Source code for pyscf.adc.radc_ip_cvs

# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Abdelrahman Ahmed <abdelrahman.maa.ahmed@gmail.com>
#         Alexander Sokolov <alexander.y.sokolov@gmail.com>
#

'''
Restricted algebraic diagrammatic construction
'''
import numpy as np
import pyscf.ao2mo as ao2mo
from pyscf import lib
from pyscf.lib import logger
from pyscf.adc import radc
from pyscf.adc import radc_ao2mo
from pyscf.adc import dfadc
from pyscf import __config__
from pyscf import df
from pyscf import symm


[docs] def get_imds(adc, eris=None): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(adc.stdout, adc.verbose) if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method t1 = adc.t1 t2 = adc.t2 t1_2 = t1[0] ncvs = adc.ncvs e_cvs = adc.mo_energy[:ncvs] idn_cvs = np.identity(ncvs) if eris is None: eris = adc.transform_integrals() eris_ovvo = eris.ovvo # i-j block # Zeroth-order terms M_ij = lib.einsum('ij,j->ij', idn_cvs ,e_cvs) # Second-order terms t2_1 = t2[0][:] t2_1_coee = t2_1[:ncvs,:,:,:].copy() t2_1_ocee = t2_1[:,:ncvs,:,:].copy() eris_ceeo = eris_ovvo[:ncvs,:,:,:].copy() M_ij += 0.5 * 0.5 * lib.einsum('ilde,jdel->ij',t2_1_coee, eris_ceeo,optimize=True) M_ij -= 0.5 * 0.5 * lib.einsum('lide,jdel->ij',t2_1_ocee, eris_ceeo,optimize=True) M_ij -= 0.5 * 0.5 * lib.einsum('ilde,jedl->ij',t2_1_coee, eris_ceeo,optimize=True) M_ij += 0.5 * 0.5 * lib.einsum('lide,jedl->ij',t2_1_ocee, eris_ceeo,optimize=True) M_ij += 0.5 * lib.einsum('ilde,jdel->ij',t2_1_coee, eris_ceeo,optimize=True) M_ij += 0.5 * 0.5 * lib.einsum('jlde,idel->ij',t2_1_coee, eris_ceeo,optimize=True) M_ij -= 0.5 * 0.5 * lib.einsum('ljde,idel->ij',t2_1_ocee, eris_ceeo,optimize=True) M_ij -= 0.5 * 0.5 * lib.einsum('jlde,iedl->ij',t2_1_coee, eris_ceeo,optimize=True) M_ij += 0.5 * 0.5 * lib.einsum('ljde,iedl->ij',t2_1_ocee, eris_ceeo,optimize=True) M_ij += 0.5 * lib.einsum('jlde,idel->ij',t2_1_coee, eris_ceeo,optimize=True) del t2_1 cput0 = log.timer_debug1("Completed M_ij second-order terms ADC(2) calculation", *cput0) # Third-order terms if (method == "adc(3)"): eris_oovv = eris.oovv eris_ovoo = eris.ovoo eris_oooo = eris.oooo eris_oecc = eris_ovoo[:,:,:ncvs,:ncvs].copy() eris_ceoc = eris_ovoo[:ncvs,:,:,:ncvs].copy() eris_coee = eris_oovv[:ncvs,:,:,:].copy() eris_ccee = eris_coee[:,:ncvs,:,:].copy() eris_ceec = eris_ceeo[:,:,:,:ncvs].copy() eris_cooo = eris_oooo[:ncvs,:,:,:].copy() eris_cooc = eris_cooo[:,:,:,:ncvs].copy() eris_ccoo = eris_cooo[:,:ncvs,:,:].copy() M_ij += lib.einsum('ld,ldji->ij',t1_2, eris_oecc,optimize=True) M_ij -= lib.einsum('ld,jdli->ij',t1_2, eris_ceoc,optimize=True) M_ij += lib.einsum('ld,ldji->ij',t1_2, eris_oecc,optimize=True) M_ij += lib.einsum('ld,ldij->ij',t1_2, eris_oecc,optimize=True) M_ij -= lib.einsum('ld,idlj->ij',t1_2, eris_ceoc,optimize=True) M_ij += lib.einsum('ld,ldij->ij',t1_2, eris_oecc,optimize=True) t2_2 = t2[1][:] t2_2_coee = t2_2[:ncvs,:,:,:].copy() t2_2_ocee = t2_2[:,:ncvs,:,:].copy() M_ij += 0.5 * 0.5* lib.einsum('ilde,jdel->ij',t2_2_coee, eris_ceeo,optimize=True) M_ij -= 0.5 * 0.5* lib.einsum('lide,jdel->ij',t2_2_ocee, eris_ceeo,optimize=True) M_ij -= 0.5 * 0.5* lib.einsum('ilde,jedl->ij',t2_2_coee, eris_ceeo,optimize=True) M_ij += 0.5 * 0.5* lib.einsum('lide,jedl->ij',t2_2_ocee, eris_ceeo,optimize=True) M_ij += 0.5 * lib.einsum('ilde,jdel->ij',t2_2_coee, eris_ceeo,optimize=True) M_ij += 0.5 * 0.5* lib.einsum('jlde,idel->ij',t2_2_coee, eris_ceeo,optimize=True) M_ij -= 0.5 * 0.5* lib.einsum('ljde,idel->ij',t2_2_ocee, eris_ceeo,optimize=True) M_ij -= 0.5 * 0.5* lib.einsum('jlde,iedl->ij',t2_2_coee, eris_ceeo,optimize=True) M_ij += 0.5 * 0.5* lib.einsum('ljde,iedl->ij',t2_2_ocee, eris_ceeo,optimize=True) M_ij += 0.5 * lib.einsum('jlde,idel->ij',t2_2_coee, eris_ceeo,optimize=True) t2_1 = t2[0][:] log.timer_debug1("Starting the small integrals calculation") temp_t2_v_1_oece = lib.einsum('lmde,jldf->mejf',t2_1, t2_1_coee,optimize=True) temp_t2_v_1_ceoe = lib.einsum('lmde,jldf->mejf',t2_1_ocee, t2_1,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('mejf,ifem->ij',temp_t2_v_1_oece, eris_ceeo,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('jfme,ifem->ij',temp_t2_v_1_ceoe, eris_ceeo,optimize=True) M_ij += 0.5 * lib.einsum('mejf,imfe->ij',temp_t2_v_1_oece, eris_coee,optimize=True) M_ij += 0.5 * lib.einsum('jfme,imfe->ij',temp_t2_v_1_ceoe, eris_coee,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('meif,jfem->ij',temp_t2_v_1_oece, eris_ceeo ,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('ifme,jfem->ij',temp_t2_v_1_ceoe, eris_ceeo ,optimize=True) M_ij += 0.5 * lib.einsum('meif,jmfe->ij',temp_t2_v_1_oece, eris_coee ,optimize=True) M_ij += 0.5 * lib.einsum('ifme,jmfe->ij',temp_t2_v_1_ceoe, eris_coee ,optimize=True) del temp_t2_v_1_oece del temp_t2_v_1_ceoe temp_t2_v_2 = lib.einsum('lmde,ljdf->mejf',t2_1, t2_1_ocee,optimize=True) M_ij += 0.5 * 4 * lib.einsum('mejf,ifem->ij',temp_t2_v_2, eris_ceeo,optimize=True) M_ij += 0.5 * 4 * lib.einsum('meif,jfem->ij',temp_t2_v_2, eris_ceeo,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('meif,jmfe->ij',temp_t2_v_2, eris_coee,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('mejf,imfe->ij',temp_t2_v_2, eris_coee,optimize=True) del temp_t2_v_2 temp_t2_v_3 = lib.einsum('mlde,jldf->mejf',t2_1, t2_1_coee,optimize=True) M_ij += 0.5 * lib.einsum('mejf,ifem->ij',temp_t2_v_3, eris_ceeo,optimize=True) M_ij += 0.5 * lib.einsum('meif,jfem->ij',temp_t2_v_3, eris_ceeo,optimize=True) M_ij -= 0.5 * 2 *lib.einsum('meif,jmfe->ij',temp_t2_v_3, eris_coee,optimize=True) M_ij -= 0.5 * 2 * lib.einsum('mejf,imfe->ij',temp_t2_v_3, eris_coee,optimize=True) del temp_t2_v_3 temp_t2_v_8 = lib.einsum('lmdf,lmde->fe',t2_1, t2_1,optimize=True) M_ij += 3 *lib.einsum('fe,jief->ij',temp_t2_v_8, eris_ccee, optimize=True) M_ij -= 1.5 *lib.einsum('fe,jfei->ij',temp_t2_v_8, eris_ceec, optimize=True) M_ij += lib.einsum('ef,jief->ij',temp_t2_v_8, eris_ccee, optimize=True) M_ij -= 0.5 * lib.einsum('ef,jfei->ij',temp_t2_v_8, eris_ceec, optimize=True) del temp_t2_v_8 temp_t2_v_9 = lib.einsum('lmdf,mlde->fe',t2_1, t2_1,optimize=True) M_ij -= 1.0 * lib.einsum('fe,jief->ij',temp_t2_v_9, eris_ccee, optimize=True) M_ij -= 1.0 * lib.einsum('ef,jief->ij',temp_t2_v_9, eris_ccee, optimize=True) M_ij += 0.5 * lib.einsum('fe,jfei->ij',temp_t2_v_9, eris_ceec, optimize=True) M_ij += 0.5 * lib.einsum('ef,jfei->ij',temp_t2_v_9, eris_ceec, optimize=True) del temp_t2_v_9 temp_t2_v_10 = lib.einsum('lnde,lmde->nm',t2_1, t2_1,optimize=True) M_ij -= 3.0 * lib.einsum('nm,jinm->ij',temp_t2_v_10, eris_ccoo, optimize=True) M_ij -= 1.0 * lib.einsum('mn,jinm->ij',temp_t2_v_10, eris_ccoo, optimize=True) M_ij += 1.5 * lib.einsum('nm,jmni->ij',temp_t2_v_10, eris_cooc, optimize=True) M_ij += 0.5 * lib.einsum('mn,jmni->ij',temp_t2_v_10, eris_cooc, optimize=True) del temp_t2_v_10 temp_t2_v_11 = lib.einsum('lnde,mlde->nm',t2_1, t2_1,optimize=True) M_ij += 1.0 * lib.einsum('nm,jinm->ij',temp_t2_v_11, eris_ccoo, optimize=True) M_ij -= 0.5 * lib.einsum('nm,jmni->ij',temp_t2_v_11, eris_cooc, optimize=True) M_ij -= 0.5 * lib.einsum('mn,jmni->ij',temp_t2_v_11, eris_cooc, optimize=True) M_ij += 1.0 * lib.einsum('mn,jinm->ij',temp_t2_v_11, eris_ccoo, optimize=True) del temp_t2_v_11 temp_t2_v_12_cooo = lib.einsum('inde,lmde->inlm',t2_1_coee, t2_1,optimize=True) temp_t2_v_12_ooco = lib.einsum('inde,lmde->inlm',t2_1, t2_1_coee,optimize=True) M_ij += 0.5 * 1.25 * lib.einsum('inlm,jlnm->ij',temp_t2_v_12_cooo, eris_cooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('lmin,jlnm->ij',temp_t2_v_12_ooco, eris_cooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inlm,jmnl->ij',temp_t2_v_12_cooo, eris_cooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('lmin,jmnl->ij',temp_t2_v_12_ooco, eris_cooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('inlm,jlnm->ji',temp_t2_v_12_cooo, eris_cooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inlm,jmnl->ji',temp_t2_v_12_cooo, eris_cooo, optimize=True) M_ij += 0.5 * 1.00 * lib.einsum('inlm,jlmn->ji',temp_t2_v_12_cooo, eris_cooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('lmin,jmnl->ji',temp_t2_v_12_ooco, eris_cooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('lmin,jlmn->ji',temp_t2_v_12_ooco, eris_cooo, optimize=True) del temp_t2_v_12_cooo del temp_t2_v_12_ooco temp_t2_v_13_cooo = lib.einsum('inde,mlde->inml',t2_1_coee, t2_1,optimize=True) temp_t2_v_13_ooco = lib.einsum('inde,mlde->inml',t2_1, t2_1_coee,optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inml,jlnm->ij',temp_t2_v_13_cooo, eris_cooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('mlin,jlnm->ij',temp_t2_v_13_ooco, eris_cooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('inml,jmnl->ij',temp_t2_v_13_cooo, eris_cooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('mlin,jmnl->ij',temp_t2_v_13_ooco, eris_cooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inml,jlnm->ji',temp_t2_v_13_cooo, eris_cooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('inml,jmnl->ji',temp_t2_v_13_cooo, eris_cooo, optimize=True) M_ij -= 0.5 * 0.25 * lib.einsum('inml,jlmn->ji',temp_t2_v_13_cooo, eris_cooo, optimize=True) M_ij += 0.5 * 0.25 * lib.einsum('inml,jmnl->ji',temp_t2_v_13_cooo, eris_cooo, optimize=True) del temp_t2_v_13_cooo del temp_t2_v_13_ooco del t2_1 cput0 = log.timer_debug1("Completed CVS M_ij ADC(n) calculation", *cput0) return M_ij
[docs] def get_diag(adc,M_ij=None,eris=None): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) if M_ij is None: M_ij = adc.get_imds() nocc = adc._nocc nvir = adc._nvir ncvs = adc.ncvs nval = nocc - ncvs n_singles = ncvs n_doubles_ecc = nvir * ncvs * ncvs n_doubles_ecv = nvir * ncvs * nval dim = n_singles + n_doubles_ecc + 2 * n_doubles_ecv e_occ = adc.mo_energy[:nocc] e_vir = adc.mo_energy[nocc:] s1 = 0 f1 = n_singles s2_ecc = f1 f2_ecc = s2_ecc + n_doubles_ecc s2_ecv = f2_ecc f2_ecv = s2_ecv + n_doubles_ecv s2_evc = f2_ecv f2_evc = s2_evc + n_doubles_ecv d_ij = e_occ[:,None] + e_occ d_a = e_vir[:,None] D_n = -d_a + d_ij.reshape(-1) D_aij = D_n.reshape(-1) D_aij = D_n.reshape(nvir,nocc,nocc) diag = np.zeros(dim) # Compute precond in h1-h1 block M_ij_diag = np.diagonal(M_ij) diag[s1:f1] = M_ij_diag.copy() # Compute precond in 2p1h-2p1h block diag[s2_ecc:f2_ecc] = D_aij[:,:ncvs,:ncvs].reshape(-1) diag[s2_ecv:f2_ecv] = D_aij[:,:ncvs,ncvs:].reshape(-1) diag[s2_evc:f2_evc] = D_aij[:,ncvs:,:ncvs].reshape(-1) diag = -diag return diag
[docs] def matvec(adc, M_ij=None, eris=None): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method nocc = adc._nocc nvir = adc._nvir ncvs = adc.ncvs nval = nocc - ncvs n_singles = ncvs n_doubles_ecc = nvir * ncvs * ncvs n_doubles_ecv = nvir * ncvs * nval dim = n_singles + n_doubles_ecc + 2 * n_doubles_ecv e_occ = adc.mo_energy[:nocc] e_vir = adc.mo_energy[nocc:] if eris is None: eris = adc.transform_integrals() s1 = 0 f1 = n_singles s2_ecc = f1 f2_ecc = s2_ecc + n_doubles_ecc s2_ecv = f2_ecc f2_ecv = s2_ecv + n_doubles_ecv s2_evc = f2_ecv f2_evc = s2_evc + n_doubles_ecv d_ij = e_occ[:,None] + e_occ d_a = e_vir[:,None] D_n = -d_a + d_ij.reshape(-1) D_aij = D_n.reshape(-1) D_aij = D_n.reshape(nvir,nocc,nocc) if M_ij is None: M_ij = adc.get_imds() #Calculate sigma vector def sigma_(r): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(adc.stdout, adc.verbose) s = np.zeros((dim)) r1 = r[s1:f1] r2_ecc = r[s2_ecc:f2_ecc] r2_ecv = r[s2_ecv:f2_ecv] r2_evc = r[s2_evc:f2_evc] r2_ecc = r2_ecc.reshape(nvir,ncvs,ncvs) r2_ecv = r2_ecv.reshape(nvir,ncvs,nval) r2_evc = r2_evc.reshape(nvir,nval,ncvs) eris_ovoo = eris.ovoo eris_cecc = eris_ovoo[:ncvs,:,:ncvs,:ncvs].copy() eris_cecv = eris_ovoo[:ncvs,:,:ncvs,ncvs:].copy() eris_vecc = eris_ovoo[ncvs:,:,:ncvs,:ncvs].copy() del eris_ovoo ############ ADC(2) ij block ############################ s[s1:f1] = lib.einsum('IJ,J->I',M_ij,r1) ############ ADC(2) i - kja block ######################### s[s1:f1] += 2. * lib.einsum('jaki,ajk->i', eris_cecc, r2_ecc, optimize=True) s[s1:f1] -= lib.einsum('kaji,ajk->i', eris_cecc, r2_ecc, optimize=True) s[s1:f1] += 2. * lib.einsum('jaik,ajk->i', eris_cecv, r2_ecv, optimize=True) s[s1:f1] -= lib.einsum('kaji,ajk->i', eris_vecc, r2_ecv, optimize=True) s[s1:f1] += 2. * lib.einsum('jaki,ajk->i', eris_vecc, r2_evc, optimize=True) s[s1:f1] -= lib.einsum('kaij,ajk->i', eris_cecv, r2_evc, optimize=True) ############## ADC(2) ajk - i block ############################ s[s2_ecc:f2_ecc] += lib.einsum('jaki,i->ajk', eris_cecc, r1, optimize=True).reshape(-1) s[s2_ecv:f2_ecv] += lib.einsum('jaik,i->ajk', eris_cecv, r1, optimize=True).reshape(-1) s[s2_evc:f2_evc] += lib.einsum('jaki,i->ajk', eris_vecc, r1, optimize=True).reshape(-1) del eris_cecc, eris_cecv, eris_vecc ################ ADC(2) ajk - bil block ############################ temp_ecc = D_aij[:,:ncvs,:ncvs].reshape(-1) s[s2_ecc:f2_ecc] += temp_ecc*r2_ecc.reshape(-1) temp_ecv = D_aij[:,:ncvs,ncvs:].reshape(-1) s[s2_ecv:f2_ecv] += temp_ecv*r2_ecv.reshape(-1) temp_evc = D_aij[:,ncvs:,:ncvs].reshape(-1) s[s2_evc:f2_evc] += temp_evc*r2_evc.reshape(-1) ############### ADC(3) ajk - bil block ############################ if (method == "adc(2)-x" or method == "adc(3)"): eris_oooo = eris.oooo eris_oovv = eris.oovv eris_ovvo = eris.ovvo eris_cccc = eris_oooo[:ncvs,:ncvs,:ncvs,:ncvs].copy() eris_cccv = eris_oooo[:ncvs,:ncvs,:ncvs,ncvs:].copy() eris_cvcv = eris_oooo[:ncvs,ncvs:,:ncvs,ncvs:].copy() eris_ccvv = eris_oooo[:ncvs,:ncvs,ncvs:,ncvs:].copy() eris_ceec = eris_ovvo[:ncvs,:,:,:ncvs].copy() eris_ceev = eris_ovvo[:ncvs,:,:,ncvs:].copy() eris_veev = eris_ovvo[ncvs:,:,:,ncvs:].copy() eris_ccee = eris_oovv[:ncvs,:ncvs,:,:].copy() eris_cvee = eris_oovv[:ncvs,ncvs:,:,:].copy() eris_vvee = eris_oovv[ncvs:,ncvs:,:,:].copy() del eris_oooo del eris_oovv del eris_ovvo #eris_veev, eris_vvee s[s2_ecv:f2_ecv] += lib.einsum('klba,bJl->aJk',eris_vvee, r2_ecv,optimize=True).reshape(-1) s[s2_evc:f2_evc] += lib.einsum('jlba,blK->ajK',eris_vvee, r2_evc,optimize=True).reshape(-1) del eris_vvee s[s2_evc:f2_evc] += lib.einsum('jabl,bKl->ajK',eris_veev, r2_ecv,optimize=True).reshape(-1) s[s2_evc:f2_evc] -= 2*lib.einsum('jabl,blK->ajK',eris_veev, r2_evc,optimize=True).reshape(-1) del eris_veev #eris_ceev, eris_cvee s[s2_ecc:f2_ecc] += lib.einsum('Klba,bJl->aJK',eris_cvee, r2_ecv,optimize=True).reshape(-1) s[s2_ecc:f2_ecc] += lib.einsum('Jlba,blK->aJK',eris_cvee, r2_evc,optimize=True).reshape(-1) s[s2_ecv:f2_ecv] += lib.einsum('Lkba,bJL->aJk',eris_cvee, r2_ecc,optimize=True).reshape(-1) s[s2_evc:f2_evc] += lib.einsum('Ljba,bLK->ajK',eris_cvee, r2_ecc,optimize=True).reshape(-1) del eris_cvee s[s2_ecc:f2_ecc] += lib.einsum('Jabl,bKl->aJK',eris_ceev, r2_ecv,optimize=True).reshape(-1) s[s2_ecc:f2_ecc] -= 2*lib.einsum('Jabl,blK->aJK',eris_ceev, r2_evc,optimize=True).reshape(-1) s[s2_evc:f2_evc] += lib.einsum('Lbaj,bKL->ajK',eris_ceev, r2_ecc,optimize=True).reshape(-1) s[s2_evc:f2_evc] -= 2*lib.einsum('Lbaj,bLK->ajK',eris_ceev, r2_ecc,optimize=True).reshape(-1) del eris_ceev #eris_ceec, eris_ccee s[s2_ecc:f2_ecc] += lib.einsum('KLba,bJL->aJK',eris_ccee, r2_ecc,optimize=True).reshape(-1) s[s2_ecc:f2_ecc] += lib.einsum('JLba,bLK->aJK',eris_ccee, r2_ecc,optimize=True).reshape(-1) s[s2_ecv:f2_ecv] += lib.einsum('JLba,bLk->aJk',eris_ccee, r2_ecv,optimize=True).reshape(-1) s[s2_evc:f2_evc] += lib.einsum('KLba,bjL->ajK',eris_ccee, r2_evc,optimize=True).reshape(-1) del eris_ccee s[s2_ecc:f2_ecc] += lib.einsum('JabL,bKL->aJK',eris_ceec, r2_ecc,optimize=True).reshape(-1) s[s2_ecc:f2_ecc] -= 2*lib.einsum('JabL,bLK->aJK',eris_ceec, r2_ecc,optimize=True).reshape(-1) s[s2_ecv:f2_ecv] -= 2*lib.einsum('JabL,bLk->aJk',eris_ceec, r2_ecv,optimize=True).reshape(-1) s[s2_ecv:f2_ecv] += lib.einsum('JabL,bkL->aJk',eris_ceec, r2_evc,optimize=True).reshape(-1) del eris_ceec #eris_cvcv, eris_ccvv s[s2_ecv:f2_ecv] -= lib.einsum('JIkl,aIl->aJk',eris_ccvv, r2_ecv,optimize=True).reshape(-1) s[s2_evc:f2_evc] -= lib.einsum('KIjl,alI->ajK',eris_ccvv, r2_evc,optimize=True).reshape(-1) del eris_ccvv s[s2_ecv:f2_ecv] -= lib.einsum('IkJl,alI->aJk',eris_cvcv, r2_evc,optimize=True).reshape(-1) s[s2_evc:f2_evc] -= lib.einsum('KlIj,aIl->ajK',eris_cvcv, r2_ecv,optimize=True).reshape(-1) del eris_cvcv #eris_cccv s[s2_ecc:f2_ecc] -= lib.einsum('KIJl,alI->aJK',eris_cccv, r2_evc,optimize=True).reshape(-1) s[s2_ecc:f2_ecc] -= lib.einsum('JIKl,aIl->aJK',eris_cccv, r2_ecv,optimize=True).reshape(-1) s[s2_ecv:f2_ecv] -= lib.einsum('JILk,aIL->aJk',eris_cccv, r2_ecc,optimize=True).reshape(-1) s[s2_evc:f2_evc] -= lib.einsum('KLIj,aIL->ajK',eris_cccv, r2_ecc,optimize=True).reshape(-1) del eris_cccv #eris_cccc s[s2_ecc:f2_ecc] -= lib.einsum('KLJI,aIL->aJK',eris_cccc, r2_ecc,optimize=True).reshape(-1) del eris_cccc if (method == "adc(3)"): eris_ovoo = eris.ovoo t2_1 = adc.t2[0] t2_1_ccee = t2_1[:ncvs,:ncvs,:,:].copy() t2_1_cvee = t2_1[:ncvs,ncvs:,:,:].copy() t2_1_vcee = t2_1[ncvs:,:ncvs,:,:].copy() del t2_1 ################ ADC(3) i - kja block and ajk - i ############################ eris_oecc = eris_ovoo[:,:,:ncvs,:ncvs].copy() eris_oecv = eris_ovoo[:,:,:ncvs,ncvs:].copy() eris_ceco = eris_ovoo[:ncvs,:,:ncvs,:].copy() eris_cevo = eris_ovoo[:ncvs,:,ncvs:,:].copy() temp_1_ecc = lib.einsum('ijbc,aij->abc',t2_1_ccee, r2_ecc, optimize=True) temp_ecc = 0.25 * temp_1_ecc temp_ecc -= 0.25 * lib.einsum('ijbc,aji->abc',t2_1_ccee, r2_ecc, optimize=True) temp_ecc -= 0.25 * lib.einsum('jibc,aij->abc',t2_1_ccee, r2_ecc, optimize=True) temp_ecc += 0.25 * lib.einsum('jibc,aji->abc',t2_1_ccee, r2_ecc, optimize=True) temp_1_ecv = lib.einsum('ijbc,aij->abc',t2_1_cvee, r2_ecv, optimize=True) temp_ecv = 0.25 * temp_1_ecv temp_ecv -= 0.25 * lib.einsum('ijbc,aji->abc',t2_1_vcee, r2_ecv, optimize=True) temp_ecv -= 0.25 * lib.einsum('jibc,aij->abc',t2_1_vcee, r2_ecv, optimize=True) temp_ecv += 0.25 * lib.einsum('jibc,aji->abc',t2_1_cvee, r2_ecv, optimize=True) temp_1_evc = lib.einsum('ijbc,aij->abc',t2_1_vcee, r2_evc, optimize=True) temp_evc = 0.25 * temp_1_evc temp_evc -= 0.25 * lib.einsum('ijbc,aji->abc',t2_1_cvee, r2_evc, optimize=True) temp_evc -= 0.25 * lib.einsum('jibc,aij->abc',t2_1_cvee, r2_evc, optimize=True) temp_evc += 0.25 * lib.einsum('jibc,aji->abc',t2_1_vcee, r2_evc, optimize=True) if isinstance(eris.ovvv, type(None)): chnk_size = radc_ao2mo.calculate_chunk_size(adc) else: chnk_size = nocc a = 0 temp_singles = np.zeros((ncvs)) temp_doubles = np.zeros((nvir,nvir,nvir)) for p in range(0,ncvs,chnk_size): if getattr(adc, 'with_df', None): eris_ceee = dfadc.get_ovvv_df( adc, eris.Lce, eris.Lee, p, chnk_size).reshape(-1,nvir,nvir,nvir) else: eris_ovvv = radc_ao2mo.unpack_eri_1(eris.ovvv, nvir) eris_ceee = eris_ovvv[:ncvs,:,:,:].copy() del eris_ovvv k = eris_ceee.shape[0] temp_singles[a:a+k] += lib.einsum('abc,icab->i',temp_ecc, eris_ceee, optimize=True) temp_singles[a:a+k] -= lib.einsum('abc,ibac->i',temp_ecc, eris_ceee, optimize=True) temp_singles[a:a+k] += lib.einsum('abc,icab->i',temp_ecv, eris_ceee, optimize=True) temp_singles[a:a+k] -= lib.einsum('abc,ibac->i',temp_ecv, eris_ceee, optimize=True) temp_singles[a:a+k] += lib.einsum('abc,icab->i',temp_evc, eris_ceee, optimize=True) temp_singles[a:a+k] -= lib.einsum('abc,ibac->i',temp_evc, eris_ceee, optimize=True) temp_singles[a:a+k] += lib.einsum('abc,icab->i', temp_1_ecc, eris_ceee, optimize=True) temp_singles[a:a+k] += lib.einsum('abc,icab->i', temp_1_ecv, eris_ceee, optimize=True) temp_singles[a:a+k] += lib.einsum('abc,icab->i', temp_1_evc, eris_ceee, optimize=True) temp_doubles = lib.einsum('i,icab->cba',r1[a:a+k],eris_ceee,optimize=True) s[s1:f1] += temp_singles s[s2_ecc:f2_ecc] += lib.einsum('cba,kjcb->ajk', temp_doubles, t2_1_ccee, optimize=True).reshape(-1) s[s2_ecv:f2_ecv] += lib.einsum('cba,kjcb->ajk', temp_doubles, t2_1_vcee, optimize=True).reshape(-1) s[s2_evc:f2_evc] += lib.einsum('cba,kjcb->ajk', temp_doubles, t2_1_cvee, optimize=True).reshape(-1) del eris_ceee, temp_singles, temp_doubles a += k # ADC(3) jka-i temp_1_c_a = lib.einsum('I,lbIK->Kbl',r1,eris_oecc, optimize=True) temp_1_c_b = -lib.einsum('I,IbKl->Kbl',r1,eris_ceco, optimize=True) temp_1_c = temp_1_c_a + temp_1_c_b temp_1_v_a = lib.einsum('I,lbIk->kbl',r1,eris_oecv, optimize=True) temp_1_v_b = -lib.einsum('I,Ibkl->kbl',r1,eris_cevo, optimize=True) temp_1_v = temp_1_v_a + temp_1_v_b t2_1 = adc.t2[0] t2_1_coee = t2_1[:ncvs,:,:,:].copy() t2_1_ocee = t2_1[:,:ncvs,:,:].copy() t2_1_voee = t2_1[ncvs:,:,:,:].copy() t2_1_ovee = t2_1[:,ncvs:,:,:].copy() del t2_1 temp_ecc = lib.einsum('Kbl,lJba->aJK',temp_1_c,t2_1_ocee,optimize=True) temp_ecc += lib.einsum('Kbl,Jlab->aJK',temp_1_c_a,t2_1_coee,optimize=True) temp_ecc -= lib.einsum('Kbl,lJab->aJK',temp_1_c_a,t2_1_ocee,optimize=True) temp_ecc += lib.einsum('Jbl,Klba->aJK',temp_1_c_b,t2_1_coee,optimize=True) temp_ecv = lib.einsum('kbl,lJba->aJk',temp_1_v,t2_1_ocee,optimize=True) temp_ecv += lib.einsum('kbl,Jlab->aJk',temp_1_v_a,t2_1_coee,optimize=True) temp_ecv -= lib.einsum('kbl,lJab->aJk',temp_1_v_a,t2_1_ocee,optimize=True) temp_ecv += lib.einsum('Jbl,klba->aJk',temp_1_c_b,t2_1_voee,optimize=True) temp_evc = lib.einsum('Kbl,ljba->ajK',temp_1_c,t2_1_ovee,optimize=True) temp_evc += lib.einsum('Kbl,jlab->ajK',temp_1_c_a,t2_1_voee,optimize=True) temp_evc -= lib.einsum('Kbl,ljab->ajK',temp_1_c_a,t2_1_ovee,optimize=True) temp_evc += lib.einsum('jbl,Klba->ajK',temp_1_v_b,t2_1_coee,optimize=True) s[s2_ecc:f2_ecc] += temp_ecc.reshape(-1) s[s2_ecv:f2_ecv] += temp_ecv.reshape(-1) s[s2_evc:f2_evc] += temp_evc.reshape(-1) del temp_1_c_a, temp_1_c_b, temp_1_c , temp_1_v_a, temp_1_v_b, temp_1_v # ADC(3) i-jka temp_a = lib.einsum('Jlab,aJK->blK',t2_1_coee,r2_ecc,optimize=True) temp_b = -lib.einsum('Jlab,aKJ->blK',t2_1_coee,r2_ecc,optimize=True) temp_c = -lib.einsum('Jlba,aJK->blK',t2_1_coee,r2_ecc,optimize=True) temp_d = lib.einsum('Jlba,aKJ->blK',t2_1_coee,r2_ecc,optimize=True) temp_ecc = temp_a + temp_b + temp_c + temp_d temp_1_ecc = -temp_a - temp_c temp_2_ecc = -temp_a temp_3_ecc = -temp_a - temp_b temp_4_ecc = -temp_d s[s1:f1] += lib.einsum('blK,lbIK->I',temp_ecc,eris_oecc,optimize=True) s[s1:f1] -= lib.einsum('blK,IbKl->I',temp_ecc,eris_ceco,optimize=True) s[s1:f1] -= lib.einsum('blJ,lbIJ->I',temp_1_ecc,eris_oecc,optimize=True) s[s1:f1] -= lib.einsum('blJ,lbIJ->I',temp_2_ecc,eris_oecc,optimize=True) s[s1:f1] += lib.einsum('blJ,IbJl->I',temp_2_ecc,eris_ceco,optimize=True) s[s1:f1] -= lib.einsum('blJ,lbIJ->I',temp_3_ecc,eris_oecc,optimize=True) s[s1:f1] += lib.einsum('blJ,IbJl->I',temp_4_ecc,eris_ceco,optimize=True) del temp_a, temp_b, temp_c, temp_d, temp_ecc, temp_1_ecc, temp_2_ecc, temp_3_ecc, temp_4_ecc temp_a = lib.einsum('Jlab,aJk->blk',t2_1_coee,r2_ecv,optimize=True) temp_b = -lib.einsum('lJab,aJk->blk',t2_1_ocee,r2_ecv,optimize=True) temp_c = -lib.einsum('Jlab,akJ->blk',t2_1_coee,r2_evc,optimize=True) temp_d = lib.einsum('lJab,akJ->blk',t2_1_ocee,r2_evc,optimize=True) temp_ecv = temp_a + temp_b + temp_c + temp_d temp_1_ecv = -temp_a - temp_b temp_2_ecv = -temp_a temp_3_ecv = -temp_a - temp_c temp_4_ecv = -lib.einsum('klba,aJk->blJ',t2_1_voee,r2_ecv,optimize=True) s[s1:f1] += lib.einsum('blk,lbIk->I',temp_ecv,eris_oecv,optimize=True) s[s1:f1] -= lib.einsum('blk,Ibkl->I',temp_ecv,eris_cevo,optimize=True) s[s1:f1] -= lib.einsum('blj,lbIj->I',temp_1_ecv,eris_oecv,optimize=True) s[s1:f1] -= lib.einsum('blj,lbIj->I',temp_2_ecv,eris_oecv,optimize=True) s[s1:f1] += lib.einsum('blj,Ibjl->I',temp_2_ecv,eris_cevo,optimize=True) s[s1:f1] -= lib.einsum('blj,lbIj->I',temp_3_ecv,eris_oecv,optimize=True) s[s1:f1] += lib.einsum('blJ,IbJl->I',temp_4_ecv,eris_ceco,optimize=True) del temp_a, temp_b, temp_c, temp_d, temp_ecv, temp_1_ecv, temp_2_ecv, temp_3_ecv, temp_4_ecv temp_a = -lib.einsum('jlab,aKj->blK',t2_1_voee,r2_ecv,optimize=True) temp_b = lib.einsum('ljab,aKj->blK',t2_1_ovee,r2_ecv,optimize=True) temp_c = lib.einsum('jlab,ajK->blK',t2_1_voee,r2_evc,optimize=True) temp_d = -lib.einsum('ljab,ajK->blK',t2_1_ovee,r2_evc,optimize=True) temp_evc = temp_a + temp_b + temp_c + temp_d temp_1_evc = -temp_c - temp_d temp_2_evc = -temp_c temp_3_evc = -temp_a - temp_c temp_4_evc = -lib.einsum('Klba,ajK->blj',t2_1_coee,r2_evc,optimize=True) s[s1:f1] += lib.einsum('blK,lbIK->I',temp_evc,eris_oecc,optimize=True) s[s1:f1] -= lib.einsum('blK,IbKl->I',temp_evc,eris_ceco,optimize=True) s[s1:f1] -= lib.einsum('blJ,lbIJ->I',temp_1_evc,eris_oecc,optimize=True) s[s1:f1] -= lib.einsum('blJ,lbIJ->I',temp_2_evc,eris_oecc,optimize=True) s[s1:f1] += lib.einsum('blJ,IbJl->I',temp_2_evc,eris_ceco,optimize=True) s[s1:f1] -= lib.einsum('blJ,lbIJ->I',temp_3_evc,eris_oecc,optimize=True) s[s1:f1] += lib.einsum('blj,Ibjl->I',temp_4_evc,eris_cevo,optimize=True) del temp_a, temp_b, temp_c, temp_d, temp_evc, temp_1_evc, temp_2_evc, temp_3_evc, temp_4_evc cput0 = log.timer_debug1("completed sigma vector calculation", *cput0) s *= -1.0 return s return sigma_
[docs] def get_trans_moments(adc): nmo = adc.nmo T = [] for orb in range(nmo): T_a = get_trans_moments_orbital(adc,orb) T.append(T_a) T = np.array(T) return T
[docs] def get_trans_moments_orbital(adc, orb): if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(adc.method) method = adc.method nocc = adc._nocc nvir = adc._nvir ncvs = adc.ncvs nval = nocc - ncvs t2_1 = adc.t2[0][:] t2_1_coee = t2_1[:ncvs,:,:,:].copy() if (adc.approx_trans_moments is False or adc.method == "adc(3)"): t1_2 = adc.t1[0][:] t1_2_ce = t1_2[:ncvs,:].copy() n_singles = ncvs n_doubles_ecc = nvir * ncvs * ncvs n_doubles_ecv = nvir * ncvs * nval dim = n_singles + n_doubles_ecc + 2 * n_doubles_ecv idn_occ= np.identity(nocc) s1 = 0 f1 = n_singles s2_ecc = f1 f2_ecc = s2_ecc + n_doubles_ecc s2_ecv = f2_ecc f2_ecv = s2_ecv + n_doubles_ecv s2_evc = f2_ecv f2_evc = s2_evc + n_doubles_ecv T = np.zeros((dim)) ######## ADC(2) 1h part ############################################ if orb < nocc: T[s1:f1] = idn_occ[orb, :ncvs] T[s1:f1] += 0.25*lib.einsum('kdc,ikdc->i',t2_1[:,orb,:,:], t2_1_coee, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kcd,ikdc->i',t2_1[:,orb,:,:], t2_1_coee, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kdc,ikcd->i',t2_1[:,orb,:,:], t2_1_coee, optimize=True) T[s1:f1] += 0.25*lib.einsum('kcd,ikcd->i',t2_1[:,orb,:,:], t2_1_coee, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kdc,ikdc->i',t2_1[orb,:,:,:], t2_1_coee, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kcd,ikcd->i',t2_1[orb,:,:,:], t2_1_coee, optimize=True) else : if (adc.approx_trans_moments is False or adc.method == "adc(3)"): T[s1:f1] += t1_2_ce[:,(orb-nocc)] ######## ADC(2) 2h-1p part ############################################ t2_1_t = t2_1.transpose(2,3,1,0) t2_1_t_eecc = t2_1_t[:,:,:ncvs,:ncvs].copy() t2_1_t_eecv = t2_1_t[:,:,:ncvs,ncvs:].copy() t2_1_t_eevc = t2_1_t[:,:,ncvs:,:ncvs].copy() T[s2_ecc:f2_ecc] = t2_1_t_eecc[(orb-nocc),:,:,:].reshape(-1) T[s2_ecv:f2_ecv] = t2_1_t_eecv[(orb-nocc),:,:,:].reshape(-1) T[s2_evc:f2_evc] = t2_1_t_eevc[(orb-nocc),:,:,:].reshape(-1) ######## ADC(3) 2h-1p part ############################################ if (adc.method == "adc(2)-x" and adc.approx_trans_moments is False) or (adc.method == "adc(3)"): t2_2 = adc.t2[1][:] if orb >= nocc: t2_2_t = t2_2.transpose(2,3,1,0) t2_2_t_eecc = t2_2_t[:,:,:ncvs,:ncvs].copy() t2_2_t_eecv = t2_2_t[:,:,:ncvs,ncvs:].copy() t2_2_t_eevc = t2_2_t[:,:,ncvs:,:ncvs].copy() T[s2_ecc:f2_ecc] += t2_2_t_eecc[(orb-nocc),:,:,:].reshape(-1) T[s2_ecv:f2_ecv] += t2_2_t_eecv[(orb-nocc),:,:,:].reshape(-1) T[s2_evc:f2_evc] += t2_2_t_eevc[(orb-nocc),:,:,:].reshape(-1) del t2_2, t2_2_t_eecc, t2_2_t_eecv, t2_2_t_eevc ######### ADC(3) 1h part ############################################ if(method=='adc(3)'): t2_2 = adc.t2[1][:] t2_2_coee = t2_2[:ncvs,:,:,:].copy() if (adc.approx_trans_moments is False): t1_3 = adc.t1[1] t1_3_ce = t1_3[:ncvs,:].copy() t2_1_ocee = t2_1[:,:ncvs,:,:].copy() if orb < ncvs: T[s1:f1] += 0.25*lib.einsum('kdc,ikdc->i',t2_1[:,orb,:,:], t2_2_coee, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kcd,ikdc->i',t2_1[:,orb,:,:], t2_2_coee, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kdc,ikcd->i',t2_1[:,orb,:,:], t2_2_coee, optimize=True) T[s1:f1] += 0.25*lib.einsum('kcd,ikcd->i',t2_1[:,orb,:,:], t2_2_coee, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kdc,ikdc->i',t2_1[orb,:,:,:], t2_2_coee, optimize=True) T[s1:f1] -= 0.25*lib.einsum('kcd,ikcd->i',t2_1[orb,:,:,:], t2_2_coee, optimize=True) T[s1:f1] += 0.25*lib.einsum('ikdc,kdc->i',t2_1_coee, t2_2[:,orb,:,:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('ikcd,kdc->i',t2_1_coee, t2_2[:,orb,:,:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('ikdc,kcd->i',t2_1_coee, t2_2[:,orb,:,:],optimize=True) T[s1:f1] += 0.25*lib.einsum('ikcd,kcd->i',t2_1_coee, t2_2[:,orb,:,:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('ikcd,kcd->i',t2_1_coee, t2_2[orb,:,:,:],optimize=True) T[s1:f1] -= 0.25*lib.einsum('ikdc,kdc->i',t2_1_coee, t2_2[orb,:,:,:],optimize=True) else: T[s1:f1] += 0.5*lib.einsum('ikc,kc->i',t2_1_coee[:,:,(orb-nocc),:], t1_2,optimize=True) T[s1:f1] -= 0.5*lib.einsum('kic,kc->i',t2_1_ocee[:,:,(orb-nocc),:], t1_2,optimize=True) T[s1:f1] += 0.5*lib.einsum('ikc,kc->i',t2_1_coee[:,:,(orb-nocc),:], t1_2,optimize=True) if (adc.approx_trans_moments is False): T[s1:f1] += t1_3_ce[:,(orb-nocc)] del t2_2 del t2_1 T_aaa_ecc = T[s2_ecc:f2_ecc].reshape(nvir,ncvs,ncvs).copy() T_aaa_ecv = T[s2_ecv:f2_ecv].reshape(nvir,ncvs,nval).copy() T_aaa_evc = T[s2_evc:f2_evc].reshape(nvir,nval,ncvs).copy() T_aaa_ecc_asym = T_aaa_ecc - T_aaa_ecc.transpose(0,2,1) T_aaa_ecv_asym = T_aaa_ecv - T_aaa_evc.transpose(0,2,1) T_aaa_evc_asym = T_aaa_evc - T_aaa_ecv.transpose(0,2,1) T[s2_ecc:f2_ecc] += T_aaa_ecc_asym.reshape(-1) T[s2_ecv:f2_ecv] += T_aaa_ecv_asym.reshape(-1) T[s2_evc:f2_evc] += T_aaa_evc_asym.reshape(-1) return T
[docs] def analyze_spec_factor(adc): X = adc.X X_2 = (X.copy()**2)*2 thresh = adc.spec_factor_print_tol logger.info(adc, "Print spectroscopic factors > %E\n", adc.spec_factor_print_tol) for i in range(X_2.shape[1]): sort = np.argsort(-X_2[:,i]) X_2_row = X_2[:,i] X_2_row = X_2_row[sort] if not adc.mol.symmetry: sym = np.repeat(['A'], X_2_row.shape[0]) else: sym = [symm.irrep_id2name(adc.mol.groupname, x) for x in adc._scf.mo_coeff.orbsym] sym = np.array(sym) sym = sym[sort] spec_Contribution = X_2_row[X_2_row > thresh] index_mo = sort[X_2_row > thresh]+1 if np.sum(spec_Contribution) == 0.0: continue logger.info(adc,'%s | root %d \n',adc.method ,i) logger.info(adc, " HF MO Spec. Contribution Orbital symmetry") logger.info(adc, "-----------------------------------------------------------") for c in range(index_mo.shape[0]): logger.info(adc, ' %3.d %10.8f %s', index_mo[c], spec_Contribution[c], sym[c]) logger.info(adc, '\nPartial spec. factor sum = %10.8f', np.sum(spec_Contribution)) logger.info(adc, "\n*************************************************************\n")
[docs] def renormalize_eigenvectors(adc, nroots=1): nocc = adc._nocc nvir = adc._nvir ncvs = adc.ncvs nval = nocc - ncvs n_singles = ncvs n_doubles_ecc = nvir * ncvs * ncvs n_doubles_ecv = nvir * ncvs * nval f1 = n_singles s2_ecc = f1 f2_ecc = s2_ecc + n_doubles_ecc s2_ecv = f2_ecc f2_ecv = s2_ecv + n_doubles_ecv s2_evc = f2_ecv f2_evc = s2_evc + n_doubles_ecv U = adc.U for I in range(U.shape[1]): U1 = U[:n_singles,I] U2_ecc = U[s2_ecc:f2_ecc,I].reshape(nvir,ncvs,ncvs) U2_ecv = U[s2_ecv:f2_ecv,I].reshape(nvir,ncvs,nval) U2_evc = U[s2_evc:f2_evc,I].reshape(nvir,nval,ncvs) UdotU = np.dot(U1, U1) UdotU += 2.*np.dot(U2_ecc.ravel(), U2_ecc.ravel()) - \ np.dot(U2_ecc.ravel(), U2_ecc.transpose(0,2,1).ravel()) UdotU += 2.*np.dot(U2_ecv.ravel(), U2_ecv.ravel()) - \ np.dot(U2_ecv.ravel(), U2_evc.transpose(0,2,1).ravel()) UdotU += 2.*np.dot(U2_evc.ravel(), U2_evc.ravel()) - \ np.dot(U2_evc.ravel(), U2_ecv.transpose(0,2,1).ravel()) U[:,I] /= np.sqrt(UdotU) return U
[docs] def get_properties(adc, nroots=1): #Transition moments T = adc.get_trans_moments() #Spectroscopic amplitudes U = adc.renormalize_eigenvectors(nroots) X = np.dot(T, U).reshape(-1, nroots) #Spectroscopic factors P = 2.0*lib.einsum("pi,pi->i", X, X) return P,X
[docs] def analyze(myadc): #TODO: Implement eigenvector analysis for CVS-RADC #header = ("\n*************************************************************" # "\n Eigenvector analysis summary" # "\n*************************************************************") #logger.info(myadc, header) #myadc.analyze_eigenvector() if myadc.compute_properties: header = ("\n*************************************************************" "\n Spectroscopic factors analysis summary" "\n*************************************************************") logger.info(myadc, header) myadc.analyze_spec_factor()
[docs] def compute_dyson_mo(myadc): X = myadc.X if X is None: nroots = myadc.U.shape[1] P,X = myadc.get_properties(nroots) nroots = X.shape[1] dyson_mo = np.dot(myadc.mo_coeff,X) return dyson_mo
[docs] class RADCIPCVS(radc.RADC): '''restricted ADC for IP-CVS energies and spectroscopic amplitudes Attributes: verbose : int Print level. Default value equals to :class:`Mole.verbose` max_memory : float or int Allowed memory in MB. Default value equals to :class:`Mole.max_memory` incore_complete : bool Avoid all I/O. Default is False. method : string nth-order ADC method. Options are : ADC(2), ADC(2)-X, ADC(3). Default is ADC(2). conv_tol : float Convergence threshold for Davidson iterations. Default is 1e-12. max_cycle : int Number of Davidson iterations. Default is 50. max_space : int Space size to hold trial vectors for Davidson iterative diagonalization. Default is 12. Kwargs: nroots : int Number of roots (eigenvalues) requested. Default value is 1. >>> myadc = adc.RADC(mf).run() >>> myadcip = adc.RADC(myadc).run() Saved results e_ip : float or list of floats IP energy (eigenvalue). For nroots = 1, it is a single float number. If nroots > 1, it is a list of floats for the lowest nroots eigenvalues. v_ip : array Eigenvectors for each IP transition. p_ip : float Spectroscopic amplitudes for each IP transition. ''' _keys = { 'tol_residual','conv_tol', 'e_corr', 'method', 'mo_coeff', 'mo_energy_b', 't1', 'mo_energy_a', 'max_space', 't2', 'max_cycle', 'nmo', 'transform_integrals', 'with_df', 'compute_properties', 'approx_trans_moments', 'E', 'U', 'P', 'X', 'evec_print_tol', 'spec_factor_print_tol', 'ncvs', } def __init__(self, adc): self.mol = adc.mol self.verbose = adc.verbose self.stdout = adc.stdout self.max_memory = adc.max_memory self.max_space = adc.max_space self.max_cycle = adc.max_cycle self.conv_tol = adc.conv_tol self.tol_residual = adc.tol_residual self.t1 = adc.t1 self.t2 = adc.t2 self.imds = adc.imds self.e_corr = adc.e_corr self.method = adc.method self.method_type = adc.method_type self._scf = adc._scf self._nocc = adc._nocc self._nvir = adc._nvir self._nmo = adc._nmo self.mo_coeff = adc.mo_coeff self.mo_energy = adc.mo_energy self.nmo = adc._nmo self.transform_integrals = adc.transform_integrals self.with_df = adc.with_df self.compute_properties = adc.compute_properties self.approx_trans_moments = adc.approx_trans_moments self.E = None self.U = None self.P = None self.X = None self.evec_print_tol = adc.evec_print_tol self.spec_factor_print_tol = adc.spec_factor_print_tol self.ncvs = adc.ncvs kernel = radc.kernel get_imds = get_imds get_diag = get_diag matvec = matvec get_trans_moments = get_trans_moments renormalize_eigenvectors = renormalize_eigenvectors get_properties = get_properties analyze_spec_factor = analyze_spec_factor #analyze_eigenvector = analyze_eigenvector analyze = analyze compute_dyson_mo = compute_dyson_mo
[docs] def get_init_guess(self, nroots=1, diag=None, ascending=True): if diag is None : diag = self.get_diag() idx = None if ascending: idx = np.argsort(diag) else: idx = np.argsort(diag)[::-1] guess = np.zeros((diag.shape[0], nroots)) min_shape = min(diag.shape[0], nroots) guess[:min_shape,:min_shape] = np.identity(min_shape) g = np.zeros((diag.shape[0], nroots)) g[idx] = guess.copy() guess = [] for p in range(g.shape[1]): guess.append(g[:,p]) return guess
[docs] def gen_matvec(self, imds=None, eris=None): if imds is None: imds = self.get_imds(eris) diag = self.get_diag(imds, eris) matvec = self.matvec(imds, eris) return matvec, diag