Source code for pyscf.adc.radc_ip

# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Samragni Banerjee <samragnibanerjee4@gmail.com>
#         Alexander Sokolov <alexander.y.sokolov@gmail.com>
#

'''
Restricted algebraic diagrammatic construction
'''
import numpy as np
import pyscf.ao2mo as ao2mo
from pyscf import lib
from pyscf.lib import logger
from pyscf.adc import radc
from pyscf.adc import radc_ao2mo
from pyscf.adc import dfadc
from pyscf import __config__
from pyscf import df
from pyscf import symm


[docs] def get_imds(adc, eris=None): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(adc.stdout, adc.verbose) if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method t1 = adc.t1 t2 = adc.t2 t1_2 = t1[0] nocc = adc._nocc e_occ = adc.mo_energy[:nocc] idn_occ = np.identity(nocc) if eris is None: eris = adc.transform_integrals() eris_ovvo = eris.ovvo M_ij = np.zeros((nocc,nocc)) # i-j block # Zeroth-order terms M_ij = lib.einsum('ij,j->ij', idn_occ ,e_occ) # Second-order terms t2_1 = t2[0][:] M_ij += 0.5 * 0.5 * lib.einsum('ilde,jdel->ij',t2_1, eris_ovvo,optimize=True) M_ij -= 0.5 * 0.5 * lib.einsum('lide,jdel->ij',t2_1, eris_ovvo,optimize=True) M_ij -= 0.5 * 0.5 * lib.einsum('ilde,jedl->ij',t2_1, eris_ovvo,optimize=True) M_ij += 0.5 * 0.5 * lib.einsum('lide,jedl->ij',t2_1, eris_ovvo,optimize=True) M_ij += 0.5 * lib.einsum('ilde,jdel->ij',t2_1, eris_ovvo,optimize=True) M_ij += 0.5 * 0.5 * lib.einsum('jlde,idel->ij',t2_1, eris_ovvo,optimize=True) M_ij -= 0.5 * 0.5 * lib.einsum('ljde,idel->ij',t2_1, eris_ovvo,optimize=True) M_ij -= 0.5 * 0.5 * lib.einsum('jlde,ldei->ij',t2_1, eris_ovvo,optimize=True) M_ij += 0.5 * 0.5 * lib.einsum('ljde,ldei->ij',t2_1, eris_ovvo,optimize=True) M_ij += 0.5 * lib.einsum('jlde,idel->ij',t2_1, eris_ovvo,optimize=True) del t2_1 cput0 = log.timer_debug1("Completed M_ij second-order terms ADC(2) calculation", *cput0) # Third-order terms if (method == "adc(3)"): eris_oovv = eris.oovv eris_ovoo = eris.ovoo eris_oooo = eris.oooo M_ij += lib.einsum('ld,ldji->ij',t1_2, eris_ovoo,optimize=True) M_ij -= lib.einsum('ld,jdli->ij',t1_2, eris_ovoo,optimize=True) M_ij += lib.einsum('ld,ldji->ij',t1_2, eris_ovoo,optimize=True) M_ij += lib.einsum('ld,ldij->ij',t1_2, eris_ovoo,optimize=True) M_ij -= lib.einsum('ld,idlj->ij',t1_2, eris_ovoo,optimize=True) M_ij += lib.einsum('ld,ldij->ij',t1_2, eris_ovoo,optimize=True) t2_2 = t2[1][:] M_ij += 0.5 * 0.5* lib.einsum('ilde,jdel->ij',t2_2, eris_ovvo,optimize=True) M_ij -= 0.5 * 0.5* lib.einsum('lide,jdel->ij',t2_2, eris_ovvo,optimize=True) M_ij -= 0.5 * 0.5* lib.einsum('ilde,jedl->ij',t2_2, eris_ovvo,optimize=True) M_ij += 0.5 * 0.5* lib.einsum('lide,jedl->ij',t2_2, eris_ovvo,optimize=True) M_ij += 0.5 * lib.einsum('ilde,jdel->ij',t2_2, eris_ovvo,optimize=True) M_ij += 0.5 * 0.5* lib.einsum('jlde,ledi->ij',t2_2, eris_ovvo,optimize=True) M_ij -= 0.5 * 0.5* lib.einsum('ljde,ledi->ij',t2_2, eris_ovvo,optimize=True) M_ij -= 0.5 * 0.5* lib.einsum('jlde,iedl->ij',t2_2, eris_ovvo,optimize=True) M_ij += 0.5 * 0.5* lib.einsum('ljde,iedl->ij',t2_2, eris_ovvo,optimize=True) M_ij += 0.5 * lib.einsum('jlde,ledi->ij',t2_2, eris_ovvo,optimize=True) t2_1 = t2[0][:] log.timer_debug1("Starting the small integrals calculation") temp_t2_v_1 = lib.einsum('lmde,jldf->mejf',t2_1, t2_1,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('mejf,mefi->ij',temp_t2_v_1, eris_ovvo,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('jfme,mefi->ij',temp_t2_v_1, eris_ovvo,optimize=True) M_ij += 0.5 * lib.einsum('mejf,mife->ij',temp_t2_v_1, eris_oovv,optimize=True) M_ij += 0.5 * lib.einsum('jfme,mife->ij',temp_t2_v_1, eris_oovv,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('meif,mefj->ij',temp_t2_v_1, eris_ovvo ,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('ifme,mefj->ij',temp_t2_v_1, eris_ovvo ,optimize=True) M_ij += 0.5 * lib.einsum('meif,mjfe->ij',temp_t2_v_1, eris_oovv ,optimize=True) M_ij += 0.5 * lib.einsum('ifme,mjfe->ij',temp_t2_v_1, eris_oovv ,optimize=True) del temp_t2_v_1 temp_t2_v_2 = lib.einsum('lmde,ljdf->mejf',t2_1, t2_1,optimize=True) M_ij += 0.5 * 4 * lib.einsum('mejf,mefi->ij',temp_t2_v_2, eris_ovvo,optimize=True) M_ij += 0.5 * 4 * lib.einsum('meif,mefj->ij',temp_t2_v_2, eris_ovvo,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('meif,mjfe->ij',temp_t2_v_2, eris_oovv,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('mejf,mife->ij',temp_t2_v_2, eris_oovv,optimize=True) del temp_t2_v_2 temp_t2_v_3 = lib.einsum('mlde,jldf->mejf',t2_1, t2_1,optimize=True) M_ij += 0.5 * lib.einsum('mejf,mefi->ij',temp_t2_v_3, eris_ovvo,optimize=True) M_ij += 0.5 * lib.einsum('meif,mefj->ij',temp_t2_v_3, eris_ovvo,optimize=True) M_ij -= 0.5 * 2 *lib.einsum('meif,mjfe->ij',temp_t2_v_3, eris_oovv,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('mejf,mife->ij',temp_t2_v_3, eris_oovv,optimize=True) del temp_t2_v_3 temp_t2_v_8 = lib.einsum('lmdf,lmde->fe',t2_1, t2_1,optimize=True) M_ij += 3 *lib.einsum('fe,jief->ij',temp_t2_v_8, eris_oovv, optimize=True) M_ij -= 1.5 *lib.einsum('fe,jfei->ij',temp_t2_v_8, eris_ovvo, optimize=True) M_ij += lib.einsum('ef,jief->ij',temp_t2_v_8, eris_oovv, optimize=True) M_ij -= 0.5 * lib.einsum('ef,jfei->ij',temp_t2_v_8, eris_ovvo, optimize=True) del temp_t2_v_8 temp_t2_v_9 = lib.einsum('lmdf,mlde->fe',t2_1, t2_1,optimize=True) M_ij -= 1.0 * lib.einsum('fe,jief->ij',temp_t2_v_9, eris_oovv, optimize=True) M_ij -= 1.0 * lib.einsum('ef,jief->ij',temp_t2_v_9, eris_oovv, optimize=True) M_ij += 0.5 * lib.einsum('fe,jfei->ij',temp_t2_v_9, eris_ovvo, optimize=True) M_ij += 0.5 * lib.einsum('ef,jfei->ij',temp_t2_v_9, eris_ovvo, optimize=True) del temp_t2_v_9 temp_t2_v_10 = lib.einsum('lnde,lmde->nm',t2_1, t2_1,optimize=True) M_ij -= 3.0 * lib.einsum('nm,jinm->ij',temp_t2_v_10, eris_oooo, optimize=True) M_ij -= 1.0 * lib.einsum('mn,jinm->ij',temp_t2_v_10, eris_oooo, optimize=True) M_ij += 1.5 * lib.einsum('nm,jmni->ij',temp_t2_v_10, eris_oooo, optimize=True) M_ij += 0.5 * lib.einsum('mn,jmni->ij',temp_t2_v_10, eris_oooo, optimize=True) del temp_t2_v_10 temp_t2_v_11 = lib.einsum('lnde,mlde->nm',t2_1, t2_1,optimize=True) M_ij += 1.0 * lib.einsum('nm,jinm->ij',temp_t2_v_11, eris_oooo, optimize=True) M_ij -= 0.5 * lib.einsum('nm,jmni->ij',temp_t2_v_11, eris_oooo, optimize=True) M_ij -= 0.5 * lib.einsum('mn,jmni->ij',temp_t2_v_11, eris_oooo, optimize=True) M_ij += 1.0 * lib.einsum('mn,jinm->ij',temp_t2_v_11, eris_oooo, optimize=True) del temp_t2_v_11 temp_t2_v_12 = lib.einsum('inde,lmde->inlm',t2_1, t2_1,optimize=True) M_ij += 0.5 * 1.25 * lib.einsum('inlm,jlnm->ij',temp_t2_v_12, eris_oooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('lmin,jlnm->ij',temp_t2_v_12, eris_oooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inlm,jmnl->ij',temp_t2_v_12, eris_oooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('lmin,jmnl->ij',temp_t2_v_12, eris_oooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('inlm,jlnm->ji',temp_t2_v_12, eris_oooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inlm,lnmj->ji',temp_t2_v_12, eris_oooo, optimize=True) M_ij += 0.5 * 1.00 * lib.einsum('inlm,ljmn->ji',temp_t2_v_12, eris_oooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('lmin,lnmj->ji',temp_t2_v_12, eris_oooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('lmin,ljmn->ji',temp_t2_v_12, eris_oooo, optimize=True) del temp_t2_v_12 temp_t2_v_13 = lib.einsum('inde,mlde->inml',t2_1, t2_1,optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inml,jlnm->ij',temp_t2_v_13, eris_oooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('mlin,jlnm->ij',temp_t2_v_13, eris_oooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('inml,jmnl->ij',temp_t2_v_13, eris_oooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('mlin,jmnl->ij',temp_t2_v_13, eris_oooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inml,jlnm->ji',temp_t2_v_13, eris_oooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('inml,lnmj->ji',temp_t2_v_13, eris_oooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inml,ljmn->ji',temp_t2_v_13, eris_oooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('inml,lnmj->ji',temp_t2_v_13, eris_oooo, optimize=True) del temp_t2_v_13 del t2_1 cput0 = log.timer_debug1("Completed M_ij ADC(n) calculation", *cput0) return M_ij
[docs] def get_diag(adc,M_ij=None,eris=None): log = logger.Logger(adc.stdout, adc.verbose) if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) if M_ij is None: M_ij = adc.get_imds() nocc = adc._nocc nvir = adc._nvir n_singles = nocc n_doubles = nvir * nocc * nocc dim = n_singles + n_doubles e_occ = adc.mo_energy[:nocc] e_vir = adc.mo_energy[nocc:] s1 = 0 f1 = n_singles s2 = f1 f2 = s2 + n_doubles d_ij = e_occ[:,None] + e_occ d_a = e_vir[:,None] D_n = -d_a + d_ij.reshape(-1) D_aij = D_n.reshape(-1) diag = np.zeros(dim) # Compute precond in h1-h1 block M_ij_diag = np.diagonal(M_ij) diag[s1:f1] = M_ij_diag.copy() # Compute precond in 2p1h-2p1h block diag[s2:f2] = D_aij.copy() # ###### Additional terms for the preconditioner #### # if (method == "adc(2)-x" or method == "adc(3)"): # # if eris is None: # eris = adc.transform_integrals() # # if isinstance(eris.vvvv, np.ndarray): # # eris_oooo = eris.oooo # eris_oovv = eris.oovv # eris_ovvo = eris.ovvo # # eris_oooo_p = np.ascontiguousarray(eris_oooo.transpose(0,2,1,3)) # eris_oooo_p = eris_oooo_p.reshape(nocc*nocc, nocc*nocc) # # temp = np.zeros((nvir, eris_oooo_p.shape[0])) # temp[:] += np.diag(eris_oooo_p) # diag[s2:f2] += -temp.reshape(-1) # # eris_ovov_p = np.ascontiguousarray(eris_oovv.transpose(0,2,1,3)) # eris_ovov_p = eris_ovov_p.reshape(nocc*nvir, nocc*nvir) # # temp = np.zeros((nocc, nocc, nvir)) # temp[:] += np.diagonal(eris_ovov_p).reshape(nocc, nvir) # temp = np.ascontiguousarray(temp.transpose(2,1,0)) # diag[s2:f2] += temp.reshape(-1) # # eris_ovov_p = np.ascontiguousarray(eris_oovv.transpose(0,2,1,3)) # eris_ovov_p = eris_ovov_p.reshape(nocc*nvir, nocc*nvir) # # temp = np.zeros((nocc, nocc, nvir)) # temp[:] += np.diagonal(eris_ovov_p).reshape(nocc, nvir) # temp = np.ascontiguousarray(temp.transpose(2,0,1)) # diag[s2:f2] += temp.reshape(-1) # else: # raise Exception("Precond not available for out-of-core and density-fitted algo") diag = -diag log.timer_debug1("Completed ea_diag calculation") return diag
[docs] def matvec(adc, M_ij=None, eris=None): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method nocc = adc._nocc nvir = adc._nvir n_singles = nocc n_doubles = nvir * nocc * nocc dim = n_singles + n_doubles e_occ = adc.mo_energy[:nocc] e_vir = adc.mo_energy[nocc:] if eris is None: eris = adc.transform_integrals() s1 = 0 f1 = n_singles s2 = f1 f2 = s2 + n_doubles d_ij = e_occ[:,None] + e_occ d_a = e_vir[:,None] D_n = -d_a + d_ij.reshape(-1) D_aij = D_n.reshape(-1) if M_ij is None: M_ij = adc.get_imds() #Calculate sigma vector def sigma_(r): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(adc.stdout, adc.verbose) s = np.zeros((dim)) r1 = r[s1:f1] r2 = r[s2:f2] r2 = r2.reshape(nvir,nocc,nocc) eris_ovoo = eris.ovoo ############ ADC(2) ij block ############################ s[s1:f1] = lib.einsum('ij,j->i',M_ij,r1) ############ ADC(2) i - kja block ######################### s[s1:f1] += 2. * lib.einsum('jaki,ajk->i', eris_ovoo, r2, optimize=True) s[s1:f1] -= lib.einsum('kaji,ajk->i', eris_ovoo, r2, optimize=True) ########## ###### ADC(2) ajk - i block ############################ temp = lib.einsum('jaki,i->ajk', eris_ovoo, r1, optimize=True).reshape(-1) s[s2:f2] += temp.reshape(-1) ################# ADC(2) ajk - bil block ############################ s[s2:f2] += D_aij * r2.reshape(-1) ################ ADC(3) ajk - bil block ############################ if (method == "adc(2)-x" or method == "adc(3)"): eris_oooo = eris.oooo eris_oovv = eris.oovv eris_ovvo = eris.ovvo s[s2:f2] -= 0.5*lib.einsum('kijl,ali->ajk',eris_oooo, r2, optimize=True).reshape(-1) s[s2:f2] -= 0.5*lib.einsum('klji,ail->ajk',eris_oooo ,r2, optimize=True).reshape(-1) s[s2:f2] += 0.5*lib.einsum('klba,bjl->ajk',eris_oovv,r2,optimize=True).reshape(-1) s[s2:f2] += 0.5*lib.einsum('jabl,bkl->ajk',eris_ovvo,r2,optimize=True).reshape(-1) s[s2:f2] -= lib.einsum('jabl,blk->ajk',eris_ovvo,r2,optimize=True).reshape(-1) s[s2:f2] += 0.5*lib.einsum('jlba,blk->ajk',eris_oovv,r2,optimize=True).reshape(-1) s[s2:f2] += 0.5*lib.einsum('kiba,bji->ajk',eris_oovv,r2,optimize=True).reshape(-1) s[s2:f2] += 0.5*lib.einsum('jiba,bik->ajk',eris_oovv,r2,optimize=True).reshape(-1) s[s2:f2] -= lib.einsum('jabi,bik->ajk',eris_ovvo,r2,optimize=True).reshape(-1) s[s2:f2] += 0.5*lib.einsum('jabi,bki->ajk',eris_ovvo,r2,optimize=True).reshape(-1) if (method == "adc(3)"): eris_ovoo = eris.ovoo t2_1 = adc.t2[0] ################ ADC(3) i - kja block and ajk - i ############################ temp = 0.25 * lib.einsum('ijbc,aij->abc',t2_1, r2, optimize=True) temp -= 0.25 * lib.einsum('ijbc,aji->abc',t2_1, r2, optimize=True) temp -= 0.25 * lib.einsum('jibc,aij->abc',t2_1, r2, optimize=True) temp += 0.25 * lib.einsum('jibc,aji->abc',t2_1, r2, optimize=True) temp_1 = lib.einsum('kjcb,ajk->abc',t2_1,r2, optimize=True) temp_singles = np.zeros((nocc)) temp_doubles = np.zeros((nvir,nvir,nvir)) if isinstance(eris.ovvv, type(None)): chnk_size = radc_ao2mo.calculate_chunk_size(adc) a = 0 for p in range(0,nocc,chnk_size): eris_ovvv = dfadc.get_ovvv_df( adc, eris.Lov, eris.Lvv, p, chnk_size).reshape(-1,nvir,nvir,nvir) k = eris_ovvv.shape[0] temp_singles[a:a+k] += lib.einsum('abc,icab->i',temp, eris_ovvv, optimize=True) temp_singles[a:a+k] -= lib.einsum('abc,ibac->i',temp, eris_ovvv, optimize=True) temp_singles[a:a+k] += lib.einsum('abc,icab->i', temp_1, eris_ovvv, optimize=True) temp_doubles = lib.einsum('i,icab->cba',r1[a:a+k],eris_ovvv,optimize=True) s[s2:f2] += lib.einsum('cba,kjcb->ajk',temp_doubles, t2_1, optimize=True).reshape(-1) del eris_ovvv del temp_doubles a += k else : eris_ovvv = radc_ao2mo.unpack_eri_1(eris.ovvv, nvir) temp_singles += lib.einsum('abc,icab->i',temp, eris_ovvv, optimize=True) temp_singles -= lib.einsum('abc,ibac->i',temp, eris_ovvv, optimize=True) temp_singles += lib.einsum('abc,icab->i',temp_1, eris_ovvv, optimize=True) temp_doubles = lib.einsum('i,icab->cba',r1,eris_ovvv,optimize=True) s[s2:f2] += lib.einsum('cba,kjcb->ajk',temp_doubles, t2_1, optimize=True).reshape(-1) del eris_ovvv del temp_doubles s[s1:f1] += temp_singles temp = np.zeros_like(r2) temp = lib.einsum('jlab,ajk->blk',t2_1,r2,optimize=True) temp -= lib.einsum('jlab,akj->blk',t2_1,r2,optimize=True) temp -= lib.einsum('ljab,ajk->blk',t2_1,r2,optimize=True) temp += lib.einsum('ljab,akj->blk',t2_1,r2,optimize=True) temp += lib.einsum('ljba,ajk->blk',t2_1,r2,optimize=True) temp_1 = np.zeros_like(r2) temp_1 = lib.einsum('jlab,ajk->blk',t2_1,r2,optimize=True) temp_1 -= lib.einsum('jlab,akj->blk',t2_1,r2,optimize=True) temp_1 += lib.einsum('jlab,ajk->blk',t2_1,r2,optimize=True) temp_1 -= lib.einsum('ljab,ajk->blk',t2_1,r2,optimize=True) temp_2 = lib.einsum('jlba,akj->blk',t2_1,r2, optimize=True) s[s1:f1] += 0.5*lib.einsum('blk,lbik->i',temp,eris_ovoo,optimize=True) s[s1:f1] -= 0.5*lib.einsum('blk,iblk->i',temp,eris_ovoo,optimize=True) s[s1:f1] += 0.5*lib.einsum('blk,lbik->i',temp_1,eris_ovoo,optimize=True) s[s1:f1] -= 0.5*lib.einsum('blk,iblk->i',temp_2,eris_ovoo,optimize=True) del temp del temp_1 del temp_2 temp = np.zeros_like(r2) temp = -lib.einsum('klab,akj->blj',t2_1,r2,optimize=True) temp += lib.einsum('klab,ajk->blj',t2_1,r2,optimize=True) temp += lib.einsum('lkab,akj->blj',t2_1,r2,optimize=True) temp -= lib.einsum('lkab,ajk->blj',t2_1,r2,optimize=True) temp -= lib.einsum('lkba,akj->blj',t2_1,r2,optimize=True) temp_1 = np.zeros_like(r2) temp_1 = -2 * lib.einsum('klab,akj->blj',t2_1,r2,optimize=True) temp_1 += lib.einsum('klab,ajk->blj',t2_1,r2,optimize=True) temp_1 += lib.einsum('lkab,akj->blj',t2_1,r2,optimize=True) temp_2 = -lib.einsum('klba,ajk->blj',t2_1,r2,optimize=True) s[s1:f1] -= 0.5*lib.einsum('blj,lbij->i',temp,eris_ovoo,optimize=True) s[s1:f1] += 0.5*lib.einsum('blj,iblj->i',temp,eris_ovoo,optimize=True) s[s1:f1] -= 0.5*lib.einsum('blj,lbij->i',temp_1,eris_ovoo,optimize=True) s[s1:f1] += 0.5*lib.einsum('blj,iblj->i',temp_2,eris_ovoo,optimize=True) del temp del temp_1 del temp_2 temp_1 = lib.einsum('i,lbik->kbl',r1,eris_ovoo) temp_1 -= lib.einsum('i,iblk->kbl',r1,eris_ovoo) temp_2 = lib.einsum('i,lbik->kbl',r1,eris_ovoo) temp = lib.einsum('kbl,ljba->ajk',temp_1,t2_1,optimize=True) temp += lib.einsum('kbl,jlab->ajk',temp_2,t2_1,optimize=True) temp -= lib.einsum('kbl,ljab->ajk',temp_2,t2_1,optimize=True) s[s2:f2] += temp.reshape(-1) temp = -lib.einsum('i,iblj->jbl',r1,eris_ovoo,optimize=True) temp_1 = -lib.einsum('jbl,klba->ajk',temp,t2_1,optimize=True) s[s2:f2] -= temp_1.reshape(-1) del temp del temp_1 del temp_2 del t2_1 cput0 = log.timer_debug1("completed sigma vector calculation", *cput0) s *= -1.0 return s return sigma_
[docs] def get_trans_moments(adc): nmo = adc.nmo T = [] for orb in range(nmo): T_a = get_trans_moments_orbital(adc,orb) T.append(T_a) T = np.array(T) return T
[docs] def get_trans_moments_orbital(adc, orb): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method t2_1 = adc.t2[0][:] if (adc.approx_trans_moments is False or adc.method == "adc(3)"): t1_2 = adc.t1[0][:] nocc = adc._nocc nvir = adc._nvir n_singles = nocc n_doubles = nvir * nocc * nocc dim = n_singles + n_doubles idn_occ = np.identity(nocc) s1 = 0 f1 = n_singles s2 = f1 f2 = s2 + n_doubles T = np.zeros((dim)) ######## ADC(2) 1h part ############################################ if orb < nocc: T[s1:f1] = idn_occ[orb, :] T[s1:f1] += 0.25*lib.einsum('kdc,ikdc->i',t2_1[:,orb,:,:], t2_1, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kcd,ikdc->i',t2_1[:,orb,:,:], t2_1, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kdc,ikcd->i',t2_1[:,orb,:,:], t2_1, optimize=True) T[s1:f1] += 0.25*lib.einsum('kcd,ikcd->i',t2_1[:,orb,:,:], t2_1, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kdc,ikdc->i',t2_1[orb,:,:,:], t2_1, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kcd,ikcd->i',t2_1[orb,:,:,:], t2_1, optimize=True) else : if (adc.approx_trans_moments is False or adc.method == "adc(3)"): T[s1:f1] += t1_2[:,(orb-nocc)] ######### ADC(2) 2h-1p part ############################################ t2_1_t = t2_1.transpose(2,3,1,0) T[s2:f2] += t2_1_t[(orb-nocc),:,:,:].reshape(-1) ######## ADC(3) 2h-1p part ############################################ if (adc.method == "adc(2)-x" and adc.approx_trans_moments is False) or (adc.method == "adc(3)"): t2_2 = adc.t2[1][:] if orb >= nocc: t2_2_t = t2_2.transpose(2,3,1,0) T[s2:f2] += t2_2_t[(orb-nocc),:,:,:].reshape(-1) del t2_2 ######### ADC(3) 1h part ############################################ if(method=='adc(3)'): t2_2 = adc.t2[1][:] if (adc.approx_trans_moments is False): t1_3 = adc.t1[1] if orb < nocc: T[s1:f1] += 0.25*lib.einsum('kdc,ikdc->i',t2_1[:,orb,:,:], t2_2, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kcd,ikdc->i',t2_1[:,orb,:,:], t2_2, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kdc,ikcd->i',t2_1[:,orb,:,:], t2_2, optimize=True) T[s1:f1] += 0.25*lib.einsum('kcd,ikcd->i',t2_1[:,orb,:,:], t2_2, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kdc,ikdc->i',t2_1[orb,:,:,:], t2_2, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kcd,ikcd->i',t2_1[orb,:,:,:], t2_2, optimize=True) T[s1:f1] += 0.25*lib.einsum('ikdc,kdc->i',t2_1, t2_2[:,orb,:,:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('ikcd,kdc->i',t2_1, t2_2[:,orb,:,:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('ikdc,kcd->i',t2_1, t2_2[:,orb,:,:],optimize=True) T[s1:f1] += 0.25*lib.einsum('ikcd,kcd->i',t2_1, t2_2[:,orb,:,:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('ikcd,kcd->i',t2_1, t2_2[orb,:,:,:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('ikdc,kdc->i',t2_1, t2_2[orb,:,:,:],optimize=True) else: T[s1:f1] += 0.5 * lib.einsum('ikc,kc->i',t2_1[:,:,(orb-nocc),:], t1_2,optimize=True) T[s1:f1] -= 0.5*lib.einsum('kic,kc->i',t2_1[:,:,(orb-nocc),:], t1_2,optimize=True) T[s1:f1] += 0.5*lib.einsum('ikc,kc->i',t2_1[:,:,(orb-nocc),:], t1_2,optimize=True) if (adc.approx_trans_moments is False): T[s1:f1] += t1_3[:,(orb-nocc)] del t2_2 del t2_1 T_aaa = T[n_singles:].reshape(nvir,nocc,nocc).copy() T_aaa = T_aaa - T_aaa.transpose(0,2,1) T[n_singles:] += T_aaa.reshape(-1) return T
[docs] def analyze_eigenvector(adc): nocc = adc._nocc nvir = adc._nvir n_singles = nocc evec_print_tol = adc.evec_print_tol U = adc.U logger.info(adc, "Number of occupied orbitals = %d", nocc) logger.info(adc, "Number of virtual orbitals = %d", nvir) logger.info(adc, "Print eigenvector elements > %f\n", evec_print_tol) for I in range(U.shape[1]): U1 = U[:n_singles,I] U2 = U[n_singles:,I].reshape(nvir,nocc,nocc) U1dotU1 = np.dot(U1, U1) U2dotU2 = 2.*np.dot(U2.ravel(), U2.ravel()) - \ np.dot(U2.ravel(), U2.transpose(0,2,1).ravel()) U_sq = U[:,I].copy()**2 ind_idx = np.argsort(-U_sq) U_sq = U_sq[ind_idx] U_sorted = U[ind_idx,I].copy() U_sorted = U_sorted[U_sq > evec_print_tol**2] ind_idx = ind_idx[U_sq > evec_print_tol**2] singles_idx = [] doubles_idx = [] singles_val = [] doubles_val = [] iter_num = 0 for orb_idx in ind_idx: if orb_idx < n_singles: i_idx = orb_idx + 1 singles_idx.append(i_idx) singles_val.append(U_sorted[iter_num]) if orb_idx >= n_singles: aij_idx = orb_idx - n_singles ij_rem = aij_idx % (nocc*nocc) a_idx = aij_idx//(nocc*nocc) i_idx = ij_rem//nocc j_idx = ij_rem % nocc doubles_idx.append((a_idx + 1 + n_singles, i_idx + 1, j_idx + 1)) doubles_val.append(U_sorted[iter_num]) iter_num += 1 logger.info(adc, '%s | root %d | norm(1h) = %6.4f | norm(2h1p) = %6.4f ', adc.method ,I, U1dotU1, U2dotU2) if singles_val: logger.info(adc, "\n1h block: ") logger.info(adc, " i U(i)") logger.info(adc, "------------------") for idx, print_singles in enumerate(singles_idx): logger.info(adc, ' %4d %7.4f', print_singles, singles_val[idx]) if doubles_val: logger.info(adc, "\n2h1p block: ") logger.info(adc, " i j a U(i,j,a)") logger.info(adc, "-------------------------------") for idx, print_doubles in enumerate(doubles_idx): logger.info(adc, ' %4d %4d %4d %7.4f', print_doubles[1], print_doubles[2], print_doubles[0], doubles_val[idx]) logger.info(adc, "\n*************************************************************\n")
[docs] def analyze_spec_factor(adc): X = adc.X X_2 = (X.copy()**2)*2 thresh = adc.spec_factor_print_tol logger.info(adc, "Print spectroscopic factors > %E\n", adc.spec_factor_print_tol) for i in range(X_2.shape[1]): sort = np.argsort(-X_2[:,i]) X_2_row = X_2[:,i] X_2_row = X_2_row[sort] if not adc.mol.symmetry: sym = np.repeat(['A'], X_2_row.shape[0]) else: sym = [symm.irrep_id2name(adc.mol.groupname, x) for x in adc._scf.mo_coeff.orbsym] sym = np.array(sym) sym = sym[sort] spec_Contribution = X_2_row[X_2_row > thresh] index_mo = sort[X_2_row > thresh]+1 if np.sum(spec_Contribution) == 0.0: continue logger.info(adc,'%s | root %d \n',adc.method ,i) logger.info(adc, " HF MO Spec. Contribution Orbital symmetry") logger.info(adc, "-----------------------------------------------------------") for c in range(index_mo.shape[0]): logger.info(adc, ' %3.d %10.8f %s', index_mo[c], spec_Contribution[c], sym[c]) logger.info(adc, '\nPartial spec. factor sum = %10.8f', np.sum(spec_Contribution)) logger.info(adc, "\n*************************************************************\n")
[docs] def renormalize_eigenvectors(adc, nroots=1): nocc = adc._nocc nvir = adc._nvir n_singles = nocc U = adc.U for I in range(U.shape[1]): U1 = U[:n_singles,I] U2 = U[n_singles:,I].reshape(nvir,nocc,nocc) UdotU = np.dot(U1, U1) + 2.*np.dot(U2.ravel(), U2.ravel()) - \ np.dot(U2.ravel(), U2.transpose(0,2,1).ravel()) U[:,I] /= np.sqrt(UdotU) return U
[docs] def get_properties(adc, nroots=1): #Transition moments T = adc.get_trans_moments() #Spectroscopic amplitudes U = adc.renormalize_eigenvectors(nroots) X = np.dot(T, U).reshape(-1, nroots) #Spectroscopic factors P = 2.0*lib.einsum("pi,pi->i", X, X) return P,X
[docs] def analyze(myadc): header = ("\n*************************************************************" "\n Eigenvector analysis summary" "\n*************************************************************") logger.info(myadc, header) myadc.analyze_eigenvector() if myadc.compute_properties: header = ("\n*************************************************************" "\n Spectroscopic factors analysis summary" "\n*************************************************************") logger.info(myadc, header) myadc.analyze_spec_factor()
[docs] def compute_dyson_mo(myadc): X = myadc.X if X is None: nroots = myadc.U.shape[1] P,X = myadc.get_properties(nroots) nroots = X.shape[1] dyson_mo = np.dot(myadc.mo_coeff,X) return dyson_mo
[docs] def make_rdm1(adc): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(adc.stdout, adc.verbose) nroots = adc.U.shape[1] U = adc.renormalize_eigenvectors(nroots) list_rdm1 = [] for i in range(U.shape[1]): rdm1 = make_rdm1_eigenvectors(adc, U[:,i], U[:,i]) list_rdm1.append(rdm1) cput0 = log.timer_debug1("completed OPDM calculation", *cput0) return list_rdm1
[docs] def make_rdm1_eigenvectors(adc, L, R): L = np.array(L).ravel() R = np.array(R).ravel() t2_1 = adc.t2[0][:] t1_2 = adc.t1[0][:] nocc = adc._nocc nvir = adc._nvir nmo = nocc + nvir n_singles = nocc n_doubles = nvir * nocc * nocc s1 = 0 f1 = n_singles s2 = f1 f2 = s2 + n_doubles rdm1 = np.zeros((nmo,nmo)) kd_oc = np.identity(nocc) L1 = L[s1:f1] L2 = L[s2:f2] R1 = R[s1:f1] R2 = R[s2:f2] L2 = L2.reshape(nvir,nocc,nocc) R2 = R2.reshape(nvir,nocc,nocc) #####G^000#### block- ij rdm1[:nocc,:nocc] = 2*np.einsum('ij,m,m->ij',kd_oc,L1,R1,optimize=True) rdm1[:nocc,:nocc] -= np.einsum('i,j->ij',L1,R1,optimize=True) rdm1[:nocc,:nocc] += 4*np.einsum('ij,etu,etu->ij',kd_oc,L2,R2,optimize=True) rdm1[:nocc,:nocc] -= np.einsum('ij,etu,eut->ij',kd_oc,L2,R2,optimize=True) rdm1[:nocc,:nocc] -= np.einsum('ij,eut,etu->ij',kd_oc,L2,R2,optimize=True) rdm1[:nocc,:nocc] -= 4*np.einsum('eti,etj->ij',L2,R2,optimize=True) rdm1[:nocc,:nocc] += np.einsum('eti,ejt->ij',L2,R2,optimize=True) rdm1[:nocc,:nocc] += np.einsum('eit,etj->ij',L2,R2,optimize=True) rdm1[:nocc,:nocc] -= 2*np.einsum('g,g,hjcd,hicd->ij', L1,R1,t2_1,t2_1,optimize=True) rdm1[:nocc,:nocc] += 2*np.einsum('g,g,jhcd,hicd->ij', L1,R1,t2_1,t2_1,optimize=True) rdm1[:nocc,:nocc] -= 2*np.einsum('g,g,jhcd,ihcd->ij', L1,R1,t2_1,t2_1,optimize=True) rdm1[:nocc,:nocc] += 2*np.einsum('g,h,jgcd,ihcd->ij', L1,R1,t2_1,t2_1,optimize=True) rdm1[:nocc,:nocc] -= np.einsum('g,h,gjcd,ihcd->ij', L1,R1,t2_1,t2_1,optimize=True) temp_ij = np.einsum('g,j,ghcd,ihcd->ij',L1,R1,t2_1,t2_1,optimize=True) temp_ij -= 0.25*np.einsum('g,j,hgcd,ihcd->ij',L1,R1,t2_1,t2_1,optimize=True) temp_ij -= 0.25*np.einsum('g,j,ghcd,hicd->ij',L1,R1,t2_1,t2_1,optimize=True) rdm1[:nocc,:nocc] += temp_ij rdm1[:nocc,:nocc] += temp_ij.T ########## block- ab rdm1[nocc:,nocc:] = np.einsum('atu,btu->ab', L2,R2,optimize=True) rdm1[nocc:,nocc:] -= 0.5*np.einsum('aut,btu->ab', L2,R2,optimize=True) rdm1[nocc:,nocc:] -= 0.5*np.einsum('atu,but->ab', L2,R2,optimize=True) rdm1[nocc:,nocc:] += np.einsum('atu,btu->ab', L2,R2,optimize=True) rdm1[nocc:,nocc:] += 4*np.einsum('g,g,hmbc,hmac->ab', L1,R1,t2_1,t2_1,optimize=True) rdm1[nocc:,nocc:] -= np.einsum('g,g,mhbc,hmac->ab', L1,R1,t2_1,t2_1,optimize=True) rdm1[nocc:,nocc:] -= np.einsum('g,g,hmbc,mhac->ab', L1,R1,t2_1,t2_1,optimize=True) rdm1[nocc:,nocc:] -= 4*np.einsum('g,h,hmbc,gmac->ab', L1,R1,t2_1,t2_1,optimize=True) rdm1[nocc:,nocc:] += np.einsum('g,h,mhbc,gmac->ab', L1,R1,t2_1,t2_1,optimize=True) rdm1[nocc:,nocc:] += np.einsum('g,h,hmbc,mgac->ab', L1,R1,t2_1,t2_1,optimize=True) ########### block- ia rdm1[:nocc,nocc:] = -np.einsum('n,ani->ia', R1,L2,optimize=True) rdm1[:nocc,nocc:] += 2*np.einsum('n,ain->ia', R1,L2,optimize=True) rdm1[:nocc,nocc:] -= 2*np.einsum('g,cgh,ihac->ia', L1,R2,t2_1,optimize=True) rdm1[:nocc,nocc:] += np.einsum('g,cgh,hiac->ia', L1,R2,t2_1,optimize=True) rdm1[:nocc,nocc:] += 4*np.einsum('g,chg,ihac->ia', L1,R2,t2_1,optimize=True) rdm1[:nocc,nocc:] -= np.einsum('g,chg,hiac->ia', L1,R2,t2_1,optimize=True) rdm1[:nocc,nocc:] -= np.einsum('g,cgh,ihac->ia', L1,R2,t2_1,optimize=True) rdm1[:nocc,nocc:] += np.einsum('i,cgh,ghac->ia', L1,R2,t2_1,optimize=True) rdm1[:nocc,nocc:] -= 2*np.einsum('i,chg,ghac->ia', L1,R2,t2_1,optimize=True) rdm1[:nocc,nocc:] += np.einsum('g,g,ia->ia', L1,R1,t1_2,optimize=True) rdm1[:nocc,nocc:] += np.einsum('g,g,ia->ia', L1,R1,t1_2,optimize=True) rdm1[:nocc,nocc:] -= np.einsum('g,i,ga->ia', R1,L1,t1_2,optimize=True) ############ block- ai rdm1[nocc:,:nocc] = rdm1[:nocc,nocc:].T return rdm1
[docs] class RADCIP(radc.RADC): '''restricted ADC for IP energies and spectroscopic amplitudes Attributes: verbose : int Print level. Default value equals to :class:`Mole.verbose` max_memory : float or int Allowed memory in MB. Default value equals to :class:`Mole.max_memory` incore_complete : bool Avoid all I/O. Default is False. method : string nth-order ADC method. Options are : ADC(2), ADC(2)-X, ADC(3). Default is ADC(2). conv_tol : float Convergence threshold for Davidson iterations. Default is 1e-12. max_cycle : int Number of Davidson iterations. Default is 50. max_space : int Space size to hold trial vectors for Davidson iterative diagonalization. Default is 12. Kwargs: nroots : int Number of roots (eigenvalues) requested. Default value is 1. >>> myadc = adc.RADC(mf).run() >>> myadcip = adc.RADC(myadc).run() Saved results e_ip : float or list of floats IP energy (eigenvalue). For nroots = 1, it is a single float number. If nroots > 1, it is a list of floats for the lowest nroots eigenvalues. v_ip : array Eigenvectors for each IP transition. p_ip : float Spectroscopic amplitudes for each IP transition. ''' _keys = { 'tol_residual','conv_tol', 'e_corr', 'method', 'mo_coeff', 'mo_energy_b', 't1', 'mo_energy_a', 'max_space', 't2', 'max_cycle', 'nmo', 'transform_integrals', 'with_df', 'compute_properties', 'approx_trans_moments', 'E', 'U', 'P', 'X', 'evec_print_tol', 'spec_factor_print_tol', } def __init__(self, adc): self.mol = adc.mol self.verbose = adc.verbose self.stdout = adc.stdout self.max_memory = adc.max_memory self.max_space = adc.max_space self.max_cycle = adc.max_cycle self.conv_tol = adc.conv_tol self.tol_residual = adc.tol_residual self.t1 = adc.t1 self.t2 = adc.t2 self.imds = adc.imds self.e_corr = adc.e_corr self.method = adc.method self.method_type = adc.method_type self._scf = adc._scf self._nocc = adc._nocc self._nvir = adc._nvir self._nmo = adc._nmo self.mo_coeff = adc.mo_coeff self.mo_energy = adc.mo_energy self.nmo = adc._nmo self.transform_integrals = adc.transform_integrals self.with_df = adc.with_df self.compute_properties = adc.compute_properties self.approx_trans_moments = adc.approx_trans_moments self.E = None self.U = None self.P = None self.X = None self.evec_print_tol = adc.evec_print_tol self.spec_factor_print_tol = adc.spec_factor_print_tol kernel = radc.kernel get_imds = get_imds get_diag = get_diag matvec = matvec get_trans_moments = get_trans_moments renormalize_eigenvectors = renormalize_eigenvectors get_properties = get_properties analyze_spec_factor = analyze_spec_factor analyze_eigenvector = analyze_eigenvector analyze = analyze compute_dyson_mo = compute_dyson_mo make_rdm1 = make_rdm1
[docs] def get_init_guess(self, nroots=1, diag=None, ascending=True): if diag is None : diag = self.get_diag() idx = None if ascending: idx = np.argsort(diag) else: idx = np.argsort(diag)[::-1] guess = np.zeros((diag.shape[0], nroots)) min_shape = min(diag.shape[0], nroots) guess[:min_shape,:min_shape] = np.identity(min_shape) g = np.zeros((diag.shape[0], nroots)) g[idx] = guess.copy() guess = [] for p in range(g.shape[1]): guess.append(g[:,p]) return guess
[docs] def gen_matvec(self, imds=None, eris=None): if imds is None: imds = self.get_imds(eris) diag = self.get_diag(imds, eris) matvec = self.matvec(imds, eris) return matvec, diag