris_vvvv.reshape(nvir*nvir,nvir*nvir) else: temp_t2_vvvv = adc.imds.t2_1_vvvv[:] M_ab -= 0.5 * 0.25*lib.einsum('mlaf,mlbf->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('mlaf,lmbf->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('lmaf,mlbf->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('lmaf,lmbf->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('mlaf,mlfb->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('mlaf,lmfb->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('lmaf,mlfb->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('lmaf,lmfb->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab -= 0.5 * lib.einsum('mlaf,mlbf->ab',t2_1, temp_t2_vvvv, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('lmad,mlbd->ab',temp_t2_vvvv, t2_1, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('lmad,lmbd->ab',temp_t2_vvvv, t2_1, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('mlad,mlbd->ab',temp_t2_vvvv, t2_1, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('mlad,lmbd->ab',temp_t2_vvvv, t2_1, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('mlad,mlbd->ab', temp_t2_vvvv, t2_1, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('mlad,lmbd->ab', temp_t2_vvvv, t2_1, optimize=True) M_ab += 0.5 * 0.25*lib.einsum('lmad,mlbd->ab', temp_t2_vvvv, t2_1, optimize=True) M_ab -= 0.5 * 0.25*lib.einsum('lmad,lmbd->ab', temp_t2_vvvv, t2_1, optimize=True) M_ab -= 0.5 * lib.einsum('mlad,mlbd->ab', temp_t2_vvvv, t2_1, optimize=True) del temp_t2_vvvv chnk_size = radc_ao2mo.calculate_chunk_size(adc) a = 0 temp = np.zeros((nvir,nvir)) if isinstance(eris.vvvv, list): for dataset in eris.vvvv: k = dataset.shape[0] eris_vvvv = dataset[:].reshape(-1,nvir,nvir,nvir) temp[a:a+k] -= lib.einsum('mldf,mled,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] += lib.einsum('mldf,lmed,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] += lib.einsum('lmdf,mled,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] -= lib.einsum('lmdf,lmed,aebf->ab',t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] += 0.5*lib.einsum('mldf,mled,aefb->ab', t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] -= 0.5*lib.einsum('mldf,lmed,aefb->ab', t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] -= 0.5*lib.einsum('lmdf,mled,aefb->ab', t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] += 0.5*lib.einsum('lmdf,lmed,aefb->ab', t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] += 2.*lib.einsum('mlfd,mled,aebf->ab', t2_1, t2_1, eris_vvvv, optimize=True) temp[a:a+k] -= lib.einsum('mlfd,mled,aefb->ab',t2_1, t2_1, eris_vvvv, optimize=True) del eris_vvvv a += k else : for p in range(0,nvir,chnk_size): vvvv = dfadc.get_vvvv_df(adc, eris.Lvv, p, chnk_size).reshape(-1,nvir,nvir,nvir) k = vvvv.shape[0] temp[a:a+k] -= lib.einsum('mldf,mled,aebf->ab',t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] += lib.einsum('mldf,lmed,aebf->ab',t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] += lib.einsum('lmdf,mled,aebf->ab',t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] -= lib.einsum('lmdf,lmed,aebf->ab',t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] += 0.5*lib.einsum('mldf,mled,aefb->ab', t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] -= 0.5*lib.einsum('mldf,lmed,aefb->ab', t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] -= 0.5*lib.einsum('lmdf,mled,aefb->ab', t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] += 0.5*lib.einsum('lmdf,lmed,aefb->ab', t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] += 2.*lib.einsum('mlfd,mled,aebf->ab', t2_1, t2_1, vvvv, optimize=True) temp[a:a+k] -= lib.einsum('mlfd,mled,aefb->ab',t2_1, t2_1, vvvv, optimize=True) del vvvv a += k M_ab += temp del temp del t2_1 cput0 = log.timer_debug1("Completed M_ab ADC(3) calculation", *cput0) return M_ab
[docs] def get_diag(adc,M_ab=None,eris=None): log = logger.Logger(adc.stdout, adc.verbose) if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) if M_ab is None: M_ab = adc.get_imds() nocc = adc._nocc nvir = adc._nvir n_singles = nvir n_doubles = nocc * nvir * nvir dim = n_singles + n_doubles e_occ = adc.mo_energy[:nocc] e_vir = adc.mo_energy[nocc:] s1 = 0 f1 = n_singles s2 = f1 f2 = s2 + n_doubles d_ab = e_vir[:,None] + e_vir d_i = e_occ[:,None] D_n = -d_i + d_ab.reshape(-1) D_iab = D_n.reshape(-1) diag = np.zeros(dim) # Compute precond in p1-p1 block M_ab_diag = np.diagonal(M_ab) diag[s1:f1] = M_ab_diag.copy() # Compute precond in 2p1h-2p1h block diag[s2:f2] = D_iab.copy() del D_iab # ###### Additional terms for the preconditioner #### # # if (method == "adc(2)-x" or method == "adc(3)"): # # if eris is None: # eris = adc.transform_integrals() # # #TODO Implement this for out-of-core and density-fitted algorithms # if isinstance(eris.vvvv, np.ndarray): # # eris_oovv = eris.oovv # eris_ovvo = eris.ovvo # eris_vvvv = eris.vvvv # # temp = np.zeros((nocc, eris_vvvv.shape[0])) # temp[:] += np.diag(eris_vvvv) # diag[s2:f2] += temp.reshape(-1) # # eris_ovov_p = np.ascontiguousarray(eris_oovv[:].transpose(0,2,1,3)) # eris_ovov_p = eris_ovov_p.reshape(nocc*nvir, nocc*nvir) # # temp = np.zeros((nvir, nocc, nvir)) # temp[:] += np.diagonal(eris_ovov_p).reshape(nocc, nvir) # temp = np.ascontiguousarray(temp.transpose(1,0,2)) # diag[s2:f2] += -temp.reshape(-1) # # eris_ovov_p = np.ascontiguousarray(eris_oovv[:].transpose(0,2,1,3)) # eris_ovov_p = eris_ovov_p.reshape(nocc*nvir, nocc*nvir) # # temp = np.zeros((nvir, nocc, nvir)) # temp[:] += np.diagonal(eris_ovov_p).reshape(nocc, nvir) # temp = np.ascontiguousarray(temp.transpose(1,2,0)) # diag[s2:f2] += -temp.reshape(-1) # else: # raise Exception("Precond not available for out-of-core and density-fitted algo") log.timer_debug1("Completed ea_diag calculation") return diag
[docs] def matvec(adc, M_ab=None, eris=None): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method nocc = adc._nocc nvir = adc._nvir n_singles = nvir n_doubles = nocc * nvir * nvir dim = n_singles + n_doubles e_occ = adc.mo_energy[:nocc] e_vir = adc.mo_energy[nocc:] if eris is None: eris = adc.transform_integrals() s1 = 0 f1 = n_singles s2 = f1 f2 = s2 + n_doubles d_ab = e_vir[:,None] + e_vir d_i = e_occ[:,None] D_n = -d_i + d_ab.reshape(-1) D_iab = D_n.reshape(-1) if M_ab is None: M_ab = adc.get_imds() #Calculate sigma vector def sigma_(r): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(adc.stdout, adc.verbose) s = np.zeros((dim)) r1 = r[s1:f1] r2 = r[s2:f2] r2 = r2.reshape(nocc,nvir,nvir) ############ ADC(2) ab block ############################ s[s1:f1] = lib.einsum('ab,b->a',M_ab,r1) ############## ADC(2) a - ibc and ibc - a coupling blocks ######################### temp_doubles = np.zeros((nocc,nvir,nvir)) if isinstance(eris.ovvv, type(None)): chnk_size = radc_ao2mo.calculate_chunk_size(adc) a = 0 for p in range(0,nocc,chnk_size): eris_ovvv = dfadc.get_ovvv_df(adc, eris.Lov, eris.Lvv, p, chnk_size).reshape(-1,nvir,nvir,nvir) k = eris_ovvv.shape[0] s[s1:f1] += 2. * lib.einsum('icab,ibc->a', eris_ovvv, r2[a:a+k], optimize=True) s[s1:f1] -= lib.einsum('ibac,ibc->a', eris_ovvv, r2[a:a+k], optimize=True) temp_doubles[a:a+k] += lib.einsum('icab,a->ibc', eris_ovvv, r1, optimize=True) del eris_ovvv a += k else : eris_ovvv = radc_ao2mo.unpack_eri_1(eris.ovvv, nvir) s[s1:f1] += 2. * lib.einsum('icab,ibc->a', eris_ovvv, r2, optimize=True) s[s1:f1] -= lib.einsum('ibac,ibc->a', eris_ovvv, r2, optimize=True) temp_doubles += lib.einsum('icab,a->ibc', eris_ovvv, r1, optimize=True) del eris_ovvv s[s2:f2] += temp_doubles.reshape(-1) ################ ADC(2) iab - jcd block ############################ s[s2:f2] += D_iab * r2.reshape(-1) ############### ADC(3) iab - jcd block ############################ if (method == "adc(2)-x" or method == "adc(3)"): eris_oovv = eris.oovv eris_ovvo = eris.ovvo r2 = r2.reshape(nocc, nvir, nvir) if isinstance(eris.vvvv, np.ndarray): r_bab_t = r2.reshape(nocc,-1) eris_vvvv = eris.vvvv s[s2:f2] += np.dot(r_bab_t,eris_vvvv.T).reshape(-1) elif isinstance(eris.vvvv, list): s[s2:f2] += contract_r_vvvv(adc,r2,eris.vvvv) else : s[s2:f2] += contract_r_vvvv(adc,r2,eris.Lvv) s[s2:f2] -= 0.5*lib.einsum('jzyi,jzx->ixy',eris_ovvo,r2,optimize=True).reshape(-1) s[s2:f2] += lib.einsum('jzyi,jxz->ixy',eris_ovvo,r2,optimize=True).reshape(-1) s[s2:f2] -= 0.5*lib.einsum('jiyz,jxz->ixy',eris_oovv,r2,optimize=True).reshape(-1) s[s2:f2] -= 0.5*lib.einsum('jixz,jzy->ixy',eris_oovv,r2,optimize=True).reshape(-1) s[s2:f2] -= 0.5*lib.einsum('jixw,jwy->ixy',eris_oovv,r2,optimize=True).reshape(-1) s[s2:f2] -= 0.5*lib.einsum('jiyw,jxw->ixy',eris_oovv,r2,optimize=True).reshape(-1) s[s2:f2] += lib.einsum('jwyi,jxw->ixy',eris_ovvo,r2,optimize=True).reshape(-1) s[s2:f2] -= 0.5*lib.einsum('jwyi,jwx->ixy',eris_ovvo,r2,optimize=True).reshape(-1) #print("Calculating additional terms for adc(3)") if (method == "adc(3)"): eris_ovoo = eris.ovoo ############### ADC(3) a - ibc block and ibc-a coupling blocks ######################## t2_1 = adc.t2[0][:] temp = 0.25 * lib.einsum('lmab,jab->lmj',t2_1,r2) temp -= 0.25 * lib.einsum('lmab,jba->lmj',t2_1,r2) temp -= 0.25 * lib.einsum('mlab,jab->lmj',t2_1,r2) temp += 0.25 * lib.einsum('mlab,jba->lmj',t2_1,r2) s[s1:f1] += lib.einsum('lmj,lamj->a',temp, eris_ovoo, optimize=True) s[s1:f1] -= lib.einsum('lmj,malj->a',temp, eris_ovoo, optimize=True) del temp temp_1 = -lib.einsum('lmzw,jzw->jlm',t2_1,r2) s[s1:f1] -= lib.einsum('jlm,lamj->a',temp_1, eris_ovoo, optimize=True) temp_s_a = lib.einsum('jlwd,jzw->lzd',t2_1,r2,optimize=True) temp_s_a -= lib.einsum('jlwd,jwz->lzd',t2_1,r2,optimize=True) temp_s_a -= lib.einsum('ljwd,jzw->lzd',t2_1,r2,optimize=True) temp_s_a += lib.einsum('ljwd,jwz->lzd',t2_1,r2,optimize=True) temp_s_a += lib.einsum('ljdw,jzw->lzd',t2_1,r2,optimize=True) temp_s_a_1 = -lib.einsum('jlzd,jwz->lwd',t2_1,r2,optimize=True) temp_s_a_1 += lib.einsum('jlzd,jzw->lwd',t2_1,r2,optimize=True) temp_s_a_1 += lib.einsum('ljzd,jwz->lwd',t2_1,r2,optimize=True) temp_s_a_1 -= lib.einsum('ljzd,jzw->lwd',t2_1,r2,optimize=True) temp_s_a_1 += -lib.einsum('ljdz,jwz->lwd',t2_1,r2,optimize=True) temp_t2_r2_1 = lib.einsum('jlwd,jzw->lzd',t2_1,r2,optimize=True) temp_t2_r2_1 -= lib.einsum('jlwd,jwz->lzd',t2_1,r2,optimize=True) temp_t2_r2_1 += lib.einsum('jlwd,jzw->lzd',t2_1,r2,optimize=True) temp_t2_r2_1 -= lib.einsum('ljwd,jzw->lzd',t2_1,r2,optimize=True) temp_t2_r2_2 = -lib.einsum('jlzd,jwz->lwd',t2_1,r2,optimize=True) temp_t2_r2_2 += lib.einsum('jlzd,jzw->lwd',t2_1,r2,optimize=True) temp_t2_r2_2 -= lib.einsum('jlzd,jwz->lwd',t2_1,r2,optimize=True) temp_t2_r2_2 += lib.einsum('ljzd,jwz->lwd',t2_1,r2,optimize=True) temp_t2_r2_3 = -lib.einsum('ljzd,jzw->lwd',t2_1,r2,optimize=True) temp_a = t2_1.transpose(0,3,1,2).copy() temp_b = temp_a.reshape(nocc*nvir,nocc*nvir) r2_t = r2.reshape(nocc*nvir,-1) temp_c = np.dot(temp_b,r2_t).reshape(nocc,nvir,nvir) temp_t2_r2_4 = temp_c.transpose(0,2,1).copy() del t2_1 temp = np.zeros((nocc,nvir,nvir)) temp_1_1 = np.zeros((nocc,nvir,nvir)) temp_2_1 = np.zeros((nocc,nvir,nvir)) if isinstance(eris.ovvv, type(None)): chnk_size = radc_ao2mo.calculate_chunk_size(adc) a = 0 for p in range(0,nocc,chnk_size): eris_ovvv = dfadc.get_ovvv_df( adc, eris.Lov, eris.Lvv, p, chnk_size).reshape(-1,nvir,nvir,nvir) k = eris_ovvv.shape[0] temp_1_1[a:a+k] = lib.einsum('ldxb,b->lxd', eris_ovvv,r1,optimize=True) temp_1_1[a:a+k] -= lib.einsum('lbxd,b->lxd', eris_ovvv,r1,optimize=True) temp_2_1[a:a+k] = lib.einsum('ldxb,b->lxd', eris_ovvv,r1,optimize=True) s[s1:f1] += 0.5*lib.einsum('lzd,ldza->a',temp_s_a[a:a+k], eris_ovvv,optimize=True) s[s1:f1] -= 0.5*lib.einsum('lzd,lazd->a',temp_s_a[a:a+k], eris_ovvv,optimize=True) s[s1:f1] -= 0.5*lib.einsum('lwd,ldwa->a', temp_s_a_1[a:a+k],eris_ovvv,optimize=True) s[s1:f1] += 0.5*lib.einsum('lwd,lawd->a', temp_s_a_1[a:a+k],eris_ovvv,optimize=True) s[s1:f1] += 0.5*lib.einsum('lzd,ldza->a', temp_t2_r2_1[a:a+k],eris_ovvv,optimize=True) s[s1:f1] -= 0.5*lib.einsum('lwd,ldwa->a', temp_t2_r2_2[a:a+k],eris_ovvv,optimize=True) s[s1:f1] += 0.5*lib.einsum('lwd,lawd->a', temp_t2_r2_3[a:a+k],eris_ovvv,optimize=True) s[s1:f1] -= 0.5*lib.einsum('lzd,lazd->a', temp_t2_r2_4[a:a+k],eris_ovvv,optimize=True) temp[a:a+k] -= lib.einsum('lbyd,b->lyd',eris_ovvv,r1,optimize=True) del eris_ovvv a += k else : eris_ovvv = radc_ao2mo.unpack_eri_1(eris.ovvv, nvir) temp_1_1 = lib.einsum('ldxb,b->lxd', eris_ovvv,r1,optimize=True) temp_1_1 -= lib.einsum('lbxd,b->lxd', eris_ovvv,r1,optimize=True) temp_2_1 = lib.einsum('ldxb,b->lxd', eris_ovvv,r1,optimize=True) s[s1:f1] += 0.5*lib.einsum('lzd,ldza->a',temp_s_a,eris_ovvv,optimize=True) s[s1:f1] -= 0.5*lib.einsum('lzd,lazd->a',temp_s_a,eris_ovvv,optimize=True) s[s1:f1] -= 0.5*lib.einsum('lwd,ldwa->a',temp_s_a_1,eris_ovvv,optimize=True) s[s1:f1] += 0.5*lib.einsum('lwd,lawd->a',temp_s_a_1,eris_ovvv,optimize=True) s[s1:f1] += 0.5*lib.einsum('lzd,ldza->a',temp_t2_r2_1,eris_ovvv,optimize=True) s[s1:f1] -= 0.5*lib.einsum('lwd,ldwa->a',temp_t2_r2_2,eris_ovvv,optimize=True) s[s1:f1] += 0.5*lib.einsum('lwd,lawd->a',temp_t2_r2_3,eris_ovvv,optimize=True) s[s1:f1] -= 0.5*lib.einsum('lzd,lazd->a',temp_t2_r2_4,eris_ovvv,optimize=True) temp -= lib.einsum('lbyd,b->lyd',eris_ovvv,r1,optimize=True) del eris_ovvv t2_1 = adc.t2[0][:] temp_1 = -lib.einsum('lyd,lixd->ixy',temp,t2_1,optimize=True) s[s2:f2] -= temp_1.reshape(-1) del temp_s_a del temp_s_a_1 del temp_t2_r2_1 del temp_t2_r2_2 del temp_t2_r2_3 del temp_t2_r2_4 temp_1 = lib.einsum('b,lbmi->lmi',r1,eris_ovoo) s[s2:f2] += lib.einsum('lmi,lmxy->ixy',temp_1, t2_1, optimize=True).reshape(-1) temp = lib.einsum('lxd,lidy->ixy',temp_1_1,t2_1,optimize=True) temp += lib.einsum('lxd,ilyd->ixy',temp_2_1,t2_1,optimize=True) temp -= lib.einsum('lxd,ildy->ixy',temp_2_1,t2_1,optimize=True) s[s2:f2] += temp.reshape(-1) del t2_1 del temp del temp_1 del temp_1_1 del temp_2_1 cput0 = log.timer_debug1("completed sigma vector calculation", *cput0) return s return sigma_
[docs] def get_trans_moments(adc): nmo = adc.nmo T = [] for orb in range(nmo): T_a = get_trans_moments_orbital(adc,orb) T.append(T_a) T = np.array(T) return T
[docs] def get_trans_moments_orbital(adc, orb): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method t2_1 = adc.t2[0][:] if (adc.approx_trans_moments is False or adc.method == "adc(3)"): t1_2 = adc.t1[0][:] nocc = adc._nocc nvir = adc._nvir n_singles = nvir n_doubles = nocc * nvir * nvir dim = n_singles + n_doubles idn_vir = np.identity(nvir) s1 = 0 f1 = n_singles s2 = f1 f2 = s2 + n_doubles T = np.zeros((dim)) ######## ADC(2) part ############################################ if orb < nocc: if (adc.approx_trans_moments is False or adc.method == "adc(3)"): T[s1:f1] = -t1_2[orb,:] t2_1_t = -t2_1.transpose(1,0,2,3) T[s2:f2] += t2_1_t[:,orb,:,:].reshape(-1) else: T[s1:f1] += idn_vir[(orb-nocc), :] T[s1:f1] -= 0.25*lib.einsum('klc,klac->a',t2_1[:,:,(orb-nocc),:], t2_1, optimize=True) T[s1:f1] -= 0.25*lib.einsum('lkc,lkac->a',t2_1[:,:,(orb-nocc),:], t2_1, optimize=True) T[s1:f1] -= 0.25*lib.einsum('klc,klac->a',t2_1[:,:,(orb-nocc),:], t2_1, optimize=True) T[s1:f1] += 0.25*lib.einsum('lkc,klac->a',t2_1[:,:,(orb-nocc),:], t2_1, optimize=True) T[s1:f1] += 0.25*lib.einsum('klc,lkac->a',t2_1[:,:,(orb-nocc),:], t2_1, optimize=True) T[s1:f1] -= 0.25*lib.einsum('lkc,lkac->a',t2_1[:,:,(orb-nocc),:], t2_1, optimize=True) ######### ADC(3) 2p-1h part ############################################ if (adc.method == "adc(2)-x" and adc.approx_trans_moments is False) or (adc.method == "adc(3)"): t2_2 = adc.t2[1][:] if orb < nocc: t2_2_t = -t2_2.transpose(1,0,2,3) T[s2:f2] += t2_2_t[:,orb,:,:].reshape(-1) ########### ADC(3) 1p part ############################################ if(method=='adc(3)'): t2_2 = adc.t2[1][:] if (adc.approx_trans_moments is False): t1_3 = adc.t1[1] if orb < nocc: T[s1:f1] += 0.5*lib.einsum('kac,ck->a',t2_1[:,orb,:,:], t1_2.T,optimize=True) T[s1:f1] -= 0.5*lib.einsum('kac,ck->a',t2_1[orb,:,:,:], t1_2.T,optimize=True) T[s1:f1] -= 0.5*lib.einsum('kac,ck->a',t2_1[orb,:,:,:], t1_2.T,optimize=True) if (adc.approx_trans_moments is False): T[s1:f1] -= t1_3[orb,:] else: T[s1:f1] -= 0.25*lib.einsum('klc,klac->a',t2_1[:,:,(orb-nocc),:], t2_2, optimize=True) T[s1:f1] -= 0.25*lib.einsum('lkc,lkac->a',t2_1[:,:,(orb-nocc),:], t2_2, optimize=True) T[s1:f1] -= 0.25*lib.einsum('klac,klc->a',t2_1, t2_2[:,:,(orb-nocc),:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('lkac,lkc->a',t2_1, t2_2[:,:,(orb-nocc),:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('klc,klac->a',t2_1[:,:,(orb-nocc),:], t2_2, optimize=True) T[s1:f1] += 0.25*lib.einsum('klc,lkac->a',t2_1[:,:,(orb-nocc),:], t2_2, optimize=True) T[s1:f1] += 0.25*lib.einsum('lkc,klac->a',t2_1[:,:,(orb-nocc),:], t2_2, optimize=True) T[s1:f1] -= 0.25*lib.einsum('lkc,lkac->a',t2_1[:,:,(orb-nocc),:], t2_2, optimize=True) T[s1:f1] -= 0.25*lib.einsum('klac,klc->a',t2_1, t2_2[:,:,(orb-nocc),:],optimize=True) T[s1:f1] += 0.25*lib.einsum('klac,lkc->a',t2_1, t2_2[:,:,(orb-nocc),:],optimize=True) T[s1:f1] += 0.25*lib.einsum('lkac,klc->a',t2_1, t2_2[:,:,(orb-nocc),:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('lkac,lkc->a',t2_1, t2_2[:,:,(orb-nocc),:],optimize=True) del t2_2 del t2_1 T_aaa = T[n_singles:].reshape(nocc,nvir,nvir).copy() T_aaa = T_aaa - T_aaa.transpose(0,2,1) T[n_singles:] += T_aaa.reshape(-1) return T
[docs] def analyze_eigenvector(adc): nocc = adc._nocc nvir = adc._nvir evec_print_tol = adc.evec_print_tol logger.info(adc, "Number of occupied orbitals = %d", nocc) logger.info(adc, "Number of virtual orbitals = %d", nvir) logger.info(adc, "Print eigenvector elements > %f\n", evec_print_tol) n_singles = nvir U = adc.U for I in range(U.shape[1]): U1 = U[:n_singles,I] U2 = U[n_singles:,I].reshape(nocc,nvir,nvir) U1dotU1 = np.dot(U1, U1) U2dotU2 = 2.*np.dot(U2.ravel(), U2.ravel()) - \ np.dot(U2.ravel(), U2.transpose(0,2,1).ravel()) U_sq = U[:,I].copy()**2 ind_idx = np.argsort(-U_sq) U_sq = U_sq[ind_idx] U_sorted = U[ind_idx,I].copy() U_sorted = U_sorted[U_sq > evec_print_tol**2] ind_idx = ind_idx[U_sq > evec_print_tol**2] singles_idx = [] doubles_idx = [] singles_val = [] doubles_val = [] iter_num = 0 for orb_idx in ind_idx: if orb_idx < n_singles: a_idx = orb_idx + 1 + nocc singles_idx.append(a_idx) singles_val.append(U_sorted[iter_num]) if orb_idx >= n_singles: iab_idx = orb_idx - n_singles ab_rem = iab_idx % (nvir*nvir) i_idx = iab_idx //(nvir*nvir) a_idx = ab_rem//nvir b_idx = ab_rem % nvir doubles_idx.append((i_idx + 1, a_idx + 1 + nocc, b_idx + 1 + nocc)) doubles_val.append(U_sorted[iter_num]) iter_num += 1 logger.info(adc, '%s | root %d | norm(1p) = %6.4f | norm(1h2p) = %6.4f ', adc.method ,I, U1dotU1, U2dotU2) if singles_val: logger.info(adc, "\n1p block: ") logger.info(adc, " a U(a)") logger.info(adc, "------------------") for idx, print_singles in enumerate(singles_idx): logger.info(adc, ' %4d %7.4f', print_singles, singles_val[idx]) if doubles_val: logger.info(adc, "\n1h2p block: ") logger.info(adc, " i a b U(i,a,b)") logger.info(adc, "-------------------------------") for idx, print_doubles in enumerate(doubles_idx): logger.info(adc, ' %4d %4d %4d %7.4f', print_doubles[0], print_doubles[1], print_doubles[2], doubles_val[idx]) logger.info(adc, "\n*************************************************************\n")
[docs] def analyze_spec_factor(adc): X = adc.X X_2 = (X.copy()**2)*2 thresh = adc.spec_factor_print_tol logger.info(adc, "Print spectroscopic factors > %E\n", adc.spec_factor_print_tol) for i in range(X_2.shape[1]): sort = np.argsort(-X_2[:,i]) X_2_row = X_2[:,i] X_2_row = X_2_row[sort] if not adc.mol.symmetry: sym = np.repeat(['A'], X_2_row.shape[0]) else: sym = [symm.irrep_id2name(adc.mol.groupname, x) for x in adc._scf.mo_coeff.orbsym] sym = np.array(sym) sym = sym[sort] spec_Contribution = X_2_row[X_2_row > thresh] index_mo = sort[X_2_row > thresh]+1 if np.sum(spec_Contribution) == 0.0: continue logger.info(adc,'%s | root %d \n',adc.method ,i) logger.info(adc, " HF MO Spec. Contribution Orbital symmetry") logger.info(adc, "-----------------------------------------------------------") for c in range(index_mo.shape[0]): logger.info(adc, ' %3.d %10.8f %s', index_mo[c], spec_Contribution[c], sym[c]) logger.info(adc, '\nPartial spec. factor sum = %10.8f', np.sum(spec_Contribution)) logger.info(adc, "\n*************************************************************\n")
[docs] def renormalize_eigenvectors(adc, nroots=1): nocc = adc._nocc nvir = adc._nvir n_singles = nvir U = adc.U for I in range(U.shape[1]): U1 = U[:n_singles,I] U2 = U[n_singles:,I].reshape(nocc,nvir,nvir) UdotU = np.dot(U1, U1) + 2.*np.dot(U2.ravel(), U2.ravel()) - \ np.dot(U2.ravel(), U2.transpose(0,2,1).ravel()) U[:,I] /= np.sqrt(UdotU) return U
[docs] def get_properties(adc, nroots=1): #Transition moments T = adc.get_trans_moments() #Spectroscopic amplitudes U = adc.renormalize_eigenvectors(nroots) X = np.dot(T, U).reshape(-1, nroots) #Spectroscopic factors P = 2.0*lib.einsum("pi,pi->i", X, X) return P,X
[docs] def analyze(myadc): header = ("\n*************************************************************" "\n Eigenvector analysis summary" "\n*************************************************************") logger.info(myadc, header) myadc.analyze_eigenvector() if myadc.compute_properties: header = ("\n*************************************************************" "\n Spectroscopic factors analysis summary" "\n*************************************************************") logger.info(myadc, header) myadc.analyze_spec_factor()
[docs] def compute_dyson_mo(myadc): X = myadc.X if X is None: nroots = myadc.U.shape[1] P,X = myadc.get_properties(nroots) nroots = X.shape[1] dyson_mo = np.dot(myadc.mo_coeff,X) return dyson_mo
[docs] class RADCEA(radc.RADC): '''restricted ADC for EA energies and spectroscopic amplitudes Attributes: verbose : int Print level. Default value equals to :class:`Mole.verbose` max_memory : float or int Allowed memory in MB. Default value equals to :class:`Mole.max_memory` incore_complete : bool Avoid all I/O. Default is False. method : string nth-order ADC method. Options are : ADC(2), ADC(2)-X, ADC(3). Default is ADC(2). conv_tol : float Convergence threshold for Davidson iterations. Default is 1e-12. max_cycle : int Number of Davidson iterations. Default is 50. max_space : int Space size to hold trial vectors for Davidson iterative diagonalization. Default is 12. Kwargs: nroots : int Number of roots (eigenvalues) requested. Default value is 1. >>> myadc = adc.RADC(mf).run() >>> myadcea = adc.RADC(myadc).run() Saved results e_ea : float or list of floats EA energy (eigenvalue). For nroots = 1, it is a single float number. If nroots > 1, it is a list of floats for the lowest nroots eigenvalues. v_ip : array Eigenvectors for each EA transition. p_ea : float Spectroscopic amplitudes for each EA transition. ''' _keys = { 'tol_residual','conv_tol', 'e_corr', 'method', 'mo_coeff', 'mo_energy', 't1', 'max_space', 't2', 'max_cycle', 'nmo', 'transform_integrals', 'with_df', 'compute_properties', 'approx_trans_moments', 'E', 'U', 'P', 'X', 'evec_print_tol', 'spec_factor_print_tol', } def __init__(self, adc): self.mol = adc.mol self.verbose = adc.verbose self.stdout = adc.stdout self.max_memory = adc.max_memory self.max_space = adc.max_space self.max_cycle = adc.max_cycle self.conv_tol = adc.conv_tol self.tol_residual = adc.tol_residual self.t1 = adc.t1 self.t2 = adc.t2 self.imds = adc.imds self.e_corr = adc.e_corr self.method = adc.method self.method_type = adc.method_type self._scf = adc._scf self._nocc = adc._nocc self._nvir = adc._nvir self._nmo = adc._nmo self.mo_coeff = adc.mo_coeff self.mo_energy = adc.mo_energy self.nmo = adc._nmo self.transform_integrals = adc.transform_integrals self.with_df = adc.with_df self.compute_properties = adc.compute_properties self.approx_trans_moments = adc.approx_trans_moments self.E = None self.U = None self.P = None self.X = None self.evec_print_tol = adc.evec_print_tol self.spec_factor_print_tol = adc.spec_factor_print_tol kernel = radc.kernel get_imds = get_imds matvec = matvec get_diag = get_diag get_trans_moments = get_trans_moments renormalize_eigenvectors = renormalize_eigenvectors get_properties = get_properties analyze_spec_factor = analyze_spec_factor analyze_eigenvector = analyze_eigenvector analyze = analyze compute_dyson_mo = compute_dyson_mo
[docs] def get_init_guess(self, nroots=1, diag=None, ascending=True): if diag is None : diag = self.get_diag() idx = None if ascending: idx = np.argsort(diag) else: idx = np.argsort(diag)[::-1] guess = np.zeros((diag.shape[0], nroots)) min_shape = min(diag.shape[0], nroots) guess[:min_shape,:min_shape] = np.identity(min_shape) g = np.zeros((diag.shape[0], nroots)) g[idx] = guess.copy() guess = [] for p in range(g.shape[1]): guess.append(g[:,p]) return guess
[docs] def gen_matvec(self, imds=None, eris=None): if imds is None: imds = self.get_imds(eris) diag = self.get_diag(imds, eris) matvec = self.matvec(imds, eris) return matvec, diag
[docs] def contract_r_vvvv(myadc,r2,vvvv): nocc = myadc._nocc nvir = myadc._nvir r2_vvvv = np.zeros((nocc,nvir,nvir)) r2 = np.ascontiguousarray(r2.reshape(nocc,-1)) chnk_size = radc_ao2mo.calculate_chunk_size(myadc) a = 0 if isinstance(vvvv, list): for dataset in vvvv: k = dataset.shape[0] dataset = dataset[:].reshape(-1,nvir*nvir) r2_vvvv[:,a:a+k] = np.dot(r2,dataset.T).reshape(nocc,-1,nvir) del dataset a += k elif getattr(myadc, 'with_df', None): for p in range(0,nvir,chnk_size): vvvv_p = dfadc.get_vvvv_df(myadc, vvvv, p, chnk_size) k = vvvv_p.shape[0] vvvv_p = vvvv_p.reshape(-1,nvir*nvir) r2_vvvv[:,a:a+k] = np.dot(r2,vvvv_p.T).reshape(nocc,-1,nvir) del vvvv_p a += k else: raise Exception("Unknown vvvv type") r2_vvvv = r2_vvvv.reshape(-1) return r2_vvvv