Source code for pyscf.df.hessian.rks

#!/usr/bin/env python
#
# This code was copied from the data generation program of Tencent Alchemy
# project (https://github.com/tencent-alchemy).
#

#
# Copyright 2019 Tencent America LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Non-relativistic RKS analytical Hessian
'''


import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf.hessian import rks as rks_hess
from pyscf.df.hessian import rhf as df_rhf_hess


[docs] def partial_hess_elec(hessobj, mo_energy=None, mo_coeff=None, mo_occ=None, atmlst=None, max_memory=4000, verbose=None): log = logger.new_logger(hessobj, verbose) time0 = t1 = (logger.process_clock(), logger.perf_counter()) mol = hessobj.mol mf = hessobj.base ni = mf._numint if mf.do_nlc(): raise NotImplementedError('RKS Hessian for NLC functional') if mo_energy is None: mo_energy = mf.mo_energy if mo_occ is None: mo_occ = mf.mo_occ if mo_coeff is None: mo_coeff = mf.mo_coeff if atmlst is None: atmlst = range(mol.natm) nao, nmo = mo_coeff.shape mocc = mo_coeff[:,mo_occ>0] dm0 = numpy.dot(mocc, mocc.T) * 2 omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin) hybrid = ni.libxc.is_hybrid_xc(mf.xc) de2, ej, ek = df_rhf_hess._partial_hess_ejk(hessobj, mo_energy, mo_coeff, mo_occ, atmlst, max_memory, verbose, with_k=hybrid) de2 += ej - hyb * ek # (A,B,dR_A,dR_B) if hybrid and omega != 0: with hessobj.base.with_df.range_coulomb(omega): ek_lr = df_rhf_hess._partial_hess_ejk( hessobj, mo_energy, mo_coeff, mo_occ, atmlst, max_memory, verbose)[2] de2 -= ek_lr * (alpha - hyb) mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.9-mem_now) veff_diag = rks_hess._get_vxc_diag(hessobj, mo_coeff, mo_occ, max_memory) t1 = log.timer_debug1('computing veff_diag', *t1) aoslices = mol.aoslice_by_atom() vxc = rks_hess._get_vxc_deriv2(hessobj, mo_coeff, mo_occ, max_memory) for i0, ia in enumerate(atmlst): shl0, shl1, p0, p1 = aoslices[ia] veff = vxc[ia] de2[i0,i0] += numpy.einsum('xypq,pq->xy', veff_diag[:,:,p0:p1], dm0[p0:p1])*2 for j0, ja in enumerate(atmlst[:i0+1]): q0, q1 = aoslices[ja][2:] de2[i0,j0] += numpy.einsum('xypq,pq->xy', veff[:,:,q0:q1], dm0[q0:q1])*2 for j0 in range(i0): de2[j0,i0] = de2[i0,j0].T log.timer('RKS partial hessian', *time0) return de2
[docs] def make_h1(hessobj, mo_coeff, mo_occ, chkfile=None, atmlst=None, verbose=None): mol = hessobj.mol mf = hessobj.base ni = mf._numint ni.libxc.test_deriv_order(mf.xc, 2, raise_error=True) omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin) hybrid = ni.libxc.is_hybrid_xc(mf.xc) mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.9-mem_now) h1ao = rks_hess._get_vxc_deriv1(hessobj, mo_coeff, mo_occ, max_memory) for ia, h1, vj1, vk1 in df_rhf_hess._gen_jk( hessobj, mo_coeff, mo_occ, chkfile, atmlst, verbose, with_k=hybrid): h1ao[ia] += h1 + vj1 if hybrid: h1ao[ia] -= .5 * hyb * vk1 if hybrid and omega != 0: with hessobj.base.with_df.range_coulomb(omega): for ia, h1, vj1, vk1 in df_rhf_hess._gen_jk( hessobj, mo_coeff, mo_occ, chkfile, atmlst, verbose): h1ao[ia] -= .5 * (alpha - hyb) * vk1 if chkfile is None: return h1ao else: for ia in atmlst: lib.chkfile.save(chkfile, 'scf_f1ao/%d'%ia, h1ao[ia]) return chkfile
[docs] class Hessian(rks_hess.Hessian): '''Non-relativistic RKS hessian''' def __init__(self, mf): rks_hess.Hessian.__init__(self, mf) auxbasis_response = 1 partial_hess_elec = partial_hess_elec make_h1 = make_h1
if __name__ == '__main__': from pyscf import gto from pyscf import dft #dft.numint.NumInt.libxc = dft.xcfun xc_code = 'b3lyp' mol = gto.Mole() mol.verbose = 0 mol.output = None mol.atom = [ [1 , (1. , 0. , 0.000)], [1 , (0. , 1. , 0.000)], [1 , (0. , -1.517 , 1.177)], [1 , (0. , 1.517 , 1.177)], ] mol.basis = '631g' mol.unit = 'B' mol.build() mf = dft.RKS(mol).density_fit() mf.grids.level = 4 mf.grids.prune = False mf.xc = xc_code mf.conv_tol = 1e-14 mf.kernel() n3 = mol.natm * 3 hobj = Hessian(mf) e2 = hobj.kernel().transpose(0,2,1,3).reshape(n3,n3) print(lib.finger(e2) - -0.41387283263786201)