Source code for pyscf.dft.numint

#!/usr/bin/env python
# Copyright 2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Numerical integration functions for RKS and UKS with real AO basis
'''

import warnings
import ctypes
import numpy
from pyscf import lib
try:
    from pyscf.dft import libxc
except (ImportError, OSError):
    try:
        from pyscf.dft import xcfun
        libxc = xcfun
    except (ImportError, OSError):
        warnings.warn('XC functional libraries (libxc or XCfun) are not available.')
        raise

from pyscf.dft.gen_grid import BLKSIZE, NBINS, CUTOFF, ALIGNMENT_UNIT, make_mask
from pyscf.dft import xc_deriv
from pyscf import __config__

libdft = lib.load_library('libdft')
OCCDROP = getattr(__config__, 'dft_numint_occdrop', 1e-12)
# The system size above which to consider the sparsity of the density matrix.
# If the number of AOs in the system is less than this value, all tensors are
# treated as dense quantities and contracted by dgemm directly.
SWITCH_SIZE = getattr(__config__, 'dft_numint_switch_size', 800)

# Whether to compute density laplacian for meta-GGA functionals
MGGA_DENSITY_LAPL = False

[docs] def eval_ao(mol, coords, deriv=0, shls_slice=None, non0tab=None, cutoff=None, out=None, verbose=None): '''Evaluate AO function value on the given grids. Args: mol : an instance of :class:`Mole` coords : 2D array, shape (N,3) The coordinates of the grids. Kwargs: deriv : int AO derivative order. It affects the shape of the return array. If deriv=0, the returned AO values are stored in a (N,nao) array. Otherwise the AO values are stored in an array of shape (M,N,nao). Here N is the number of grids, nao is the number of AO functions, M is the size associated to the derivative deriv. relativity : bool No effects. shls_slice : 2-element list (shl_start, shl_end). If given, only part of AOs (shl_start <= shell_id < shl_end) are evaluated. By default, all shells defined in mol will be evaluated. non0tab : 2D bool array mask array to indicate whether the AO values are zero. The mask array can be obtained by calling :func:`make_mask` cutoff : float AO values smaller than cutoff will be set to zero. The default cutoff threshold is ~1e-22 (defined in gto/grid_ao_drv.h) out : ndarray If provided, results are written into this array. verbose : int or object of :class:`Logger` No effects. Returns: 2D array of shape (N,nao) for AO values if deriv = 0. Or 3D array of shape (:,N,nao) for AO values and AO derivatives if deriv > 0. In the 3D array, the first (N,nao) elements are the AO values, followed by (3,N,nao) for x,y,z components; Then 2nd derivatives (6,N,nao) for xx, xy, xz, yy, yz, zz; Then 3rd derivatives (10,N,nao) for xxx, xxy, xxz, xyy, xyz, xzz, yyy, yyz, yzz, zzz; ... Examples: >>> mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='ccpvdz') >>> coords = numpy.random.random((100,3)) # 100 random points >>> ao_value = eval_ao(mol, coords) >>> print(ao_value.shape) (100, 24) >>> ao_value = eval_ao(mol, coords, deriv=1, shls_slice=(1,4)) >>> print(ao_value.shape) (4, 100, 7) >>> ao_value = eval_ao(mol, coords, deriv=2, shls_slice=(1,4)) >>> print(ao_value.shape) (10, 100, 7) ''' comp = (deriv+1)*(deriv+2)*(deriv+3)//6 if mol.cart: feval = 'GTOval_cart_deriv%d' % deriv else: feval = 'GTOval_sph_deriv%d' % deriv return mol.eval_gto(feval, coords, comp, shls_slice, non0tab, cutoff=cutoff, out=out)
[docs] def eval_rho(mol, ao, dm, non0tab=None, xctype='LDA', hermi=0, with_lapl=True, verbose=None): r'''Calculate the electron density for LDA functional, and the density derivatives for GGA and MGGA functionals. Args: mol : an instance of :class:`Mole` ao : 2D array of shape (N,nao) for LDA, 3D array of shape (4,N,nao) for GGA or meta-GGA. N is the number of grids, nao is the number of AO functions. If xctype is GGA (MGGA), ao[0] is AO value and ao[1:3] are the AO gradients. ao[4:10] are second derivatives of ao values if applicable. dm : 2D array Density matrix Kwargs: non0tab : 2D bool array mask array to indicate whether the AO values are zero. The mask array can be obtained by calling :func:`make_mask` xctype : str LDA/GGA/mGGA. It affects the shape of the return density. hermi : bool dm is hermitian or not verbose : int or object of :class:`Logger` No effects. Returns: 1D array of size N to store electron density if xctype = LDA; 2D array of (4,N) to store density and "density derivatives" for x,y,z components if xctype = GGA; For meta-GGA, returns can be a (6,N) (with_lapl=True) array where last two rows are \nabla^2 rho and tau = 1/2(\nabla f)^2 or (5,N) (with_lapl=False) where the last row is tau = 1/2(\nabla f)^2 Examples: >>> mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='ccpvdz') >>> coords = numpy.random.random((100,3)) # 100 random points >>> ao_value = eval_ao(mol, coords, deriv=0) >>> dm = numpy.random.random((mol.nao_nr(),mol.nao_nr())) >>> dm = dm + dm.T >>> rho, dx_rho, dy_rho, dz_rho = eval_rho(mol, ao, dm, xctype='LDA') ''' xctype = xctype.upper() ngrids, nao = ao.shape[-2:] shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() if xctype == 'LDA' or xctype == 'HF': c0 = _dot_ao_dm(mol, ao, dm, non0tab, shls_slice, ao_loc) #:rho = numpy.einsum('pi,pi->p', ao, c0) rho = _contract_rho(ao, c0) elif xctype in ('GGA', 'NLC'): rho = numpy.empty((4,ngrids)) c0 = _dot_ao_dm(mol, ao[0], dm, non0tab, shls_slice, ao_loc) #:rho[0] = numpy.einsum('pi,pi->p', c0, ao[0]) rho[0] = _contract_rho(ao[0], c0) for i in range(1, 4): #:rho[i] = numpy.einsum('pi,pi->p', c0, ao[i]) rho[i] = _contract_rho(ao[i], c0) if hermi: rho[1:4] *= 2 # *2 for + einsum('pi,ij,pj->p', ao[i], dm, ao[0]) else: for i in range(1, 4): c1 = _dot_ao_dm(mol, ao[i], dm, non0tab, shls_slice, ao_loc) rho[i] += _contract_rho(c1, ao[0]) else: # meta-GGA if with_lapl: # rho[4] = \nabla^2 rho, rho[5] = 1/2 |nabla f|^2 rho = numpy.empty((6,ngrids)) tau_idx = 5 else: rho = numpy.empty((5,ngrids)) tau_idx = 4 c0 = _dot_ao_dm(mol, ao[0], dm, non0tab, shls_slice, ao_loc) #:rho[0] = numpy.einsum('pi,pi->p', ao[0], c0) rho[0] = _contract_rho(ao[0], c0) rho[tau_idx] = 0 for i in range(1, 4): c1 = _dot_ao_dm(mol, ao[i], dm, non0tab, shls_slice, ao_loc) #:rho[tau_idx] += numpy.einsum('pi,pi->p', c1, ao[i]) rho[tau_idx] += _contract_rho(ao[i], c1) #:rho[i] = numpy.einsum('pi,pi->p', c0, ao[i]) rho[i] = _contract_rho(ao[i], c0) if hermi: rho[i] *= 2 else: rho[i] += _contract_rho(c1, ao[0]) if with_lapl: if ao.shape[0] > 4: XX, YY, ZZ = 4, 7, 9 ao2 = ao[XX] + ao[YY] + ao[ZZ] # \nabla^2 rho #:rho[4] = numpy.einsum('pi,pi->p', c0, ao2) rho[4] = _contract_rho(ao2, c0) rho[4] += rho[5] if hermi: rho[4] *= 2 else: c2 = _dot_ao_dm(mol, ao2, dm, non0tab, shls_slice, ao_loc) rho[4] += _contract_rho(ao[0], c2) rho[4] += rho[5] elif MGGA_DENSITY_LAPL: raise ValueError('Not enough derivatives in ao') # tau = 1/2 (\nabla f)^2 rho[tau_idx] *= .5 return rho
[docs] def eval_rho1(mol, ao, dm, screen_index=None, xctype='LDA', hermi=0, with_lapl=True, cutoff=None, ao_cutoff=CUTOFF, pair_mask=None, verbose=None): r'''Calculate the electron density for LDA and the density derivatives for GGA and MGGA with sparsity information. Args: mol : an instance of :class:`Mole` ao : 2D array of shape (N,nao) for LDA, 3D array of shape (4,N,nao) for GGA or meta-GGA. N is the number of grids, nao is the number of AO functions. If xctype is GGA (MGGA), ao[0] is AO value and ao[1:3] are the AO gradients. ao[4:10] are second derivatives of ao values if applicable. dm : 2D array Density matrix Kwargs: screen_index : 2D uint8 array How likely the AO values on grids are negligible. This array can be obtained by calling :func:`gen_grid.make_screen_index` xctype : str LDA/GGA/mGGA. It affects the shape of the return density. hermi : bool dm is hermitian or not cutoff : float cutoff for density value ao_cutoff : float cutoff for AO value. Needs to be the same to the cutoff when generating screen_index verbose : int or object of :class:`Logger` No effects. Returns: 1D array of size N to store electron density if xctype = LDA; 2D array of (4,N) to store density and "density derivatives" for x,y,z components if xctype = GGA; For meta-GGA, returns can be a (6,N) (with_lapl=True) array where last two rows are \nabla^2 rho and tau = 1/2(\nabla f)^2 or (5,N) (with_lapl=False) where the last row is tau = 1/2(\nabla f)^2 ''' if not (dm.dtype == ao.dtype == numpy.double): lib.logger.warn(mol, 'eval_rho1 does not support complex density, ' 'eval_rho is called instead') return eval_rho(mol, ao, dm, screen_index, xctype, hermi, with_lapl, verbose) xctype = xctype.upper() ngrids = ao.shape[-2] if cutoff is None: cutoff = CUTOFF cutoff = min(cutoff, .1) nbins = NBINS * 2 - int(NBINS * numpy.log(cutoff) / numpy.log(ao_cutoff)) if pair_mask is None: ovlp_cond = mol.get_overlap_cond() pair_mask = numpy.asarray(ovlp_cond < -numpy.log(cutoff), dtype=numpy.uint8) ao_loc = mol.ao_loc_nr() if xctype == 'LDA' or xctype == 'HF': c0 = _dot_ao_dm_sparse(ao, dm, nbins, screen_index, pair_mask, ao_loc) rho = _contract_rho_sparse(ao, c0, screen_index, ao_loc) elif xctype in ('GGA', 'NLC'): rho = numpy.empty((4,ngrids)) c0 = _dot_ao_dm_sparse(ao[0], dm, nbins, screen_index, pair_mask, ao_loc) rho[0] = _contract_rho_sparse(ao[0], c0, screen_index, ao_loc) for i in range(1, 4): rho[i] = _contract_rho_sparse(ao[i], c0, screen_index, ao_loc) if hermi: rho[1:4] *= 2 # *2 for + einsum('pi,ij,pj->p', ao[i], dm, ao[0]) else: dm = lib.transpose(dm) c0 = _dot_ao_dm_sparse(ao[0], dm, nbins, screen_index, pair_mask, ao_loc) for i in range(1, 4): rho[i] += _contract_rho_sparse(c0, ao[i], screen_index, ao_loc) else: # meta-GGA if with_lapl: if MGGA_DENSITY_LAPL: raise NotImplementedError('density laplacian not supported') rho = numpy.empty((6,ngrids)) tau_idx = 5 else: rho = numpy.empty((5,ngrids)) tau_idx = 4 c0 = _dot_ao_dm_sparse(ao[0], dm, nbins, screen_index, pair_mask, ao_loc) rho[0] = _contract_rho_sparse(ao[0], c0, screen_index, ao_loc) rho[tau_idx] = 0 for i in range(1, 4): c1 = _dot_ao_dm_sparse(ao[i], dm.T, nbins, screen_index, pair_mask, ao_loc) rho[tau_idx] += _contract_rho_sparse(ao[i], c1, screen_index, ao_loc) rho[i] = _contract_rho_sparse(ao[i], c0, screen_index, ao_loc) if hermi: rho[i] *= 2 else: rho[i] += _contract_rho_sparse(c1, ao[0], screen_index, ao_loc) # tau = 1/2 (\nabla f)^2 rho[tau_idx] *= .5 return rho
[docs] def eval_rho2(mol, ao, mo_coeff, mo_occ, non0tab=None, xctype='LDA', with_lapl=True, verbose=None): r'''Calculate the electron density for LDA functional, and the density derivatives for GGA functional. This function has the same functionality as :func:`eval_rho` except that the density are evaluated based on orbital coefficients and orbital occupancy. It is more efficient than :func:`eval_rho` in most scenario. Args: mol : an instance of :class:`Mole` ao : 2D array of shape (N,nao) for LDA, 3D array of shape (4,N,nao) for GGA or meta-GGA. N is the number of grids, nao is the number of AO functions. If xctype is GGA (MGGA), ao[0] is AO value and ao[1:3] are the AO gradients. ao[4:10] are second derivatives of ao values if applicable. dm : 2D array Density matrix Kwargs: non0tab : 2D bool array mask array to indicate whether the AO values are zero. The mask array can be obtained by calling :func:`make_mask` xctype : str LDA/GGA/mGGA. It affects the shape of the return density. with_lapl: bool Whether to compute laplacian. It affects the shape of returns. verbose : int or object of :class:`Logger` No effects. Returns: 1D array of size N to store electron density if xctype = LDA; 2D array of (4,N) to store density and "density derivatives" for x,y,z components if xctype = GGA; For meta-GGA, returns can be a (6,N) (with_lapl=True) array where last two rows are \nabla^2 rho and tau = 1/2(\nabla f)^2 or (5,N) (with_lapl=False) where the last row is tau = 1/2(\nabla f)^2 ''' xctype = xctype.upper() ngrids, nao = ao.shape[-2:] shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() pos = mo_occ > OCCDROP if numpy.any(pos): cpos = numpy.einsum('ij,j->ij', mo_coeff[:,pos], numpy.sqrt(mo_occ[pos])) if xctype == 'LDA' or xctype == 'HF': c0 = _dot_ao_dm(mol, ao, cpos, non0tab, shls_slice, ao_loc) #:rho = numpy.einsum('pi,pi->p', c0, c0) rho = _contract_rho(c0, c0) elif xctype in ('GGA', 'NLC'): rho = numpy.empty((4,ngrids)) c0 = _dot_ao_dm(mol, ao[0], cpos, non0tab, shls_slice, ao_loc) #:rho[0] = numpy.einsum('pi,pi->p', c0, c0) rho[0] = _contract_rho(c0, c0) for i in range(1, 4): c1 = _dot_ao_dm(mol, ao[i], cpos, non0tab, shls_slice, ao_loc) #:rho[i] = numpy.einsum('pi,pi->p', c0, c1) * 2 # *2 for +c.c. rho[i] = _contract_rho(c0, c1) * 2 else: # meta-GGA if with_lapl: # rho[4] = \nabla^2 rho, rho[5] = 1/2 |nabla f|^2 rho = numpy.empty((6,ngrids)) tau_idx = 5 else: rho = numpy.empty((5,ngrids)) tau_idx = 4 c0 = _dot_ao_dm(mol, ao[0], cpos, non0tab, shls_slice, ao_loc) #:rho[0] = numpy.einsum('pi,pi->p', c0, c0) rho[0] = _contract_rho(c0, c0) rho[tau_idx] = 0 for i in range(1, 4): c1 = _dot_ao_dm(mol, ao[i], cpos, non0tab, shls_slice, ao_loc) #:rho[i] = numpy.einsum('pi,pi->p', c0, c1) * 2 # *2 for +c.c. #:rho[5] += numpy.einsum('pi,pi->p', c1, c1) rho[i] = _contract_rho(c0, c1) * 2 rho[tau_idx] += _contract_rho(c1, c1) if with_lapl: if ao.shape[0] > 4: XX, YY, ZZ = 4, 7, 9 ao2 = ao[XX] + ao[YY] + ao[ZZ] c1 = _dot_ao_dm(mol, ao2, cpos, non0tab, shls_slice, ao_loc) #:rho[4] = numpy.einsum('pi,pi->p', c0, c1) rho[4] = _contract_rho(c0, c1) rho[4] += rho[5] rho[4] *= 2 else: rho[4] = 0 rho[tau_idx] *= .5 else: if xctype == 'LDA' or xctype == 'HF': rho = numpy.zeros(ngrids) elif xctype in ('GGA', 'NLC'): rho = numpy.zeros((4,ngrids)) else: # meta-GGA if with_lapl: rho = numpy.zeros((6, ngrids)) else: rho = numpy.zeros((5, ngrids)) neg = mo_occ < -OCCDROP if numpy.any(neg): cneg = numpy.einsum('ij,j->ij', mo_coeff[:,neg], numpy.sqrt(-mo_occ[neg])) if xctype == 'LDA' or xctype == 'HF': c0 = _dot_ao_dm(mol, ao, cneg, non0tab, shls_slice, ao_loc) #:rho -= numpy.einsum('pi,pi->p', c0, c0) rho -= _contract_rho(c0, c0) elif xctype == 'GGA': c0 = _dot_ao_dm(mol, ao[0], cneg, non0tab, shls_slice, ao_loc) #:rho[0] -= numpy.einsum('pi,pi->p', c0, c0) rho[0] -= _contract_rho(c0, c0) for i in range(1, 4): c1 = _dot_ao_dm(mol, ao[i], cneg, non0tab, shls_slice, ao_loc) #:rho[i] -= numpy.einsum('pi,pi->p', c0, c1) * 2 # *2 for +c.c. rho[i] -= _contract_rho(c0, c1) * 2 # *2 for +c.c. else: c0 = _dot_ao_dm(mol, ao[0], cneg, non0tab, shls_slice, ao_loc) #:rho[0] -= numpy.einsum('pi,pi->p', c0, c0) rho[0] -= _contract_rho(c0, c0) rho5 = 0 for i in range(1, 4): c1 = _dot_ao_dm(mol, ao[i], cneg, non0tab, shls_slice, ao_loc) #:rho[i] -= numpy.einsum('pi,pi->p', c0, c1) * 2 # *2 for +c.c. #:rho5 += numpy.einsum('pi,pi->p', c1, c1) rho[i] -= _contract_rho(c0, c1) * 2 # *2 for +c.c. rho5 += _contract_rho(c1, c1) if with_lapl: if ao.shape[0] > 4: XX, YY, ZZ = 4, 7, 9 ao2 = ao[XX] + ao[YY] + ao[ZZ] c1 = _dot_ao_dm(mol, ao2, cneg, non0tab, shls_slice, ao_loc) #:rho[4] -= numpy.einsum('pi,pi->p', c0, c1) * 2 rho[4] -= _contract_rho(c0, c1) * 2 rho[4] -= rho5 * 2 else: rho[4] = 0 rho[tau_idx] -= rho5 * .5 return rho
def _vv10nlc(rho, coords, vvrho, vvweight, vvcoords, nlc_pars): thresh=1e-8 #output exc=numpy.zeros(rho[0,:].size) vxc=numpy.zeros([2,rho[0,:].size]) #outer grid needs threshing threshind=rho[0,:]>=thresh coords=coords[threshind] R=rho[0,:][threshind] Gx=rho[1,:][threshind] Gy=rho[2,:][threshind] Gz=rho[3,:][threshind] G=Gx**2.+Gy**2.+Gz**2. #inner grid needs threshing innerthreshind=vvrho[0,:]>=thresh vvcoords=vvcoords[innerthreshind] vvweight=vvweight[innerthreshind] Rp=vvrho[0,:][innerthreshind] RpW=Rp*vvweight Gxp=vvrho[1,:][innerthreshind] Gyp=vvrho[2,:][innerthreshind] Gzp=vvrho[3,:][innerthreshind] Gp=Gxp**2.+Gyp**2.+Gzp**2. #constants and parameters Pi=numpy.pi Pi43=4.*Pi/3. Bvv, Cvv = nlc_pars Kvv=Bvv*1.5*Pi*((9.*Pi)**(-1./6.)) Beta=((3./(Bvv*Bvv))**(0.75))/32. #inner grid W0p=Gp/(Rp*Rp) W0p=Cvv*W0p*W0p W0p=(W0p+Pi43*Rp)**0.5 Kp=Kvv*(Rp**(1./6.)) #outer grid W0tmp=G/(R**2) W0tmp=Cvv*W0tmp*W0tmp W0=(W0tmp+Pi43*R)**0.5 dW0dR=(0.5*Pi43*R-2.*W0tmp)/W0 dW0dG=W0tmp*R/(G*W0) K=Kvv*(R**(1./6.)) dKdR=(1./6.)*K vvcoords = numpy.asarray(vvcoords, order='C') coords = numpy.asarray(coords, order='C') F = numpy.empty_like(R) U = numpy.empty_like(R) W = numpy.empty_like(R) #for i in range(R.size): # DX=vvcoords[:,0]-coords[i,0] # DY=vvcoords[:,1]-coords[i,1] # DZ=vvcoords[:,2]-coords[i,2] # R2=DX*DX+DY*DY+DZ*DZ # gp=R2*W0p+Kp # g=R2*W0[i]+K[i] # gt=g+gp # T=RpW/(g*gp*gt) # F=numpy.sum(T) # T*=(1./g+1./gt) # U=numpy.sum(T) # W=numpy.sum(T*R2) # F*=-1.5 libdft.VXC_vv10nlc(F.ctypes.data_as(ctypes.c_void_p), U.ctypes.data_as(ctypes.c_void_p), W.ctypes.data_as(ctypes.c_void_p), vvcoords.ctypes.data_as(ctypes.c_void_p), coords.ctypes.data_as(ctypes.c_void_p), W0p.ctypes.data_as(ctypes.c_void_p), W0.ctypes.data_as(ctypes.c_void_p), K.ctypes.data_as(ctypes.c_void_p), Kp.ctypes.data_as(ctypes.c_void_p), RpW.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(vvcoords.shape[0]), ctypes.c_int(coords.shape[0])) #exc is multiplied by Rho later exc[threshind] = Beta+0.5*F vxc[0,threshind] = Beta+F+1.5*(U*dKdR+W*dW0dR) vxc[1,threshind] = 1.5*W*dW0dG return exc,vxc
[docs] def eval_mat(mol, ao, weight, rho, vxc, non0tab=None, xctype='LDA', spin=0, verbose=None): r'''Calculate XC potential matrix. Args: mol : an instance of :class:`Mole` ao : ([4/10,] ngrids, nao) ndarray 2D array of shape (N,nao) for LDA, 3D array of shape (4,N,nao) for GGA or (10,N,nao) for meta-GGA. N is the number of grids, nao is the number of AO functions. If xctype is GGA (MGGA), ao[0] is AO value and ao[1:3] are the real space gradients. ao[4:10] are second derivatives of ao values if applicable. weight : 1D array Integral weights on grids. rho : ([4/6,] ngrids) ndarray Shape of ((*,N)) for electron density (and derivatives) if spin = 0; Shape of ((*,N),(*,N)) for alpha/beta electron density (and derivatives) if spin > 0; where N is number of grids. rho (*,N) are ordered as (den,grad_x,grad_y,grad_z,laplacian,tau) where grad_x = d/dx den, laplacian = \nabla^2 den, tau = 1/2(\nabla f)^2 In spin unrestricted case, rho is ((den_u,grad_xu,grad_yu,grad_zu,laplacian_u,tau_u) (den_d,grad_xd,grad_yd,grad_zd,laplacian_d,tau_d)) vxc : ([4,] ngrids) ndarray XC potential value on each grid = (vrho, vsigma, vlapl, vtau) vsigma is GGA potential value on each grid. If the kwarg spin != 0, a list [vsigma_uu,vsigma_ud] is required. Kwargs: xctype : str LDA/GGA/mGGA. It affects the shape of `ao` and `rho` non0tab : 2D bool array mask array to indicate whether the AO values are zero. The mask array can be obtained by calling :func:`make_mask` spin : int If not 0, the returned matrix is the Vxc matrix of alpha-spin. It is computed with the spin non-degenerated UKS formula. Returns: XC potential matrix in 2D array of shape (nao,nao) where nao is the number of AO functions. ''' xctype = xctype.upper() ngrids, nao = ao.shape[-2:] if non0tab is None: non0tab = numpy.ones(((ngrids+BLKSIZE-1)//BLKSIZE,mol.nbas), dtype=numpy.uint8) shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() transpose_for_uks = False if xctype == 'LDA' or xctype == 'HF': if not isinstance(vxc, numpy.ndarray) or vxc.ndim == 2: vrho = vxc[0] else: vrho = vxc # *.5 because return mat + mat.T #:aow = numpy.einsum('pi,p->pi', ao, .5*weight*vrho) aow = _scale_ao(ao, .5*weight*vrho) mat = _dot_ao_ao(mol, ao, aow, non0tab, shls_slice, ao_loc) else: #wv = weight * vsigma * 2 #aow = numpy.einsum('pi,p->pi', ao[1], rho[1]*wv) #aow += numpy.einsum('pi,p->pi', ao[2], rho[2]*wv) #aow += numpy.einsum('pi,p->pi', ao[3], rho[3]*wv) #aow += numpy.einsum('pi,p->pi', ao[0], .5*weight*vrho) vrho, vsigma = vxc[:2] if spin == 0: assert (vsigma is not None and rho.ndim==2) wv = _rks_gga_wv0(rho, vxc, weight) else: rho_a, rho_b = rho wv = numpy.empty((4,ngrids)) wv[0] = weight * vrho * .5 try: wv[1:4] = rho_a[1:4] * (weight * vsigma[0] * 2) # sigma_uu wv[1:4]+= rho_b[1:4] * (weight * vsigma[1]) # sigma_ud except ValueError: warnings.warn('Note the output of libxc.eval_xc cannot be ' 'directly used in eval_mat.\nvsigma from eval_xc ' 'should be restructured as ' '(vsigma[:,0],vsigma[:,1])\n') transpose_for_uks = True vsigma = vsigma.T wv[1:4] = rho_a[1:4] * (weight * vsigma[0] * 2) # sigma_uu wv[1:4]+= rho_b[1:4] * (weight * vsigma[1]) # sigma_ud #:aow = numpy.einsum('npi,np->pi', ao[:4], wv) aow = _scale_ao(ao[:4], wv) mat = _dot_ao_ao(mol, ao[0], aow, non0tab, shls_slice, ao_loc) # JCP 138, 244108 (2013); DOI:10.1063/1.4811270 # JCP 112, 7002 (2000); DOI:10.1063/1.481298 if xctype == 'MGGA': vlapl, vtau = vxc[2:] if vlapl is None: if spin != 0: if transpose_for_uks: vtau = vtau.T vtau = vtau[0] wv = weight * .25 * vtau mat += _tau_dot(mol, ao, ao, wv, non0tab, shls_slice, ao_loc) else: if spin != 0: if transpose_for_uks: vlapl = vlapl.T vlapl = vlapl[0] if ao.shape[0] > 4: XX, YY, ZZ = 4, 7, 9 ao2 = ao[XX] + ao[YY] + ao[ZZ] #:aow = numpy.einsum('pi,p->pi', ao2, .5 * weight * vlapl, out=aow) aow = _scale_ao(ao2, .5 * weight * vlapl, out=aow) mat += _dot_ao_ao(mol, ao[0], aow, non0tab, shls_slice, ao_loc) else: raise ValueError('Not enough derivatives in ao') return mat + mat.T.conj()
def _dot_ao_ao(mol, ao1, ao2, non0tab, shls_slice, ao_loc, hermi=0): '''return numpy.dot(ao1.T, ao2)''' ngrids, nao = ao1.shape if (nao < SWITCH_SIZE or non0tab is None or shls_slice is None or ao_loc is None): return lib.dot(ao1.conj().T, ao2) if not ao1.flags.f_contiguous: ao1 = lib.transpose(ao1) if not ao2.flags.f_contiguous: ao2 = lib.transpose(ao2) if ao1.dtype == ao2.dtype == numpy.double: fn = libdft.VXCdot_ao_ao else: fn = libdft.VXCzdot_ao_ao ao1 = numpy.asarray(ao1, numpy.complex128) ao2 = numpy.asarray(ao2, numpy.complex128) vv = numpy.empty((nao,nao), dtype=ao1.dtype) fn(vv.ctypes.data_as(ctypes.c_void_p), ao1.ctypes.data_as(ctypes.c_void_p), ao2.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(ngrids), ctypes.c_int(mol.nbas), ctypes.c_int(hermi), non0tab.ctypes.data_as(ctypes.c_void_p), (ctypes.c_int*2)(*shls_slice), ao_loc.ctypes.data_as(ctypes.c_void_p)) return vv def _dot_ao_dm(mol, ao, dm, non0tab, shls_slice, ao_loc, out=None): '''return numpy.dot(ao, dm)''' ngrids, nao = ao.shape if (nao < SWITCH_SIZE or non0tab is None or shls_slice is None or ao_loc is None): return lib.dot(dm.T, ao.T).T if not ao.flags.f_contiguous: ao = lib.transpose(ao) if ao.dtype == dm.dtype == numpy.double: fn = libdft.VXCdot_ao_dm else: fn = libdft.VXCzdot_ao_dm ao = numpy.asarray(ao, numpy.complex128) dm = numpy.asarray(dm, numpy.complex128) vm = numpy.ndarray((ngrids,dm.shape[1]), dtype=ao.dtype, order='F', buffer=out) dm = numpy.asarray(dm, order='C') fn(vm.ctypes.data_as(ctypes.c_void_p), ao.ctypes.data_as(ctypes.c_void_p), dm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(dm.shape[1]), ctypes.c_int(ngrids), ctypes.c_int(mol.nbas), non0tab.ctypes.data_as(ctypes.c_void_p), (ctypes.c_int*2)(*shls_slice), ao_loc.ctypes.data_as(ctypes.c_void_p)) return vm def _scale_ao(ao, wv, out=None): #:aow = numpy.einsum('npi,np->pi', ao[:4], wv) if wv.ndim == 2: ao = ao.transpose(0,2,1) else: ngrids, nao = ao.shape ao = ao.T.reshape(1,nao,ngrids) wv = wv.reshape(1,ngrids) if not ao.flags.c_contiguous: return numpy.einsum('nip,np->pi', ao, wv) if ao.dtype == numpy.double: if wv.dtype == numpy.double: fn = libdft.VXC_dscale_ao dtype = numpy.double elif wv.dtype == numpy.complex128: fn = libdft.VXC_dzscale_ao dtype = numpy.complex128 else: return numpy.einsum('nip,np->pi', ao, wv) elif ao.dtype == numpy.complex128: if wv.dtype == numpy.double: fn = libdft.VXC_zscale_ao dtype = numpy.complex128 elif wv.dtype == numpy.complex128: fn = libdft.VXC_zzscale_ao dtype = numpy.complex128 else: return numpy.einsum('nip,np->pi', ao, wv) else: return numpy.einsum('nip,np->pi', ao, wv) wv = numpy.asarray(wv, order='C') comp, nao, ngrids = ao.shape assert wv.shape[0] == comp aow = numpy.ndarray((nao,ngrids), dtype=dtype, buffer=out).T fn(aow.ctypes.data_as(ctypes.c_void_p), ao.ctypes.data_as(ctypes.c_void_p), wv.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(comp), ctypes.c_int(nao), ctypes.c_int(ngrids)) return aow def _contract_rho(bra, ket): '''Real part of rho for rho=einsum('pi,pi->p', bra.conj(), ket)''' bra = bra.T ket = ket.T nao, ngrids = bra.shape rho = numpy.empty(ngrids) if not (bra.flags.c_contiguous and ket.flags.c_contiguous): rho = numpy.einsum('ip,ip->p', bra.real, ket.real) rho += numpy.einsum('ip,ip->p', bra.imag, ket.imag) elif bra.dtype == numpy.double and ket.dtype == numpy.double: libdft.VXC_dcontract_rho(rho.ctypes.data_as(ctypes.c_void_p), bra.ctypes.data_as(ctypes.c_void_p), ket.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(ngrids)) elif bra.dtype == numpy.complex128 and ket.dtype == numpy.complex128: libdft.VXC_zcontract_rho(rho.ctypes.data_as(ctypes.c_void_p), bra.ctypes.data_as(ctypes.c_void_p), ket.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(ngrids)) else: rho = numpy.einsum('ip,ip->p', bra.real, ket.real) rho += numpy.einsum('ip,ip->p', bra.imag, ket.imag) return rho def _tau_dot(mol, bra, ket, wv, mask, shls_slice, ao_loc): '''nabla_ao dot nabla_ao numpy.einsum('p,xpi,xpj->ij', wv, bra[1:4].conj(), ket[1:4]) ''' aow = _scale_ao(ket[1], wv) mat = _dot_ao_ao(mol, bra[1], aow, mask, shls_slice, ao_loc) aow = _scale_ao(ket[2], wv, aow) mat += _dot_ao_ao(mol, bra[2], aow, mask, shls_slice, ao_loc) aow = _scale_ao(ket[3], wv, aow) mat += _dot_ao_ao(mol, bra[3], aow, mask, shls_slice, ao_loc) return mat def _sparse_enough(screen_index): # TODO: improve the turnover threshold threshold = 0.5 return numpy.count_nonzero(screen_index) < screen_index.size * threshold def _dot_ao_ao_dense(ao1, ao2, wv, out=None): '''Returns (bra*wv).T.dot(ket) ''' assert ao1.flags.f_contiguous assert ao2.flags.f_contiguous assert ao1.dtype == ao2.dtype == numpy.double ngrids, nao = ao1.shape if out is None: out = numpy.zeros((nao, nao), dtype=ao1.dtype) if wv is None: return lib.ddot(ao1.T, ao2, 1, out, 1) else: assert wv.dtype == numpy.double libdft.VXCdot_aow_ao_dense( out.ctypes.data_as(ctypes.c_void_p), ao1.ctypes.data_as(ctypes.c_void_p), ao2.ctypes.data_as(ctypes.c_void_p), wv.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(ngrids)) return out def _dot_ao_ao_sparse(ao1, ao2, wv, nbins, screen_index, pair_mask, ao_loc, hermi=0, out=None): '''Returns (bra*wv).T.dot(ket) while sparsity is explicitly considered. Note the return may have ~1e-13 difference to _dot_ao_ao. ''' ngrids, nao = ao1.shape if screen_index is None or pair_mask is None or ngrids % ALIGNMENT_UNIT != 0: return _dot_ao_ao_dense(ao1, ao2, wv, out) assert ao1.flags.f_contiguous assert ao2.flags.f_contiguous assert ao1.dtype == ao2.dtype == numpy.double nbas = screen_index.shape[1] if out is None: out = numpy.zeros((nao, nao), dtype=ao1.dtype) if wv is None: libdft.VXCdot_ao_ao_sparse( out.ctypes.data_as(ctypes.c_void_p), ao1.ctypes.data_as(ctypes.c_void_p), ao2.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(ngrids), ctypes.c_int(nbas), ctypes.c_int(hermi), ctypes.c_int(nbins), screen_index.ctypes.data_as(ctypes.c_void_p), pair_mask.ctypes.data_as(ctypes.c_void_p), ao_loc.ctypes.data_as(ctypes.c_void_p)) else: assert wv.dtype == numpy.double libdft.VXCdot_aow_ao_sparse( out.ctypes.data_as(ctypes.c_void_p), ao1.ctypes.data_as(ctypes.c_void_p), ao2.ctypes.data_as(ctypes.c_void_p), wv.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(ngrids), ctypes.c_int(nbas), ctypes.c_int(hermi), ctypes.c_int(nbins), screen_index.ctypes.data_as(ctypes.c_void_p), pair_mask.ctypes.data_as(ctypes.c_void_p), ao_loc.ctypes.data_as(ctypes.c_void_p)) return out def _dot_ao_dm_sparse(ao, dm, nbins, screen_index, pair_mask, ao_loc): '''Returns numpy.dot(ao, dm) while sparsity is explicitly considered. Note the return may be different to _dot_ao_dm. After contracting to another ao matrix, (numpy.dot(ao, dm)*ao).sum(axis=1), their value can be matched up to ~1e-13. ''' ngrids, nao = ao.shape if screen_index is None or pair_mask is None or ngrids % ALIGNMENT_UNIT != 0: return lib.dot(dm.T, ao.T).T assert ao.flags.f_contiguous assert ao.dtype == dm.dtype == numpy.double nbas = screen_index.shape[1] dm = numpy.asarray(dm, order='C') out = _empty_aligned((nao, ngrids)).T fn = libdft.VXCdot_ao_dm_sparse fn(out.ctypes.data_as(ctypes.c_void_p), ao.ctypes.data_as(ctypes.c_void_p), dm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(ngrids), ctypes.c_int(nbas), ctypes.c_int(nbins), screen_index.ctypes.data_as(ctypes.c_void_p), pair_mask.ctypes.data_as(ctypes.c_void_p), ao_loc.ctypes.data_as(ctypes.c_void_p)) return out def _scale_ao_sparse(ao, wv, screen_index, ao_loc, out=None): '''Returns einsum('xgi,xg->gi', ao, wv) while sparsity is explicitly considered. Note the return may be different to _scale_ao. After contracting to another ao matrix, scale_ao.T.dot(ao), their value can be matched up to ~1e-13. ''' if screen_index is None: return _scale_ao(ao, wv, out=out) assert ao.dtype == wv.dtype == numpy.double if ao.ndim == 3: assert ao[0].flags.f_contiguous ngrids, nao = ao[0].shape comp = wv.shape[0] else: assert ao.flags.f_contiguous ngrids, nao = ao.shape comp = 1 nbas = screen_index.shape[1] if ngrids % ALIGNMENT_UNIT != 0: return _scale_ao(ao, wv, out=out) if out is None: out = _empty_aligned((nao, ngrids)).T else: out = numpy.ndarray((ngrids, nao), buffer=out, order='F') libdft.VXCdscale_ao_sparse( out.ctypes.data_as(ctypes.c_void_p), ao.ctypes.data_as(ctypes.c_void_p), wv.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(comp), ctypes.c_int(nao), ctypes.c_int(ngrids), ctypes.c_int(nbas), screen_index.ctypes.data_as(ctypes.c_void_p), ao_loc.ctypes.data_as(ctypes.c_void_p)) return out def _contract_rho_sparse(bra, ket, screen_index, ao_loc): '''Returns numpy.einsum('gi,gi->g', bra, ket) while sparsity is explicitly considered. Note the return may have ~1e-13 difference to _contract_rho. ''' ngrids, nao = bra.shape if screen_index is None or ngrids % ALIGNMENT_UNIT != 0: return _contract_rho(bra, ket) assert bra.flags.f_contiguous assert ket.flags.f_contiguous assert bra.dtype == ket.dtype == numpy.double nbas = screen_index.shape[1] rho = numpy.empty(ngrids) libdft.VXCdcontract_rho_sparse( rho.ctypes.data_as(ctypes.c_void_p), bra.ctypes.data_as(ctypes.c_void_p), ket.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nao), ctypes.c_int(ngrids), ctypes.c_int(nbas), screen_index.ctypes.data_as(ctypes.c_void_p), ao_loc.ctypes.data_as(ctypes.c_void_p)) return rho def _tau_dot_sparse(bra, ket, wv, nbins, screen_index, pair_mask, ao_loc, out=None): '''Similar to _tau_dot, while sparsity is explicitly considered. Note the return may have ~1e-13 difference to _tau_dot. ''' nao = bra.shape[1] if out is None: out = numpy.zeros((nao, nao), dtype=bra.dtype) hermi = 1 _dot_ao_ao_sparse(bra[1], ket[1], wv, nbins, screen_index, pair_mask, ao_loc, hermi, out) _dot_ao_ao_sparse(bra[2], ket[2], wv, nbins, screen_index, pair_mask, ao_loc, hermi, out) _dot_ao_ao_sparse(bra[3], ket[3], wv, nbins, screen_index, pair_mask, ao_loc, hermi, out) return out
[docs] def nr_vxc(mol, grids, xc_code, dms, spin=0, relativity=0, hermi=0, max_memory=2000, verbose=None): ''' Evaluate RKS/UKS XC functional and potential matrix on given meshgrids for a set of density matrices. See :func:`nr_rks` and :func:`nr_uks` for more details. Args: mol : an instance of :class:`Mole` grids : an instance of :class:`Grids` grids.coords and grids.weights are needed for coordinates and weights of meshgrids. xc_code : str XC functional description. See :func:`parse_xc` of pyscf/dft/libxc.py for more details. dms : 2D array or a list of 2D arrays Density matrix or multiple density matrices Kwargs: hermi : int Input density matrices symmetric or not max_memory : int or float The maximum size of cache to use (in MB). Returns: nelec, excsum, vmat. nelec is the number of electrons generated by numerical integration. excsum is the XC functional value. vmat is the XC potential matrix in 2D array of shape (nao,nao) where nao is the number of AO functions. Examples: >>> from pyscf import gto, dft >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> grids = dft.gen_grid.Grids(mol) >>> grids.coords = numpy.random.random((100,3)) # 100 random points >>> grids.weights = numpy.random.random(100) >>> nao = mol.nao_nr() >>> dm = numpy.random.random((2,nao,nao)) >>> nelec, exc, vxc = dft.numint.nr_vxc(mol, grids, 'lda,vwn', dm, spin=1) ''' ni = NumInt() return ni.nr_vxc(mol, grids, xc_code, dms, spin, relativity, hermi, max_memory, verbose)
[docs] def nr_sap_vxc(ni, mol, grids, max_memory=2000, verbose=None): '''Calculate superposition of atomic potentials matrix on given meshgrids. Args: ni : an instance of :class:`NumInt` mol : an instance of :class:`Mole` grids : an instance of :class:`Grids` grids.coords and grids.weights are needed for coordinates and weights of meshgrids. Kwargs: max_memory : int or float The maximum size of cache to use (in MB). Returns: vmat is the XC potential matrix in 2D array of shape (nao,nao) where nao is the number of AO functions. Examples: >>> import numpy >>> from pyscf import gto, dft >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> grids = dft.gen_grid.Grids(mol) >>> ni = dft.numint.NumInt() >>> vsap = ni.nr_sap(mol, grids) ''' from pyscf.dft.sap import sap_effective_charge assert not mol.has_ecp(), 'ECP or PP not supported' shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() nao = mol.nao vmat = numpy.zeros((nao,nao)) aow = None ao_deriv = 0 atom_coords = mol.atom_coords() atom_charges = mol.atom_charges() for ao, mask, weight, coords in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): vxc = numpy.zeros(weight.size) # Form potential for ia, z in enumerate(atom_charges): rnuc = numpy.linalg.norm(atom_coords[ia] - coords, axis=1) Zeff = sap_effective_charge(z, rnuc) vxc -= Zeff/rnuc aow = _scale_ao(ao, weight*vxc, out=aow) vmat += _dot_ao_ao(mol, ao, aow, mask, shls_slice, ao_loc) vxc = None return vmat
[docs] def nr_rks(ni, mol, grids, xc_code, dms, relativity=0, hermi=1, max_memory=2000, verbose=None): '''Calculate RKS XC functional and potential matrix on given meshgrids for a set of density matrices Args: ni : an instance of :class:`NumInt` mol : an instance of :class:`Mole` grids : an instance of :class:`Grids` grids.coords and grids.weights are needed for coordinates and weights of meshgrids. xc_code : str XC functional description. See :func:`parse_xc` of pyscf/dft/libxc.py for more details. dms : 2D array or a list of 2D arrays Density matrix or multiple density matrices Kwargs: hermi : int Input density matrices symmetric or not. It also indicates whether the potential matrices in return are symmetric or not. max_memory : int or float The maximum size of cache to use (in MB). Returns: nelec, excsum, vmat. nelec is the number of electrons generated by numerical integration. excsum is the XC functional value. vmat is the XC potential matrix in 2D array of shape (nao,nao) where nao is the number of AO functions. Examples: >>> from pyscf import gto, dft >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> grids = dft.gen_grid.Grids(mol) >>> grids.coords = numpy.random.random((100,3)) # 100 random points >>> grids.weights = numpy.random.random(100) >>> nao = mol.nao_nr() >>> dm = numpy.random.random((nao,nao)) >>> ni = dft.numint.NumInt() >>> nelec, exc, vxc = ni.nr_rks(mol, grids, 'lda,vwn', dm) ''' xctype = ni._xc_type(xc_code) make_rho, nset, nao = ni._gen_rho_evaluator(mol, dms, hermi, False, grids) ao_loc = mol.ao_loc_nr() cutoff = grids.cutoff * 1e2 nbins = NBINS * 2 - int(NBINS * numpy.log(cutoff) / numpy.log(grids.cutoff)) nelec = numpy.zeros(nset) excsum = numpy.zeros(nset) vmat = numpy.zeros((nset,nao,nao)) def block_loop(ao_deriv): for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): for i in range(nset): rho = make_rho(i, ao, mask, xctype) exc, vxc = ni.eval_xc_eff(xc_code, rho, deriv=1, xctype=xctype)[:2] if xctype == 'LDA': den = rho * weight else: den = rho[0] * weight nelec[i] += den.sum() excsum[i] += numpy.dot(den, exc) wv = weight * vxc yield i, ao, mask, wv aow = None pair_mask = mol.get_overlap_cond() < -numpy.log(ni.cutoff) if xctype == 'LDA': ao_deriv = 0 for i, ao, mask, wv in block_loop(ao_deriv): _dot_ao_ao_sparse(ao, ao, wv, nbins, mask, pair_mask, ao_loc, hermi, vmat[i]) elif xctype == 'GGA': ao_deriv = 1 for i, ao, mask, wv in block_loop(ao_deriv): wv[0] *= .5 # *.5 because vmat + vmat.T at the end aow = _scale_ao_sparse(ao[:4], wv[:4], mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[i]) vmat = lib.hermi_sum(vmat, axes=(0,2,1)) elif xctype == 'MGGA': if (any(x in xc_code.upper() for x in ('CC06', 'CS', 'BR89', 'MK00'))): raise NotImplementedError('laplacian in meta-GGA method') ao_deriv = 1 v1 = numpy.zeros_like(vmat) for i, ao, mask, wv in block_loop(ao_deriv): wv[0] *= .5 # *.5 for v+v.conj().T wv[4] *= .5 # *.5 for 1/2 in tau aow = _scale_ao_sparse(ao[:4], wv[:4], mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[i]) _tau_dot_sparse(ao, ao, wv[4], nbins, mask, pair_mask, ao_loc, out=v1[i]) vmat = lib.hermi_sum(vmat, axes=(0,2,1)) vmat += v1 elif xctype == 'HF': pass else: raise NotImplementedError(f'numint.nr_uks for functional {xc_code}') if nset == 1: nelec = nelec[0] excsum = excsum[0] vmat = vmat[0] if isinstance(dms, numpy.ndarray): dtype = dms.dtype else: dtype = numpy.result_type(*dms) if vmat.dtype != dtype: vmat = numpy.asarray(vmat, dtype=dtype) return nelec, excsum, vmat
[docs] def nr_uks(ni, mol, grids, xc_code, dms, relativity=0, hermi=1, max_memory=2000, verbose=None): '''Calculate UKS XC functional and potential matrix on given meshgrids for a set of density matrices Args: mol : an instance of :class:`Mole` grids : an instance of :class:`Grids` grids.coords and grids.weights are needed for coordinates and weights of meshgrids. xc_code : str XC functional description. See :func:`parse_xc` of pyscf/dft/libxc.py for more details. dms : a list of 2D arrays A list of density matrices, stored as (alpha,alpha,...,beta,beta,...) Kwargs: hermi : int Input density matrices symmetric or not. It also indicates whether the potential matrices in return are symmetric or not. max_memory : int or float The maximum size of cache to use (in MB). Returns: nelec, excsum, vmat. nelec is the number of (alpha,beta) electrons generated by numerical integration. excsum is the XC functional value. vmat is the XC potential matrix for (alpha,beta) spin. Examples: >>> from pyscf import gto, dft >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1') >>> grids = dft.gen_grid.Grids(mol) >>> grids.coords = numpy.random.random((100,3)) # 100 random points >>> grids.weights = numpy.random.random(100) >>> nao = mol.nao_nr() >>> dm = numpy.random.random((2,nao,nao)) >>> ni = dft.numint.NumInt() >>> nelec, exc, vxc = ni.nr_uks(mol, grids, 'lda,vwn', dm) ''' xctype = ni._xc_type(xc_code) ao_loc = mol.ao_loc_nr() cutoff = grids.cutoff * 1e2 nbins = NBINS * 2 - int(NBINS * numpy.log(cutoff) / numpy.log(grids.cutoff)) dma, dmb = _format_uks_dm(dms) nao = dma.shape[-1] make_rhoa, nset = ni._gen_rho_evaluator(mol, dma, hermi, False, grids)[:2] make_rhob = ni._gen_rho_evaluator(mol, dmb, hermi, False, grids)[0] nelec = numpy.zeros((2,nset)) excsum = numpy.zeros(nset) vmat = numpy.zeros((2,nset,nao,nao)) def block_loop(ao_deriv): for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): for i in range(nset): rho_a = make_rhoa(i, ao, mask, xctype) rho_b = make_rhob(i, ao, mask, xctype) rho = (rho_a, rho_b) exc, vxc = ni.eval_xc_eff(xc_code, rho, deriv=1, xctype=xctype)[:2] if xctype == 'LDA': den_a = rho_a * weight den_b = rho_b * weight else: den_a = rho_a[0] * weight den_b = rho_b[0] * weight nelec[0,i] += den_a.sum() nelec[1,i] += den_b.sum() excsum[i] += numpy.dot(den_a, exc) excsum[i] += numpy.dot(den_b, exc) wv = weight * vxc yield i, ao, mask, wv pair_mask = mol.get_overlap_cond() < -numpy.log(ni.cutoff) aow = None if xctype == 'LDA': ao_deriv = 0 for i, ao, mask, wv in block_loop(ao_deriv): _dot_ao_ao_sparse(ao, ao, wv[0,0], nbins, mask, pair_mask, ao_loc, hermi, vmat[0,i]) _dot_ao_ao_sparse(ao, ao, wv[1,0], nbins, mask, pair_mask, ao_loc, hermi, vmat[1,i]) elif xctype == 'GGA': ao_deriv = 1 for i, ao, mask, wv in block_loop(ao_deriv): wv[:,0] *= .5 wva, wvb = wv aow = _scale_ao_sparse(ao, wva, mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[0,i]) aow = _scale_ao_sparse(ao, wvb, mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[1,i]) vmat = lib.hermi_sum(vmat.reshape(-1,nao,nao), axes=(0,2,1)).reshape(2,nset,nao,nao) elif xctype == 'MGGA': if (any(x in xc_code.upper() for x in ('CC06', 'CS', 'BR89', 'MK00'))): raise NotImplementedError('laplacian in meta-GGA method') assert not MGGA_DENSITY_LAPL ao_deriv = 1 v1 = numpy.zeros_like(vmat) for i, ao, mask, wv in block_loop(ao_deriv): wv[:,0] *= .5 wv[:,4] *= .5 wva, wvb = wv aow = _scale_ao_sparse(ao[:4], wva[:4], mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[0,i]) _tau_dot_sparse(ao, ao, wva[4], nbins, mask, pair_mask, ao_loc, out=v1[0,i]) aow = _scale_ao_sparse(ao[:4], wvb[:4], mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[1,i]) _tau_dot_sparse(ao, ao, wvb[4], nbins, mask, pair_mask, ao_loc, out=v1[1,i]) vmat = lib.hermi_sum(vmat.reshape(-1,nao,nao), axes=(0,2,1)).reshape(2,nset,nao,nao) vmat += v1 elif xctype == 'HF': pass else: raise NotImplementedError(f'numint.nr_uks for functional {xc_code}') if isinstance(dma, numpy.ndarray) and dma.ndim == 2: vmat = vmat[:,0] nelec = nelec.reshape(2) excsum = excsum[0] dtype = numpy.result_type(dma, dmb) if vmat.dtype != dtype: vmat = numpy.asarray(vmat, dtype=dtype) return nelec, excsum, vmat
def _format_uks_dm(dms): if isinstance(dms, numpy.ndarray) and dms.ndim == 2: # RHF DM dma = dmb = dms * .5 else: dma, dmb = dms if getattr(dms, 'mo_coeff', None) is not None: mo_coeff = dms.mo_coeff mo_occ = dms.mo_occ if mo_coeff[0].ndim < dma.ndim: # handle ROKS mo_occa = numpy.array(mo_occ> 0, dtype=numpy.double) mo_occb = numpy.array(mo_occ==2, dtype=numpy.double) dma = lib.tag_array(dma, mo_coeff=mo_coeff, mo_occ=mo_occa) dmb = lib.tag_array(dmb, mo_coeff=mo_coeff, mo_occ=mo_occb) else: dma = lib.tag_array(dma, mo_coeff=mo_coeff[0], mo_occ=mo_occ[0]) dmb = lib.tag_array(dmb, mo_coeff=mo_coeff[1], mo_occ=mo_occ[1]) return dma, dmb nr_rks_vxc = nr_rks nr_uks_vxc = nr_uks
[docs] def nr_nlc_vxc(ni, mol, grids, xc_code, dm, relativity=0, hermi=1, max_memory=2000, verbose=None): '''Calculate NLC functional and potential matrix on given grids Args: ni : an instance of :class:`NumInt` mol : an instance of :class:`Mole` grids : an instance of :class:`Grids` grids.coords and grids.weights are needed for coordinates and weights of meshgrids. xc_code : str XC functional description. See :func:`parse_xc` of pyscf/dft/libxc.py for more details. dm : 2D array Density matrix or multiple density matrices Kwargs: hermi : int Input density matrices symmetric or not. It also indicates whether the potential matrices in return are symmetric or not. max_memory : int or float The maximum size of cache to use (in MB). Returns: nelec, excsum, vmat. nelec is the number of electrons generated by numerical integration. excsum is the XC functional value. vmat is the XC potential matrix in 2D array of shape (nao,nao) where nao is the number of AO functions. ''' make_rho, nset, nao = ni._gen_rho_evaluator(mol, dm, hermi, False, grids) assert nset == 1 ao_loc = mol.ao_loc_nr() cutoff = grids.cutoff * 1e2 nbins = NBINS * 2 - int(NBINS * numpy.log(cutoff) / numpy.log(grids.cutoff)) ao_deriv = 1 vvrho = [] for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): vvrho.append(make_rho(0, ao, mask, 'GGA')) rho = numpy.hstack(vvrho) exc = 0 vxc = 0 nlc_coefs = ni.nlc_coeff(xc_code) for nlc_pars, fac in nlc_coefs: e, v = _vv10nlc(rho, grids.coords, rho, grids.weights, grids.coords, nlc_pars) exc += e * fac vxc += v * fac den = rho[0] * grids.weights nelec = den.sum() excsum = numpy.dot(den, exc) vv_vxc = xc_deriv.transform_vxc(rho, vxc, 'GGA', spin=0) pair_mask = mol.get_overlap_cond() < -numpy.log(ni.cutoff) aow = None vmat = numpy.zeros((nao,nao)) p1 = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): p0, p1 = p1, p1 + weight.size wv = vv_vxc[:,p0:p1] * weight wv[0] *= .5 aow = _scale_ao_sparse(ao[:4], wv[:4], mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat) vmat = vmat + vmat.T return nelec, excsum, vmat
[docs] def nr_rks_fxc(ni, mol, grids, xc_code, dm0, dms, relativity=0, hermi=0, rho0=None, vxc=None, fxc=None, max_memory=2000, verbose=None): '''Contract RKS XC (singlet hessian) kernel matrix with given density matrices Args: ni : an instance of :class:`NumInt` mol : an instance of :class:`Mole` grids : an instance of :class:`Grids` grids.coords and grids.weights are needed for coordinates and weights of meshgrids. xc_code : str XC functional description. See :func:`parse_xc` of pyscf/dft/libxc.py for more details. dm0 : 2D array Zeroth order density matrix dms : 2D array a list of 2D arrays First order density matrix or density matrices Kwargs: hermi : int First order density matrix symmetric or not. It also indicates whether the matrices in return are symmetric or not. max_memory : int or float The maximum size of cache to use (in MB). rho0 : float array Zero-order density (and density derivative for GGA). Giving kwargs rho0, vxc and fxc to improve better performance. vxc : float array First order XC derivatives fxc : float array Second order XC derivatives Returns: nelec, excsum, vmat. nelec is the number of electrons generated by numerical integration. excsum is the XC functional value. vmat is the XC potential matrix in 2D array of shape (nao,nao) where nao is the number of AO functions. Examples: ''' if isinstance(dms, numpy.ndarray): dtype = dms.dtype else: dtype = numpy.result_type(*dms) if hermi != 1 and dtype != numpy.double: raise NotImplementedError('complex density matrix') xctype = ni._xc_type(xc_code) if fxc is None and xctype in ('LDA', 'GGA', 'MGGA'): fxc = ni.cache_xc_kernel1(mol, grids, xc_code, dm0, spin=0, max_memory=max_memory)[2] make_rho1, nset, nao = ni._gen_rho_evaluator(mol, dms, hermi, False, grids) def block_loop(ao_deriv): p1 = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): p0, p1 = p1, p1 + weight.size _fxc = fxc[:,:,p0:p1] for i in range(nset): rho1 = make_rho1(i, ao, mask, xctype) if xctype == 'LDA': wv = weight * rho1 * _fxc[0] else: wv = numpy.einsum('yg,xyg,g->xg', rho1, _fxc, weight) yield i, ao, mask, wv ao_loc = mol.ao_loc_nr() cutoff = grids.cutoff * 1e2 nbins = NBINS * 2 - int(NBINS * numpy.log(cutoff) / numpy.log(grids.cutoff)) pair_mask = mol.get_overlap_cond() < -numpy.log(ni.cutoff) vmat = numpy.zeros((nset,nao,nao)) aow = None if xctype == 'LDA': ao_deriv = 0 for i, ao, mask, wv in block_loop(ao_deriv): _dot_ao_ao_sparse(ao, ao, wv[0], nbins, mask, pair_mask, ao_loc, hermi, vmat[i]) elif xctype == 'GGA': ao_deriv = 1 for i, ao, mask, wv in block_loop(ao_deriv): wv[0] *= .5 # *.5 for v+v.conj().T aow = _scale_ao_sparse(ao, wv, mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[i]) # For real orbitals, K_{ia,bj} = K_{ia,jb}. It simplifies real fxc_jb # [(\nabla mu) nu + mu (\nabla nu)] * fxc_jb = ((\nabla mu) nu f_jb) + h.c. vmat = lib.hermi_sum(vmat, axes=(0,2,1)) elif xctype == 'MGGA': assert not MGGA_DENSITY_LAPL ao_deriv = 2 if MGGA_DENSITY_LAPL else 1 v1 = numpy.zeros_like(vmat) for i, ao, mask, wv in block_loop(ao_deriv): wv[0] *= .5 # *.5 for v+v.conj().T wv[4] *= .5 # *.5 for 1/2 in tau aow = _scale_ao_sparse(ao, wv[:4], mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[i]) _tau_dot_sparse(ao, ao, wv[4], nbins, mask, pair_mask, ao_loc, out=v1[i]) vmat = lib.hermi_sum(vmat, axes=(0,2,1)) vmat += v1 if isinstance(dms, numpy.ndarray) and dms.ndim == 2: vmat = vmat[0] if vmat.dtype != dtype: vmat = numpy.asarray(vmat, dtype=dtype) return vmat
[docs] def nr_rks_fxc_st(ni, mol, grids, xc_code, dm0, dms_alpha, relativity=0, singlet=True, rho0=None, vxc=None, fxc=None, max_memory=2000, verbose=None): '''Associated to singlet or triplet Hessian Note the difference to nr_rks_fxc, dms_alpha is the response density matrices of alpha spin, alpha+/-beta DM is applied due to singlet/triplet coupling Ref. CPL, 256, 454 ''' if fxc is None: fxc = ni.cache_xc_kernel1(mol, grids, xc_code, dm0, spin=1, max_memory=max_memory)[2] if singlet: fxc = fxc[0,:,0] + fxc[0,:,1] else: fxc = fxc[0,:,0] - fxc[0,:,1] return ni.nr_rks_fxc(mol, grids, xc_code, dm0, dms_alpha, hermi=0, fxc=fxc, max_memory=max_memory)
def _rks_gga_wv0(rho, vxc, weight): vrho, vgamma = vxc[:2] ngrid = vrho.size wv = numpy.empty((4,ngrid)) wv[0] = vrho * .5 # v+v.T should be applied in the caller wv[1:] = 2 * vgamma * rho[1:4] wv[:] *= weight return wv def _rks_gga_wv1(rho0, rho1, vxc, fxc, weight): vgamma = vxc[1] frho, frhogamma, fgg = fxc[:3] # sigma1 ~ \nabla(\rho_\alpha+\rho_\beta) dot \nabla(|b><j|) z_{bj} sigma1 = numpy.einsum('xi,xi->i', rho0[1:4], rho1[1:4]) ngrid = sigma1.size wv = numpy.empty((4,ngrid)) wv[0] = frho * rho1[0] wv[0] += frhogamma * sigma1 * 2 wv[1:] = (fgg * sigma1 * 4 + frhogamma * rho1[0] * 2) * rho0[1:4] wv[1:]+= vgamma * rho1[1:4] * 2 wv *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1.dtype == numpy.double wv[0] *= .5 return wv def _rks_gga_wv2(rho0, rho1, fxc, kxc, weight): frr, frg, fgg = fxc[:3] frrr, frrg, frgg, fggg = kxc[:4] sigma1 = numpy.einsum('xi,xi->i', rho0[1:4], rho1[1:4]) r1r1 = rho1[0]**2 s1s1 = sigma1**2 r1s1 = rho1[0] * sigma1 sigma2 = numpy.einsum('xi,xi->i', rho1[1:4], rho1[1:4]) ngrid = sigma1.size wv = numpy.empty((4,ngrid)) wv[0] = frrr * r1r1 wv[0] += 4 * frrg * r1s1 wv[0] += 4 * frgg * s1s1 wv[0] += 2 * frg * sigma2 wv[1:4] = 2 * frrg * r1r1 * rho0[1:4] wv[1:4] += 8 * frgg * r1s1 * rho0[1:4] wv[1:4] += 4 * frg * rho1[0] * rho1[1:4] wv[1:4] += 4 * fgg * sigma2 * rho0[1:4] wv[1:4] += 8 * fgg * sigma1 * rho1[1:4] wv[1:4] += 8 * fggg * s1s1 * rho0[1:4] wv *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1.dtype == numpy.double wv[0]*=.5 return wv def _rks_mgga_wv0(rho, vxc, weight): vrho, vgamma, vlapl, vtau = vxc[:4] ngrid = vrho.size wv = numpy.zeros((6,ngrid)) wv[0] = weight * vrho wv[1:4] = (weight * vgamma * 2) * rho[1:4] # *0.5 is for tau = 1/2 \nabla\phi\dot\nabla\phi wv[5] = weight * vtau * .5 # *0.5 because v+v.T should be applied in the caller wv[0] *= .5 wv[5] *= .5 return wv def _rks_mgga_wv1(rho0, rho1, vxc, fxc, weight): vsigma = vxc[1] frr, frg, fgg, fll, ftt, frl, frt, flt, fgl, fgt = fxc sigma1 = numpy.einsum('xi,xi->i', rho0[1:4], rho1[1:4]) ngrids = sigma1.size wv = numpy.zeros((6, ngrids)) wv[0] = frr * rho1[0] wv[0] += frt * rho1[5] wv[0] += frg * sigma1 * 2 wv[1:4] = (fgg * sigma1 * 4 + frg * rho1[0] * 2 + fgt * rho1[5] * 2) * rho0[1:4] wv[1:4]+= vsigma * rho1[1:4] * 2 wv[5] = ftt * rho1[5] * .5 wv[5] += frt * rho1[0] * .5 wv[5] += fgt * sigma1 wv *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1.dtype == numpy.double wv[0] *= .5 wv[5] *= .5 return wv def _rks_mgga_wv2(rho0, rho1, fxc, kxc, weight): frr, frg, fgg, fll, ftt, frl, frt, flt, fgl, fgt = fxc frrr, frrg, frgg, fggg = kxc[:4] frrt = kxc[5] frgt = kxc[7] frtt = kxc[10] fggt = kxc[12] fgtt = kxc[15] fttt = kxc[19] sigma1 = numpy.einsum('xi,xi->i', rho0[1:4], rho1[1:4]) r1r1 = rho1[0]**2 t1t1 = rho1[5]**2 r1t1 = rho1[0] * rho1[5] s1s1 = sigma1**2 r1s1 = rho1[0] * sigma1 s1t1 = sigma1 * rho1[5] sigma2 = numpy.einsum('xi,xi->i', rho1[1:4], rho1[1:4]) ngrid = sigma1.size wv = numpy.zeros((6, ngrid)) wv[0] = frrr * r1r1 wv[0] += 4 * frrg * r1s1 wv[0] += 4 * frgg * s1s1 wv[0] += 2 * frg * sigma2 wv[0] += frtt * t1t1 wv[0] += 2 * frrt * r1t1 wv[0] += 4 * frgt * s1t1 wv[1:4] += 2 * frrg * r1r1 * rho0[1:4] wv[1:4] += 8 * frgg * r1s1 * rho0[1:4] wv[1:4] += 4 * fgg * sigma2 * rho0[1:4] wv[1:4] += 8 * fggg * s1s1 * rho0[1:4] wv[1:4] += 2 * fgtt * t1t1 * rho0[1:4] wv[1:4] += 8 * fggt * s1t1 * rho0[1:4] wv[1:4] += 4 * frgt * r1t1 * rho0[1:4] wv[1:4] += 8 * fgg * sigma1 * rho1[1:4] wv[1:4] += 4 * frg * rho1[0] * rho1[1:4] wv[1:4] += 4 * fgt * rho1[5] * rho1[1:4] wv[5] += fttt * t1t1 * .5 wv[5] += frtt * r1t1 wv[5] += frrt * r1r1 * .5 wv[5] += fgtt * s1t1 * 2 wv[5] += fggt * s1s1 * 2 wv[5] += frgt * r1s1 * 2 wv[5] += fgt * sigma2 wv *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1.dtype == numpy.double wv[0] *= .5 wv[5] *= .5 return wv
[docs] def nr_uks_fxc(ni, mol, grids, xc_code, dm0, dms, relativity=0, hermi=0, rho0=None, vxc=None, fxc=None, max_memory=2000, verbose=None): '''Contract UKS XC kernel matrix with given density matrices Args: ni : an instance of :class:`NumInt` mol : an instance of :class:`Mole` grids : an instance of :class:`Grids` grids.coords and grids.weights are needed for coordinates and weights of meshgrids. xc_code : str XC functional description. See :func:`parse_xc` of pyscf/dft/libxc.py for more details. dm0 : (2, N, N) array Zeroth order density matrices dms : 2D array a list of 2D arrays First order density matrices Kwargs: hermi : int First order density matrix symmetric or not. It also indicates whether the matrices in return are symmetric or not. max_memory : int or float The maximum size of cache to use (in MB). rho0 : float array Zero-order density (and density derivative for GGA). Giving kwargs rho0, vxc and fxc to improve better performance. vxc : float array First order XC derivatives fxc : float array Second order XC derivatives Returns: nelec, excsum, vmat. nelec is the number of electrons generated by numerical integration. excsum is the XC functional value. vmat is the XC potential matrix in 2D array of shape (nao,nao) where nao is the number of AO functions. Examples: ''' if isinstance(dms, numpy.ndarray): dtype = dms.dtype else: dtype = numpy.result_type(*dms) if hermi != 1 and dtype != numpy.double: raise NotImplementedError('complex density matrix') xctype = ni._xc_type(xc_code) if fxc is None and xctype in ('LDA', 'GGA', 'MGGA'): fxc = ni.cache_xc_kernel1(mol, grids, xc_code, dm0, spin=1, max_memory=max_memory)[2] dma, dmb = _format_uks_dm(dms) nao = dma.shape[-1] make_rhoa, nset = ni._gen_rho_evaluator(mol, dma, hermi, False, grids)[:2] make_rhob = ni._gen_rho_evaluator(mol, dmb, hermi, False, grids)[0] def block_loop(ao_deriv): p1 = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): p0, p1 = p1, p1 + weight.size _fxc = fxc[:,:,:,:,p0:p1] for i in range(nset): rho1a = make_rhoa(i, ao, mask, xctype) rho1b = make_rhob(i, ao, mask, xctype) if xctype == 'LDA': wv = rho1a * _fxc[0,0] + rho1b * _fxc[1,0] else: wv = numpy.einsum('xg,xbyg->byg', rho1a, _fxc[0]) wv += numpy.einsum('xg,xbyg->byg', rho1b, _fxc[1]) wv *= weight yield i, ao, mask, wv ao_loc = mol.ao_loc_nr() cutoff = grids.cutoff * 1e2 nbins = NBINS * 2 - int(NBINS * numpy.log(cutoff) / numpy.log(grids.cutoff)) pair_mask = mol.get_overlap_cond() < -numpy.log(ni.cutoff) vmat = numpy.zeros((2,nset,nao,nao)) aow = None if xctype == 'LDA': ao_deriv = 0 for i, ao, mask, wv in block_loop(ao_deriv): _dot_ao_ao_sparse(ao, ao, wv[0,0], nbins, mask, pair_mask, ao_loc, hermi, vmat[0,i]) _dot_ao_ao_sparse(ao, ao, wv[1,0], nbins, mask, pair_mask, ao_loc, hermi, vmat[1,i]) elif xctype == 'GGA': ao_deriv = 1 for i, ao, mask, wv in block_loop(ao_deriv): wv[:,0] *= .5 wva, wvb = wv aow = _scale_ao_sparse(ao, wva, mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[0,i]) aow = _scale_ao_sparse(ao, wvb, mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[1,i]) # For real orbitals, K_{ia,bj} = K_{ia,jb}. It simplifies real fxc_jb # [(\nabla mu) nu + mu (\nabla nu)] * fxc_jb = ((\nabla mu) nu f_jb) + h.c. vmat = lib.hermi_sum(vmat.reshape(-1,nao,nao), axes=(0,2,1)).reshape(2,nset,nao,nao) elif xctype == 'MGGA': assert not MGGA_DENSITY_LAPL ao_deriv = 1 v1 = numpy.zeros_like(vmat) for i, ao, mask, wv in block_loop(ao_deriv): wv[:,0] *= .5 wv[:,4] *= .5 wva, wvb = wv aow = _scale_ao_sparse(ao[:4], wva[:4], mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[0,i]) _tau_dot_sparse(ao, ao, wva[4], nbins, mask, pair_mask, ao_loc, out=v1[0,i]) aow = _scale_ao_sparse(ao[:4], wvb[:4], mask, ao_loc, out=aow) _dot_ao_ao_sparse(ao[0], aow, None, nbins, mask, pair_mask, ao_loc, hermi=0, out=vmat[1,i]) _tau_dot_sparse(ao, ao, wvb[4], nbins, mask, pair_mask, ao_loc, out=v1[1,i]) vmat = lib.hermi_sum(vmat.reshape(-1,nao,nao), axes=(0,2,1)).reshape(2,nset,nao,nao) vmat += v1 if isinstance(dma, numpy.ndarray) and dma.ndim == 2: vmat = vmat[:,0] if vmat.dtype != dtype: vmat = numpy.asarray(vmat, dtype=dtype) return vmat
def _uks_gga_wv0(rho, vxc, weight): rhoa, rhob = rho vrho, vsigma = vxc[:2] ngrids = vrho.shape[0] wva, wvb = numpy.empty((2, 4, ngrids)) wva[0] = vrho[:,0] * .5 # v+v.T should be applied in the caller wva[1:] = rhoa[1:4] * vsigma[:,0] * 2 # sigma_uu wva[1:]+= rhob[1:4] * vsigma[:,1] # sigma_ud wva[:] *= weight wvb[0] = vrho[:,1] * .5 # v+v.T should be applied in the caller wvb[1:] = rhob[1:4] * vsigma[:,2] * 2 # sigma_dd wvb[1:]+= rhoa[1:4] * vsigma[:,1] # sigma_ud wvb[:] *= weight return wva, wvb def _uks_gga_wv1(rho0, rho1, vxc, fxc, weight): uu, ud, dd = vxc[1].T u_u, u_d, d_d = fxc[0].T u_uu, u_ud, u_dd, d_uu, d_ud, d_dd = fxc[1].T uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd = fxc[2].T ngrid = uu.size rho0a, rho0b = rho0 rho1a, rho1b = rho1 a0a1 = numpy.einsum('xi,xi->i', rho0a[1:4], rho1a[1:4]) * 2 a0b1 = numpy.einsum('xi,xi->i', rho0a[1:4], rho1b[1:4]) b0a1 = numpy.einsum('xi,xi->i', rho0b[1:4], rho1a[1:4]) b0b1 = numpy.einsum('xi,xi->i', rho0b[1:4], rho1b[1:4]) * 2 ab_1 = a0b1 + b0a1 wva, wvb = numpy.empty((2,4,ngrid)) # alpha = alpha-alpha * alpha wva[0] = u_u * rho1a[0] wva[0] += u_uu * a0a1 wva[0] += u_ud * ab_1 wva[1:] = uu * rho1a[1:4] * 2 wva[1:]+= u_uu * rho1a[0] * rho0a[1:4] * 2 wva[1:]+= u_ud * rho1a[0] * rho0b[1:4] wva[1:]+= uu_uu * a0a1 * rho0a[1:4] * 2 wva[1:]+= uu_ud * a0a1 * rho0b[1:4] wva[1:]+= uu_ud * ab_1 * rho0a[1:4] * 2 wva[1:]+= ud_ud * ab_1 * rho0b[1:4] # alpha = alpha-beta * beta wva[0] += u_d * rho1b[0] wva[0] += u_dd * b0b1 wva[1:]+= ud * rho1b[1:4] wva[1:]+= d_uu * rho1b[0] * rho0a[1:4] * 2 wva[1:]+= d_ud * rho1b[0] * rho0b[1:4] wva[1:]+= uu_dd * b0b1 * rho0a[1:4] * 2 wva[1:]+= ud_dd * b0b1 * rho0b[1:4] wva *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1a.dtype == numpy.double wva[0] *= .5 # beta = beta-alpha * alpha wvb[0] = u_d * rho1a[0] wvb[0] += d_ud * ab_1 wvb[0] += d_uu * a0a1 wvb[1:] = ud * rho1a[1:4] wvb[1:]+= u_dd * rho1a[0] * rho0b[1:4] * 2 wvb[1:]+= u_ud * rho1a[0] * rho0a[1:4] wvb[1:]+= ud_dd * ab_1 * rho0b[1:4] * 2 wvb[1:]+= ud_ud * ab_1 * rho0a[1:4] wvb[1:]+= uu_dd * a0a1 * rho0b[1:4] * 2 wvb[1:]+= uu_ud * a0a1 * rho0a[1:4] # beta = beta-beta * beta wvb[0] += d_d * rho1b[0] wvb[0] += d_dd * b0b1 wvb[1:]+= dd * rho1b[1:4] * 2 wvb[1:]+= d_dd * rho1b[0] * rho0b[1:4] * 2 wvb[1:]+= d_ud * rho1b[0] * rho0a[1:4] wvb[1:]+= dd_dd * b0b1 * rho0b[1:4] * 2 wvb[1:]+= ud_dd * b0b1 * rho0a[1:4] wvb *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1b.dtype == numpy.double wvb[0] *= .5 return wva, wvb def _uks_gga_wv2(rho0, rho1, fxc, kxc, weight): u_u, u_d, d_d = fxc[0].T u_uu, u_ud, u_dd, d_uu, d_ud, d_dd = fxc[1].T uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd = fxc[2].T u_u_u, u_u_d, u_d_d, d_d_d = kxc[0].T u_u_uu, u_u_ud, u_u_dd, u_d_uu, u_d_ud, u_d_dd, d_d_uu, \ d_d_ud, d_d_dd = kxc[1].T u_uu_uu, u_uu_ud, u_uu_dd, u_ud_ud, u_ud_dd, u_dd_dd, d_uu_uu, d_uu_ud, \ d_uu_dd, d_ud_ud, d_ud_dd, d_dd_dd = kxc[2].T uu_uu_uu, uu_uu_ud, uu_uu_dd, uu_ud_ud, uu_ud_dd, uu_dd_dd, ud_ud_ud, \ ud_ud_dd, ud_dd_dd, dd_dd_dd = kxc[3].T ngrid = u_u.size rho0a, rho0b = rho0 rho1a, rho1b = rho1 a0a1 = numpy.einsum('xi,xi->i', rho0a[1:4], rho1a[1:4]) * 2 a0b1 = numpy.einsum('xi,xi->i', rho0a[1:4], rho1b[1:4]) b0a1 = numpy.einsum('xi,xi->i', rho0b[1:4], rho1a[1:4]) b0b1 = numpy.einsum('xi,xi->i', rho0b[1:4], rho1b[1:4]) * 2 a1a1 = numpy.einsum('xi,xi->i', rho1a[1:4], rho1a[1:4]) * 2 a1b1 = numpy.einsum('xi,xi->i', rho1a[1:4], rho1b[1:4]) * 2 b1b1 = numpy.einsum('xi,xi->i', rho1b[1:4], rho1b[1:4]) * 2 rara = rho1a[0] * rho1a[0] rarb = rho1a[0] * rho1b[0] rbrb = rho1b[0] * rho1b[0] ab_1 = a0b1 + b0a1 wva, wvb = numpy.zeros((2, 4, ngrid)) wva[0] += u_u_u * rho1a[0] * rho1a[0] wva[0] += u_u_d * rho1a[0] * rho1b[0] * 2 wva[0] += u_d_d * rho1b[0] * rho1b[0] wva[0] += u_uu * a1a1 wva[0] += u_ud * a1b1 wva[0] += u_dd * b1b1 wva[1:4] += u_uu * rho1a[0] * rho1a[1:4] * 4 wva[1:4] += u_ud * rho1a[0] * rho1b[1:4] * 2 wva[1:4] += d_uu * rho1b[0] * rho1a[1:4] * 4 wva[1:4] += d_ud * rho1b[0] * rho1b[1:4] * 2 wva[1:4] += uu_uu * a1a1 * rho0a[1:4] * 2 wva[1:4] += uu_uu * a0a1 * rho1a[1:4] * 4 wva[1:4] += uu_ud * ab_1 * rho1a[1:4] * 4 wva[1:4] += uu_ud * a1b1 * rho0a[1:4] * 2 wva[1:4] += uu_ud * a1a1 * rho0b[1:4] wva[1:4] += uu_ud * a0a1 * rho1b[1:4] * 2 wva[1:4] += uu_dd * b1b1 * rho0a[1:4] * 2 wva[1:4] += uu_dd * b0b1 * rho1a[1:4] * 4 wva[1:4] += ud_ud * ab_1 * rho1b[1:4] * 2 wva[1:4] += ud_ud * a1b1 * rho0b[1:4] wva[1:4] += ud_dd * b1b1 * rho0b[1:4] wva[1:4] += ud_dd * b0b1 * rho1b[1:4] * 2 wva[0] += u_u_uu * rho1a[0] * a0a1 * 2 wva[0] += u_d_uu * rho1b[0] * a0a1 * 2 wva[0] += u_u_ud * rho1a[0] * ab_1 * 2 wva[0] += u_d_ud * rho1b[0] * ab_1 * 2 wva[0] += u_u_dd * rho1a[0] * b0b1 * 2 wva[0] += u_d_dd * rho1b[0] * b0b1 * 2 wva[1:4] += u_u_uu * rara * rho0a[1:4] * 2 wva[1:4] += u_u_ud * rara * rho0b[1:4] wva[1:4] += u_d_uu * rarb * rho0a[1:4] * 4 wva[1:4] += u_d_ud * rarb * rho0b[1:4] * 2 wva[1:4] += d_d_uu * rbrb * rho0a[1:4] * 2 wva[1:4] += d_d_ud * rbrb * rho0b[1:4] wva[1:4] += u_uu_uu * rho1a[0] * a0a1 * rho0a[1:4] * 4 wva[1:4] += d_uu_uu * rho1b[0] * a0a1 * rho0a[1:4] * 4 wva[1:4] += u_uu_ud * rho1a[0] * ab_1 * rho0a[1:4] * 4 wva[1:4] += u_uu_ud * rho1a[0] * a0a1 * rho0b[1:4] * 2 wva[1:4] += u_uu_dd * rho1a[0] * b0b1 * rho0a[1:4] * 4 wva[1:4] += d_uu_dd * rho1b[0] * b0b1 * rho0a[1:4] * 4 wva[1:4] += d_uu_ud * rho1b[0] * ab_1 * rho0a[1:4] * 4 wva[1:4] += d_uu_ud * rho1b[0] * a0a1 * rho0b[1:4] * 2 wva[1:4] += u_ud_ud * rho1a[0] * ab_1 * rho0b[1:4] * 2 wva[1:4] += d_ud_ud * rho1b[0] * ab_1 * rho0b[1:4] * 2 wva[1:4] += u_ud_dd * rho1a[0] * b0b1 * rho0b[1:4] * 2 wva[1:4] += d_ud_dd * rho1b[0] * b0b1 * rho0b[1:4] * 2 wva[0] += u_uu_uu * a0a1 * a0a1 wva[0] += u_uu_ud * a0a1 * ab_1 * 2 wva[0] += u_uu_dd * a0a1 * b0b1 * 2 wva[0] += u_ud_ud * ab_1**2 wva[0] += u_ud_dd * ab_1 * b0b1 * 2 wva[0] += u_dd_dd * b0b1 * b0b1 wva[1:4] += uu_uu_uu * a0a1 * a0a1 * rho0a[1:4] * 2 wva[1:4] += uu_uu_ud * a0a1 * ab_1 * rho0a[1:4] * 4 wva[1:4] += uu_uu_ud * a0a1 * a0a1 * rho0b[1:4] wva[1:4] += uu_uu_dd * a0a1 * b0b1 * rho0a[1:4] * 4 wva[1:4] += uu_ud_ud * ab_1**2 * rho0a[1:4] * 2 wva[1:4] += uu_ud_ud * a0a1 * ab_1 * rho0b[1:4] * 2 wva[1:4] += uu_ud_dd * ab_1 * b0b1 * rho0a[1:4] * 4 wva[1:4] += uu_ud_dd * a0a1 * b0b1 * rho0b[1:4] * 2 wva[1:4] += uu_dd_dd * b0b1 * b0b1 * rho0a[1:4] * 2 wva[1:4] += ud_ud_ud * ab_1**2 * rho0b[1:4] wva[1:4] += ud_ud_dd * ab_1 * b0b1 * rho0b[1:4] * 2 wva[1:4] += ud_dd_dd * b0b1 * b0b1 * rho0b[1:4] wva *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1a.dtype == numpy.double wva[0]*=.5 wvb[0] += d_d_d * rho1b[0] * rho1b[0] wvb[0] += u_d_d * rho1b[0] * rho1a[0] * 2 wvb[0] += u_u_d * rho1a[0] * rho1a[0] wvb[0] += d_dd * b1b1 wvb[0] += d_ud * a1b1 wvb[0] += d_uu * a1a1 wvb[1:4] += u_ud * rho1a[0] * rho1a[1:4] * 2 wvb[1:4] += u_dd * rho1a[0] * rho1b[1:4] * 4 wvb[1:4] += d_ud * rho1b[0] * rho1a[1:4] * 2 wvb[1:4] += d_dd * rho1b[0] * rho1b[1:4] * 4 wvb[1:4] += dd_dd * b0b1 * rho1b[1:4] * 4 wvb[1:4] += ud_dd * b0b1 * rho1a[1:4] * 2 wvb[1:4] += ud_dd * ab_1 * rho1b[1:4] * 4 wvb[1:4] += ud_ud * ab_1 * rho1a[1:4] * 2 wvb[1:4] += uu_dd * a0a1 * rho1b[1:4] * 4 wvb[1:4] += uu_ud * a0a1 * rho1a[1:4] * 2 wvb[1:4] += dd_dd * b1b1 * rho0b[1:4] * 2 wvb[1:4] += ud_dd * a1b1 * rho0b[1:4] * 2 wvb[1:4] += uu_dd * a1a1 * rho0b[1:4] * 2 wvb[1:4] += ud_dd * b1b1 * rho0a[1:4] wvb[1:4] += ud_ud * a1b1 * rho0a[1:4] wvb[1:4] += uu_ud * a1a1 * rho0a[1:4] wvb[0] += d_d_dd * rho1b[0] * b0b1 * 2 wvb[0] += u_d_dd * rho1a[0] * b0b1 * 2 wvb[0] += d_d_ud * rho1b[0] * ab_1 * 2 wvb[0] += u_d_ud * rho1a[0] * ab_1 * 2 wvb[0] += d_d_uu * rho1b[0] * a0a1 * 2 wvb[0] += u_d_uu * rho1a[0] * a0a1 * 2 wvb[1:4] += u_u_ud * rara * rho0a[1:4] wvb[1:4] += u_u_dd * rara * rho0b[1:4] * 2 wvb[1:4] += u_d_ud * rarb * rho0a[1:4] * 2 wvb[1:4] += u_d_dd * rarb * rho0b[1:4] * 4 wvb[1:4] += d_d_ud * rbrb * rho0a[1:4] wvb[1:4] += d_d_dd * rbrb * rho0b[1:4] * 2 wvb[1:4] += d_dd_dd * rho1b[0] * b0b1 * rho0b[1:4] * 4 wvb[1:4] += u_dd_dd * rho1a[0] * b0b1 * rho0b[1:4] * 4 wvb[1:4] += d_ud_dd * rho1b[0] * ab_1 * rho0b[1:4] * 4 wvb[1:4] += u_ud_dd * rho1a[0] * ab_1 * rho0b[1:4] * 4 wvb[1:4] += d_uu_dd * rho1b[0] * a0a1 * rho0b[1:4] * 4 wvb[1:4] += u_uu_dd * rho1a[0] * a0a1 * rho0b[1:4] * 4 wvb[1:4] += d_ud_dd * rho1b[0] * b0b1 * rho0a[1:4] * 2 wvb[1:4] += u_ud_dd * rho1a[0] * b0b1 * rho0a[1:4] * 2 wvb[1:4] += d_ud_ud * rho1b[0] * ab_1 * rho0a[1:4] * 2 wvb[1:4] += u_ud_ud * rho1a[0] * ab_1 * rho0a[1:4] * 2 wvb[1:4] += d_uu_ud * rho1b[0] * a0a1 * rho0a[1:4] * 2 wvb[1:4] += u_uu_ud * rho1a[0] * a0a1 * rho0a[1:4] * 2 wvb[0] += d_dd_dd * b0b1 * b0b1 wvb[0] += d_ud_dd * ab_1 * b0b1 * 2 wvb[0] += d_ud_ud * ab_1**2 wvb[0] += d_uu_dd * b0b1 * a0a1 * 2 wvb[0] += d_uu_ud * ab_1 * a0a1 * 2 wvb[0] += d_uu_uu * a0a1 * a0a1 wvb[1:4] += uu_uu_ud * a0a1 * a0a1 * rho0a[1:4] wvb[1:4] += uu_uu_dd * a0a1 * a0a1 * rho0b[1:4] * 2 wvb[1:4] += uu_ud_ud * ab_1 * a0a1 * rho0a[1:4] * 2 wvb[1:4] += uu_ud_dd * b0b1 * a0a1 * rho0a[1:4] * 2 wvb[1:4] += uu_ud_dd * ab_1 * a0a1 * rho0b[1:4] * 4 wvb[1:4] += uu_dd_dd * b0b1 * a0a1 * rho0b[1:4] * 4 wvb[1:4] += ud_ud_ud * ab_1**2 * rho0a[1:4] wvb[1:4] += ud_ud_dd * ab_1 * b0b1 * rho0a[1:4] * 2 wvb[1:4] += ud_ud_dd * ab_1**2 * rho0b[1:4] * 2 wvb[1:4] += ud_dd_dd * b0b1 * b0b1 * rho0a[1:4] wvb[1:4] += ud_dd_dd * ab_1 * b0b1 * rho0b[1:4] * 4 wvb[1:4] += dd_dd_dd * b0b1 * b0b1 * rho0b[1:4] * 2 wvb *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1b.dtype == numpy.double wvb[0]*=.5 return wva, wvb def _uks_mgga_wv0(rho, vxc, weight): rhoa, rhob = rho vrho, vsigma, vlapl, vtau = vxc ngrid = vrho.shape[0] wva, wvb = numpy.zeros((2,6,ngrid)) wva[0] = vrho[:,0] * .5 # v+v.T should be applied in the caller wva[1:4] = rhoa[1:4] * vsigma[:,0] * 2 # sigma_uu wva[1:4]+= rhob[1:4] * vsigma[:,1] # sigma_ud wva[5] = vtau[:,0] * .25 wva *= weight wvb[0] = vrho[:,1] * .5 # v+v.T should be applied in the caller wvb[1:4] = rhob[1:4] * vsigma[:,2] * 2 # sigma_dd wvb[1:4]+= rhoa[1:4] * vsigma[:,1] # sigma_ud wvb[5] = vtau[:,1] * .25 wvb *= weight return wva, wvb def _uks_mgga_wv1(rho0, rho1, vxc, fxc, weight): uu, ud, dd = vxc[1].T u_u, u_d, d_d = fxc[0].T u_uu, u_ud, u_dd, d_uu, d_ud, d_dd = fxc[1].T uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd = fxc[2].T ftt = fxc[4].T frt = fxc[6].T fgt = fxc[9].T ngrids = uu.size rho0a, rho0b = rho0 rho1a, rho1b = rho1 a0a1 = numpy.einsum('xi,xi->i', rho0a[1:4], rho1a[1:4]) * 2 a0b1 = numpy.einsum('xi,xi->i', rho0a[1:4], rho1b[1:4]) b0a1 = numpy.einsum('xi,xi->i', rho0b[1:4], rho1a[1:4]) b0b1 = numpy.einsum('xi,xi->i', rho0b[1:4], rho1b[1:4]) * 2 ab_1 = a0b1 + b0a1 wva, wvb = numpy.zeros((2, 6, ngrids)) # alpha = alpha-alpha * alpha wva[0] += u_u * rho1a[0] wva[0] += u_uu * a0a1 wva[0] += u_ud * ab_1 wva[0] += frt[0] * rho1a[5] wva[1:4]+= uu * rho1a[1:4] * 2 wva[1:4]+= u_uu * rho1a[0] * rho0a[1:4] * 2 wva[1:4]+= u_ud * rho1a[0] * rho0b[1:4] wva[1:4]+= uu_uu * a0a1 * rho0a[1:4] * 2 wva[1:4]+= uu_ud * ab_1 * rho0a[1:4] * 2 wva[1:4]+= uu_ud * a0a1 * rho0b[1:4] wva[1:4]+= ud_ud * ab_1 * rho0b[1:4] wva[1:4]+= fgt[0] * rho1a[5] * rho0a[1:4] * 2 wva[1:4]+= fgt[2] * rho1a[5] * rho0b[1:4] wva[5] += ftt[0] * rho1a[5] * .5 wva[5] += frt[0] * rho1a[0] * .5 wva[5] += fgt[0] * a0a1 * .5 wva[5] += fgt[2] * ab_1 * .5 # alpha = alpha-beta * beta wva[0] += u_d * rho1b[0] wva[0] += u_dd * b0b1 wva[0] += frt[1] * rho1b[5] wva[1:4]+= ud * rho1b[1:4] wva[1:4]+= d_uu * rho1b[0] * rho0a[1:4] * 2 wva[1:4]+= d_ud * rho1b[0] * rho0b[1:4] wva[1:4]+= uu_dd * b0b1 * rho0a[1:4] * 2 wva[1:4]+= ud_dd * b0b1 * rho0b[1:4] # uu_d * rho1b[5] * rho0a[1:4] wva[1:4]+= fgt[1] * rho1b[5] * rho0a[1:4] * 2 wva[1:4]+= fgt[3] * rho1b[5] * rho0b[1:4] wva[5] += ftt[1] * rho1b[5] * .5 wva[5] += frt[2] * rho1b[0] * .5 wva[5] += fgt[4] * b0b1 * .5 wva *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1a.dtype == numpy.double wva[0] *= .5 wva[5] *= .5 # beta = beta-alpha * alpha wvb[0] += u_d * rho1a[0] wvb[0] += d_ud * ab_1 wvb[0] += d_uu * a0a1 wvb[0] += frt[2] * rho1a[5] wvb[1:4]+= ud * rho1a[1:4] wvb[1:4]+= u_dd * rho1a[0] * rho0b[1:4] * 2 wvb[1:4]+= u_ud * rho1a[0] * rho0a[1:4] wvb[1:4]+= ud_dd * ab_1 * rho0b[1:4] * 2 wvb[1:4]+= ud_ud * ab_1 * rho0a[1:4] wvb[1:4]+= uu_dd * a0a1 * rho0b[1:4] * 2 wvb[1:4]+= uu_ud * a0a1 * rho0a[1:4] # dd_u * rho1a[5] * rho0b[1:4] wvb[1:4]+= fgt[4] * rho1a[5] * rho0b[1:4] * 2 wvb[1:4]+= fgt[2] * rho1a[5] * rho0a[1:4] wvb[5] += ftt[1] * rho1a[5] * .5 wvb[5] += frt[1] * rho1a[0] * .5 wvb[5] += fgt[3] * ab_1 * .5 wvb[5] += fgt[1] * a0a1 * .5 # beta = beta-beta * beta wvb[0] += d_d * rho1b[0] wvb[0] += d_dd * b0b1 wvb[0] += frt[3] * rho1b[5] wvb[1:4]+= dd * rho1b[1:4] * 2 wvb[1:4]+= d_dd * rho1b[0] * rho0b[1:4] * 2 wvb[1:4]+= d_ud * rho1b[0] * rho0a[1:4] wvb[1:4]+= dd_dd * b0b1 * rho0b[1:4] * 2 wvb[1:4]+= ud_dd * b0b1 * rho0a[1:4] wvb[1:4]+= fgt[5] * rho1b[5] * rho0b[1:4] * 2 wvb[1:4]+= fgt[3] * rho1b[5] * rho0a[1:4] wvb[5] += ftt[2] * rho1b[5] * .5 wvb[5] += frt[3] * rho1b[0] * .5 wvb[5] += fgt[5] * b0b1 * .5 wvb *= weight # Apply v+v.T in the caller, only if all quantities are real assert rho1b.dtype == numpy.double wvb[0] *= .5 wvb[5] *= .5 return wva, wvb def _uks_mgga_wv2(rho0, rho1, fxc, kxc, weight): u_u, u_d, d_d = fxc[0].T u_uu, u_ud, u_dd, d_uu, d_ud, d_dd = fxc[1].T uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd = fxc[2].T u_u_u, u_u_d, u_d_d, d_d_d = kxc[0].T u_u_uu, u_u_ud, u_u_dd, u_d_uu, u_d_ud, u_d_dd, d_d_uu, \ d_d_ud, d_d_dd = kxc[1].T u_uu_uu, u_uu_ud, u_uu_dd, u_ud_ud, u_ud_dd, u_dd_dd, d_uu_uu, d_uu_ud, \ d_uu_dd, d_ud_ud, d_ud_dd, d_dd_dd = kxc[2].T uu_uu_uu, uu_uu_ud, uu_uu_dd, uu_ud_ud, uu_ud_dd, uu_dd_dd, ud_ud_ud, \ ud_ud_dd, ud_dd_dd, dd_dd_dd = kxc[3].T fgt = fxc[9].T frrt = kxc[5].T frgt = kxc[7].T frtt = kxc[10].T fggt = kxc[12].T fgtt = kxc[15].T fttt = kxc[19].T ngrid = u_u.size rho0a, rho0b = rho0 rho1a, rho1b = rho1 a0a1 = numpy.einsum('xi,xi->i', rho0a[1:4], rho1a[1:4]) * 2 a0b1 = numpy.einsum('xi,xi->i', rho0a[1:4], rho1b[1:4]) b0a1 = numpy.einsum('xi,xi->i', rho0b[1:4], rho1a[1:4]) b0b1 = numpy.einsum('xi,xi->i', rho0b[1:4], rho1b[1:4]) * 2 a1a1 = numpy.einsum('xi,xi->i', rho1a[1:4], rho1a[1:4]) * 2 a1b1 = numpy.einsum('xi,xi->i', rho1a[1:4], rho1b[1:4]) * 2 b1b1 = numpy.einsum('xi,xi->i', rho1b[1:4], rho1b[1:4]) * 2 ab_1 = a0b1 + b0a1 rara = rho1a[0] * rho1a[0] rarb = rho1a[0] * rho1b[0] rbrb = rho1b[0] * rho1b[0] rata = rho1a[0] * rho1a[5] ratb = rho1a[0] * rho1b[5] rbta = rho1b[0] * rho1a[5] rbtb = rho1b[0] * rho1b[5] tata = rho1a[5] * rho1a[5] tatb = rho1a[5] * rho1b[5] tbtb = rho1b[5] * rho1b[5] wva, wvb = numpy.zeros((2, 6, ngrid)) wva[0] += u_u_u * rara wva[0] += u_u_d * rarb * 2 wva[0] += u_d_d * rbrb wva[0] += u_uu * a1a1 wva[0] += u_ud * a1b1 wva[0] += u_dd * b1b1 wva[0] += u_u_uu * rho1a[0] * a0a1 * 2 wva[0] += u_u_ud * rho1a[0] * ab_1 * 2 wva[0] += u_u_dd * rho1a[0] * b0b1 * 2 wva[0] += u_d_uu * rho1b[0] * a0a1 * 2 wva[0] += u_d_ud * rho1b[0] * ab_1 * 2 wva[0] += u_d_dd * rho1b[0] * b0b1 * 2 wva[0] += u_uu_uu * a0a1 * a0a1 wva[0] += u_uu_ud * a0a1 * ab_1 * 2 wva[0] += u_uu_dd * a0a1 * b0b1 * 2 wva[0] += u_ud_ud * ab_1**2 wva[0] += u_ud_dd * b0b1 * ab_1 * 2 wva[0] += u_dd_dd * b0b1 * b0b1 wva[0] += frgt[0] * rho1a[5] * a0a1 * 2 # u_uu_u wva[0] += frgt[1] * rho1b[5] * a0a1 * 2 # u_uu_d wva[0] += frgt[2] * rho1a[5] * ab_1 * 2 # u_ud_u wva[0] += frgt[3] * rho1b[5] * ab_1 * 2 # u_ud_d wva[0] += frgt[4] * rho1a[5] * b0b1 * 2 # u_dd_u wva[0] += frgt[5] * rho1b[5] * b0b1 * 2 # u_dd_d wva[0] += frrt[0] * rata * 2 # u_u_u wva[0] += frrt[1] * ratb * 2 # u_u_d wva[0] += frrt[2] * rbta * 2 # u_d_u wva[0] += frrt[3] * rbtb * 2 # u_d_d wva[0] += frtt[0] * tata # u_u_u wva[0] += frtt[1] * tatb * 2 # u_u_d wva[0] += frtt[2] * tbtb # u_d_d wva[1:4] += u_uu * rho1a[0] * rho1a[1:4] * 4 wva[1:4] += u_ud * rho1a[0] * rho1b[1:4] * 2 wva[1:4] += d_uu * rho1b[0] * rho1a[1:4] * 4 wva[1:4] += d_ud * rho1b[0] * rho1b[1:4] * 2 wva[1:4] += uu_uu * a1a1 * rho0a[1:4] * 2 wva[1:4] += uu_uu * a0a1 * rho1a[1:4] * 4 wva[1:4] += uu_ud * ab_1 * rho1a[1:4] * 4 wva[1:4] += uu_ud * a1b1 * rho0a[1:4] * 2 wva[1:4] += uu_ud * a1a1 * rho0b[1:4] wva[1:4] += uu_ud * a0a1 * rho1b[1:4] * 2 wva[1:4] += uu_dd * b1b1 * rho0a[1:4] * 2 wva[1:4] += uu_dd * b0b1 * rho1a[1:4] * 4 wva[1:4] += ud_ud * ab_1 * rho1b[1:4] * 2 wva[1:4] += ud_ud * a1b1 * rho0b[1:4] wva[1:4] += ud_dd * b1b1 * rho0b[1:4] wva[1:4] += ud_dd * b0b1 * rho1b[1:4] * 2 wva[1:4] += u_u_uu * rara * rho0a[1:4] * 2 wva[1:4] += u_u_ud * rara * rho0b[1:4] wva[1:4] += u_d_uu * rarb * rho0a[1:4] * 4 wva[1:4] += u_d_ud * rarb * rho0b[1:4] * 2 wva[1:4] += d_d_uu * rbrb * rho0a[1:4] * 2 wva[1:4] += d_d_ud * rbrb * rho0b[1:4] wva[1:4] += u_uu_uu * rho1a[0] * a0a1 * rho0a[1:4] * 4 wva[1:4] += u_uu_ud * rho1a[0] * ab_1 * rho0a[1:4] * 4 wva[1:4] += u_uu_ud * rho1a[0] * a0a1 * rho0b[1:4] * 2 wva[1:4] += u_uu_dd * rho1a[0] * b0b1 * rho0a[1:4] * 4 wva[1:4] += u_ud_ud * rho1a[0] * ab_1 * rho0b[1:4] * 2 wva[1:4] += u_ud_dd * rho1a[0] * b0b1 * rho0b[1:4] * 2 wva[1:4] += d_uu_uu * rho1b[0] * a0a1 * rho0a[1:4] * 4 wva[1:4] += d_uu_ud * rho1b[0] * ab_1 * rho0a[1:4] * 4 wva[1:4] += d_uu_ud * rho1b[0] * a0a1 * rho0b[1:4] * 2 wva[1:4] += d_uu_dd * rho1b[0] * b0b1 * rho0a[1:4] * 4 wva[1:4] += d_ud_ud * rho1b[0] * ab_1 * rho0b[1:4] * 2 wva[1:4] += d_ud_dd * rho1b[0] * b0b1 * rho0b[1:4] * 2 wva[1:4] += uu_uu_uu * a0a1 * a0a1 * rho0a[1:4] * 2 wva[1:4] += uu_uu_ud * a0a1 * ab_1 * rho0a[1:4] * 4 wva[1:4] += uu_uu_ud * a0a1 * a0a1 * rho0b[1:4] wva[1:4] += uu_uu_dd * a0a1 * b0b1 * rho0a[1:4] * 4 wva[1:4] += uu_ud_ud * ab_1**2 * rho0a[1:4] * 2 wva[1:4] += uu_ud_ud * a0a1 * ab_1 * rho0b[1:4] * 2 wva[1:4] += uu_ud_dd * ab_1 * b0b1 * rho0a[1:4] * 4 wva[1:4] += uu_ud_dd * a0a1 * b0b1 * rho0b[1:4] * 2 wva[1:4] += uu_dd_dd * b0b1 * b0b1 * rho0a[1:4] * 2 wva[1:4] += ud_ud_ud * ab_1**2 * rho0b[1:4] wva[1:4] += ud_ud_dd * ab_1 * b0b1 * rho0b[1:4] * 2 wva[1:4] += ud_dd_dd * b0b1 * b0b1 * rho0b[1:4] wva[1:4] += frgt[0] * rata * rho0a[1:4] * 4 # u_uu_u wva[1:4] += frgt[1] * ratb * rho0a[1:4] * 4 # u_uu_d wva[1:4] += frgt[2] * rata * rho0b[1:4] * 2 # u_ud_u wva[1:4] += frgt[3] * ratb * rho0b[1:4] * 2 # u_ud_d wva[1:4] += frgt[6] * rbta * rho0a[1:4] * 4 # d_uu_u wva[1:4] += frgt[7] * rbtb * rho0a[1:4] * 4 # d_uu_d wva[1:4] += frgt[8] * rbta * rho0b[1:4] * 2 # d_ud_u wva[1:4] += frgt[9] * rbtb * rho0b[1:4] * 2 # d_ud_d wva[1:4] += fgt[0] * rho1a[5] * rho1a[1:4] * 4 # uu_u wva[1:4] += fgt[1] * rho1b[5] * rho1a[1:4] * 4 # uu_d wva[1:4] += fgt[2] * rho1a[5] * rho1b[1:4] * 2 # ud_u wva[1:4] += fgt[3] * rho1b[5] * rho1b[1:4] * 2 # ud_d wva[1:4] += fggt[0] * rho1a[5] * a0a1 * rho0a[1:4] * 4 # uu_uu_u wva[1:4] += fggt[1] * rho1b[5] * a0a1 * rho0a[1:4] * 4 # uu_uu_d wva[1:4] += fggt[2] * rho1a[5] * a0a1 * rho0b[1:4] * 2 # uu_ud_u wva[1:4] += fggt[2] * rho1a[5] * ab_1 * rho0a[1:4] * 4 # uu_ud_u wva[1:4] += fggt[3] * rho1b[5] * a0a1 * rho0b[1:4] * 2 # uu_ud_d wva[1:4] += fggt[3] * rho1b[5] * ab_1 * rho0a[1:4] * 4 # uu_ud_d wva[1:4] += fggt[4] * rho1a[5] * b0b1 * rho0a[1:4] * 4 # uu_dd_u wva[1:4] += fggt[5] * rho1b[5] * b0b1 * rho0a[1:4] * 4 # uu_dd_d wva[1:4] += fggt[6] * rho1a[5] * ab_1 * rho0b[1:4] * 2 # ud_ud_u wva[1:4] += fggt[7] * rho1b[5] * ab_1 * rho0b[1:4] * 2 # ud_ud_d wva[1:4] += fggt[8] * rho1a[5] * b0b1 * rho0b[1:4] * 2 # ud_dd_u wva[1:4] += fggt[9] * rho1b[5] * b0b1 * rho0b[1:4] * 2 # ud_dd_d wva[1:4] += fgtt[0] * tata * rho0a[1:4] * 2 # uu_u_u wva[1:4] += fgtt[1] * tatb * rho0a[1:4] * 4 # uu_u_d wva[1:4] += fgtt[2] * tbtb * rho0a[1:4] * 2 # uu_d_d wva[1:4] += fgtt[3] * tata * rho0b[1:4] # ud_u_u wva[1:4] += fgtt[4] * tatb * rho0b[1:4] * 2 # ud_u_d wva[1:4] += fgtt[5] * tbtb * rho0b[1:4] # ud_d_d wva[5] += frgt[0 ] * rho1a[0] * a0a1 # u_uu_u wva[5] += frgt[2 ] * rho1a[0] * ab_1 # u_ud_u wva[5] += frgt[4 ] * rho1a[0] * b0b1 # u_dd_u wva[5] += frgt[6 ] * rho1b[0] * a0a1 # d_uu_u wva[5] += frgt[8 ] * rho1b[0] * ab_1 # d_ud_u wva[5] += frgt[10] * rho1b[0] * b0b1 # d_dd_u wva[5] += fggt[0 ] * a0a1 * a0a1 * .5 # uu_uu_u wva[5] += fggt[2 ] * a0a1 * ab_1 # uu_ud_u wva[5] += fggt[4 ] * a0a1 * b0b1 # uu_dd_u wva[5] += fggt[6 ] * ab_1**2 * .5 # ud_ud_u wva[5] += fggt[8 ] * ab_1 * b0b1 # ud_dd_u wva[5] += fggt[10] * b0b1 * b0b1 * .5 # dd_dd_u wva[5] += fgtt[0] * a0a1 * rho1a[5] # uu_u_u wva[5] += fgtt[1] * a0a1 * rho1b[5] # uu_u_d wva[5] += fgtt[3] * ab_1 * rho1a[5] # ud_u_u wva[5] += fgtt[4] * ab_1 * rho1b[5] # ud_u_d wva[5] += fgtt[6] * b0b1 * rho1a[5] # dd_u_u wva[5] += fgtt[7] * b0b1 * rho1b[5] # dd_u_d wva[5] += fgt[0] * a1a1 * .5 # uu_u wva[5] += fgt[2] * a1b1 * .5 # ud_u wva[5] += fgt[4] * b1b1 * .5 # dd_u wva[5] += frrt[0] * rara * .5 # u_u_u wva[5] += frrt[2] * rarb # u_d_u wva[5] += frrt[4] * rbrb * .5 # d_d_u wva[5] += frtt[0] * rata # u_u_u wva[5] += frtt[1] * ratb # u_u_d wva[5] += frtt[3] * rbta # d_u_u wva[5] += frtt[4] * rbtb # d_u_d wva[5] += fttt[0] * tata * .5 # u_u_u wva[5] += fttt[1] * tatb # u_u_d wva[5] += fttt[2] * tbtb * .5 # u_d_d wva *= weight wva[0] *= .5 wva[5] *= .5 wvb[0] += u_u_d * rara wvb[0] += u_d_d * rarb * 2 wvb[0] += d_d_d * rbrb wvb[0] += d_uu * a1a1 wvb[0] += d_ud * a1b1 wvb[0] += d_dd * b1b1 wvb[0] += u_d_uu * rho1a[0] * a0a1 * 2 wvb[0] += u_d_ud * rho1a[0] * ab_1 * 2 wvb[0] += u_d_dd * rho1a[0] * b0b1 * 2 wvb[0] += d_d_uu * rho1b[0] * a0a1 * 2 wvb[0] += d_d_ud * rho1b[0] * ab_1 * 2 wvb[0] += d_d_dd * rho1b[0] * b0b1 * 2 wvb[0] += d_uu_uu * a0a1 * a0a1 wvb[0] += d_uu_ud * a0a1 * ab_1 * 2 wvb[0] += d_uu_dd * b0b1 * a0a1 * 2 wvb[0] += d_ud_ud * ab_1**2 wvb[0] += d_ud_dd * b0b1 * ab_1 * 2 wvb[0] += d_dd_dd * b0b1 * b0b1 wvb[0] += frgt[6 ] * rho1a[5] * a0a1 * 2 # d_uu_u wvb[0] += frgt[7 ] * rho1b[5] * a0a1 * 2 # d_uu_d wvb[0] += frgt[8 ] * rho1a[5] * ab_1 * 2 # d_ud_u wvb[0] += frgt[9 ] * rho1b[5] * ab_1 * 2 # d_ud_d wvb[0] += frgt[10] * rho1a[5] * b0b1 * 2 # d_dd_u wvb[0] += frgt[11] * rho1b[5] * b0b1 * 2 # d_dd_d wvb[0] += frrt[2] * rata * 2 # u_d_u wvb[0] += frrt[3] * ratb * 2 # u_d_d wvb[0] += frrt[4] * rbta * 2 # d_d_u wvb[0] += frrt[5] * rbtb * 2 # d_d_d wvb[0] += frtt[3] * tata # d_u_u wvb[0] += frtt[4] * tatb * 2 # d_u_d wvb[0] += frtt[5] * tbtb # d_d_d wvb[1:4] += u_ud * rho1a[0] * rho1a[1:4] * 2 wvb[1:4] += u_dd * rho1a[0] * rho1b[1:4] * 4 wvb[1:4] += d_ud * rho1b[0] * rho1a[1:4] * 2 wvb[1:4] += d_dd * rho1b[0] * rho1b[1:4] * 4 wvb[1:4] += uu_ud * a1a1 * rho0a[1:4] wvb[1:4] += uu_ud * a0a1 * rho1a[1:4] * 2 wvb[1:4] += uu_dd * a1a1 * rho0b[1:4] * 2 wvb[1:4] += uu_dd * a0a1 * rho1b[1:4] * 4 wvb[1:4] += ud_ud * a1b1 * rho0a[1:4] wvb[1:4] += ud_ud * ab_1 * rho1a[1:4] * 2 wvb[1:4] += ud_dd * b1b1 * rho0a[1:4] wvb[1:4] += ud_dd * a1b1 * rho0b[1:4] * 2 wvb[1:4] += ud_dd * b0b1 * rho1a[1:4] * 2 wvb[1:4] += ud_dd * ab_1 * rho1b[1:4] * 4 wvb[1:4] += dd_dd * b1b1 * rho0b[1:4] * 2 wvb[1:4] += dd_dd * b0b1 * rho1b[1:4] * 4 wvb[1:4] += u_u_ud * rara * rho0a[1:4] wvb[1:4] += u_u_dd * rara * rho0b[1:4] * 2 wvb[1:4] += u_d_ud * rarb * rho0a[1:4] * 2 wvb[1:4] += u_d_dd * rarb * rho0b[1:4] * 4 wvb[1:4] += d_d_ud * rbrb * rho0a[1:4] wvb[1:4] += d_d_dd * rbrb * rho0b[1:4] * 2 wvb[1:4] += u_uu_ud * rho1a[0] * a0a1 * rho0a[1:4] * 2 wvb[1:4] += u_uu_dd * rho1a[0] * a0a1 * rho0b[1:4] * 4 wvb[1:4] += u_ud_ud * rho1a[0] * ab_1 * rho0a[1:4] * 2 wvb[1:4] += u_ud_dd * rho1a[0] * b0b1 * rho0a[1:4] * 2 wvb[1:4] += u_ud_dd * rho1a[0] * ab_1 * rho0b[1:4] * 4 wvb[1:4] += u_dd_dd * rho1a[0] * b0b1 * rho0b[1:4] * 4 wvb[1:4] += d_uu_ud * rho1b[0] * a0a1 * rho0a[1:4] * 2 wvb[1:4] += d_uu_dd * rho1b[0] * a0a1 * rho0b[1:4] * 4 wvb[1:4] += d_ud_ud * rho1b[0] * ab_1 * rho0a[1:4] * 2 wvb[1:4] += d_ud_dd * rho1b[0] * b0b1 * rho0a[1:4] * 2 wvb[1:4] += d_ud_dd * rho1b[0] * ab_1 * rho0b[1:4] * 4 wvb[1:4] += d_dd_dd * rho1b[0] * b0b1 * rho0b[1:4] * 4 wvb[1:4] += uu_uu_ud * a0a1 * a0a1 * rho0a[1:4] wvb[1:4] += uu_uu_dd * a0a1 * a0a1 * rho0b[1:4] * 2 wvb[1:4] += uu_ud_ud * ab_1 * a0a1 * rho0a[1:4] * 2 wvb[1:4] += uu_ud_dd * b0b1 * a0a1 * rho0a[1:4] * 2 wvb[1:4] += uu_ud_dd * ab_1 * a0a1 * rho0b[1:4] * 4 wvb[1:4] += uu_dd_dd * b0b1 * a0a1 * rho0b[1:4] * 4 wvb[1:4] += ud_ud_ud * ab_1**2 * rho0a[1:4] wvb[1:4] += ud_ud_dd * b0b1 * ab_1 * rho0a[1:4] * 2 wvb[1:4] += ud_ud_dd * ab_1**2 * rho0b[1:4] * 2 wvb[1:4] += ud_dd_dd * b0b1 * b0b1 * rho0a[1:4] wvb[1:4] += ud_dd_dd * b0b1 * ab_1 * rho0b[1:4] * 4 wvb[1:4] += dd_dd_dd * b0b1 * b0b1 * rho0b[1:4] * 2 wvb[1:4] += frgt[2 ] * rata * rho0a[1:4] * 2 # u_ud_u wvb[1:4] += frgt[3 ] * ratb * rho0a[1:4] * 2 # u_ud_d wvb[1:4] += frgt[4 ] * rata * rho0b[1:4] * 4 # u_dd_u wvb[1:4] += frgt[5 ] * ratb * rho0b[1:4] * 4 # u_dd_d wvb[1:4] += frgt[8 ] * rbta * rho0a[1:4] * 2 # d_ud_u wvb[1:4] += frgt[9 ] * rbtb * rho0a[1:4] * 2 # d_ud_d wvb[1:4] += frgt[10] * rbta * rho0b[1:4] * 4 # d_dd_u wvb[1:4] += frgt[11] * rbtb * rho0b[1:4] * 4 # d_dd_d wvb[1:4] += fgt[2] * rho1a[5] * rho1a[1:4] * 2 # ud_u wvb[1:4] += fgt[3] * rho1b[5] * rho1a[1:4] * 2 # ud_d wvb[1:4] += fgt[4] * rho1a[5] * rho1b[1:4] * 4 # dd_u wvb[1:4] += fgt[5] * rho1b[5] * rho1b[1:4] * 4 # dd_d wvb[1:4] += fggt[2 ] * rho1a[5] * a0a1 * rho0a[1:4] * 2 # uu_ud_u wvb[1:4] += fggt[3 ] * rho1b[5] * a0a1 * rho0a[1:4] * 2 # uu_ud_d wvb[1:4] += fggt[4 ] * rho1a[5] * a0a1 * rho0b[1:4] * 4 # uu_dd_u wvb[1:4] += fggt[5 ] * rho1b[5] * a0a1 * rho0b[1:4] * 4 # uu_dd_d wvb[1:4] += fggt[6 ] * rho1a[5] * ab_1 * rho0a[1:4] * 2 # ud_ud_u wvb[1:4] += fggt[7 ] * rho1b[5] * ab_1 * rho0a[1:4] * 2 # ud_ud_d wvb[1:4] += fggt[8 ] * rho1a[5] * ab_1 * rho0b[1:4] * 4 # ud_dd_u wvb[1:4] += fggt[8 ] * rho1a[5] * b0b1 * rho0a[1:4] * 2 # ud_dd_u wvb[1:4] += fggt[9 ] * rho1b[5] * ab_1 * rho0b[1:4] * 4 # ud_dd_d wvb[1:4] += fggt[9 ] * rho1b[5] * b0b1 * rho0a[1:4] * 2 # ud_dd_d wvb[1:4] += fggt[10] * rho1a[5] * b0b1 * rho0b[1:4] * 4 # dd_dd_u wvb[1:4] += fggt[11] * rho1b[5] * b0b1 * rho0b[1:4] * 4 # dd_dd_d wvb[1:4] += fgtt[3] * tata * rho0a[1:4] # ud_u_u wvb[1:4] += fgtt[4] * tatb * rho0a[1:4] * 2 # ud_u_d wvb[1:4] += fgtt[5] * tbtb * rho0a[1:4] # ud_d_d wvb[1:4] += fgtt[6] * tata * rho0b[1:4] * 2 # dd_u_u wvb[1:4] += fgtt[7] * tatb * rho0b[1:4] * 4 # dd_u_d wvb[1:4] += fgtt[8] * tbtb * rho0b[1:4] * 2 # dd_d_d wvb[5] += frgt[1 ] * rho1a[0] * a0a1 # u_uu_d wvb[5] += frgt[3 ] * rho1a[0] * ab_1 # u_ud_d wvb[5] += frgt[5 ] * rho1a[0] * b0b1 # u_dd_d wvb[5] += frgt[7 ] * rho1b[0] * a0a1 # d_uu_d wvb[5] += frgt[9 ] * rho1b[0] * ab_1 # d_ud_d wvb[5] += frgt[11] * rho1b[0] * b0b1 # d_dd_d wvb[5] += fggt[1 ] * a0a1 * a0a1 * .5 # uu_uu_d wvb[5] += fggt[3 ] * ab_1 * a0a1 # uu_ud_d wvb[5] += fggt[5 ] * b0b1 * a0a1 # uu_dd_d wvb[5] += fggt[7 ] * ab_1**2 * .5 # ud_ud_d wvb[5] += fggt[9 ] * b0b1 * ab_1 # ud_dd_d wvb[5] += fggt[11] * b0b1 * b0b1 * .5 # dd_dd_d wvb[5] += fgt[1] * a1a1 * .5 # uu_d wvb[5] += fgt[3] * a1b1 * .5 # ud_d wvb[5] += fgt[5] * b1b1 * .5 # dd_d wvb[5] += fgtt[1] * a0a1 * rho1a[5] # uu_u_d wvb[5] += fgtt[2] * a0a1 * rho1b[5] # uu_d_d wvb[5] += fgtt[4] * ab_1 * rho1a[5] # ud_u_d wvb[5] += fgtt[5] * ab_1 * rho1b[5] # ud_d_d wvb[5] += fgtt[7] * b0b1 * rho1a[5] # dd_u_d wvb[5] += fgtt[8] * b0b1 * rho1b[5] # dd_d_d wvb[5] += frrt[1] * rara * .5 # u_u_d wvb[5] += frrt[3] * rarb # u_d_d wvb[5] += frrt[5] * rbrb * .5 # d_d_d wvb[5] += frtt[1] * rata # u_u_d wvb[5] += frtt[2] * ratb # u_d_d wvb[5] += frtt[4] * rbta # d_u_d wvb[5] += frtt[5] * rbtb # d_d_d wvb[5] += fttt[1] * tata * .5 # u_u_d wvb[5] += fttt[2] * tatb # u_d_d wvb[5] += fttt[3] * tbtb * .5 # d_d_d wvb *= weight wvb[0] *= .5 wvb[5] *= .5 return wva, wvb def _empty_aligned(shape, alignment=8): if alignment <= 1: return numpy.empty(shape) size = numpy.prod(shape) buf = numpy.empty(size + alignment - 1) align8 = alignment * 8 offset = buf.ctypes.data % align8 if offset != 0: offset = (align8 - offset) // 8 return numpy.ndarray(size, buffer=buf[offset:offset+size]).reshape(shape)
[docs] def nr_fxc(mol, grids, xc_code, dm0, dms, spin=0, relativity=0, hermi=0, rho0=None, vxc=None, fxc=None, max_memory=2000, verbose=None): r'''Contract XC kernel matrix with given density matrices ... math:: a_{pq} = f_{pq,rs} * x_{rs} ''' ni = NumInt() return ni.nr_fxc(mol, grids, xc_code, dm0, dms, spin, relativity, hermi, rho0, vxc, fxc, max_memory, verbose)
[docs] def cache_xc_kernel(ni, mol, grids, xc_code, mo_coeff, mo_occ, spin=0, max_memory=2000): '''Compute the 0th order density, Vxc and fxc. They can be used in TDDFT, DFT hessian module etc. ''' xctype = ni._xc_type(xc_code) if xctype == 'GGA': ao_deriv = 1 elif xctype == 'MGGA': ao_deriv = 2 if MGGA_DENSITY_LAPL else 1 else: ao_deriv = 0 with_lapl = MGGA_DENSITY_LAPL if mo_coeff[0].ndim == 1: # RKS nao = mo_coeff.shape[0] rho = [] for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): rho.append(ni.eval_rho2(mol, ao, mo_coeff, mo_occ, mask, xctype, with_lapl)) rho = numpy.hstack(rho) if spin == 1: # RKS with nr_rks_fxc_st rho *= .5 rho = numpy.repeat(rho[numpy.newaxis], 2, axis=0) else: # UKS assert mo_coeff[0].ndim == 2 assert spin == 1 nao = mo_coeff[0].shape[0] rhoa = [] rhob = [] for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): rhoa.append(ni.eval_rho2(mol, ao, mo_coeff[0], mo_occ[0], mask, xctype, with_lapl)) rhob.append(ni.eval_rho2(mol, ao, mo_coeff[1], mo_occ[1], mask, xctype, with_lapl)) rho = (numpy.hstack(rhoa), numpy.hstack(rhob)) vxc, fxc = ni.eval_xc_eff(xc_code, rho, deriv=2, xctype=xctype)[1:3] return rho, vxc, fxc
[docs] def cache_xc_kernel1(ni, mol, grids, xc_code, dm, spin=0, max_memory=2000): '''Compute the 0th order density, Vxc and fxc. They can be used in TDDFT, DFT hessian module etc. Note dm the zeroth order density matrix must be a hermitian matrix. ''' xctype = ni._xc_type(xc_code) if xctype == 'GGA': ao_deriv = 1 elif xctype == 'MGGA': ao_deriv = 2 if MGGA_DENSITY_LAPL else 1 else: ao_deriv = 0 hermi = 1 make_rho, nset, nao = ni._gen_rho_evaluator(mol, dm, hermi, False, grids) if dm[0].ndim == 1: # RKS rho = [] for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory=max_memory): rho.append(make_rho(0, ao, mask, xctype)) rho = numpy.hstack(rho) if spin == 1: # RKS with nr_rks_fxc_st rho *= .5 rho = numpy.repeat(rho[numpy.newaxis], 2, axis=0) else: # UKS assert dm[0].ndim == 2 assert spin == 1 rhoa = [] rhob = [] for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, ao_deriv, max_memory): rhoa.append(make_rho(0, ao, mask, xctype)) rhob.append(make_rho(1, ao, mask, xctype)) rho = (numpy.hstack(rhoa), numpy.hstack(rhob)) vxc, fxc = ni.eval_xc_eff(xc_code, rho, deriv=2, xctype=xctype)[1:3] return rho, vxc, fxc
[docs] def get_rho(ni, mol, dm, grids, max_memory=2000): '''Density in real space ''' make_rho, nset, nao = ni._gen_rho_evaluator(mol, dm, 1, False, grids) assert nset == 1 rho = numpy.empty(grids.weights.size) p1 = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, 0, max_memory=max_memory): p0, p1 = p1, p1 + weight.size rho[p0:p1] = make_rho(0, ao, mask, 'LDA') return rho
[docs] class LibXCMixin: libxc = libxc omega = None # RSH paramter #################### # Overwrite following functions to use custom XC functional
[docs] def hybrid_coeff(self, xc_code, spin=0): return self.libxc.hybrid_coeff(xc_code, spin)
[docs] def nlc_coeff(self, xc_code): return self.libxc.nlc_coeff(xc_code)
[docs] def rsh_coeff(self, xc_code): return self.libxc.rsh_coeff(xc_code)
[docs] @lib.with_doc(libxc.eval_xc.__doc__) def eval_xc(self, xc_code, rho, spin=0, relativity=0, deriv=1, omega=None, verbose=None): if omega is None: omega = self.omega return self.libxc.eval_xc(xc_code, rho, spin, relativity, deriv, omega, verbose)
[docs] def eval_xc_eff(self, xc_code, rho, deriv=1, omega=None, xctype=None, verbose=None): r'''Returns the derivative tensor against the density parameters [density_a, (nabla_x)_a, (nabla_y)_a, (nabla_z)_a, tau_a] or spin-polarized density parameters [[density_a, (nabla_x)_a, (nabla_y)_a, (nabla_z)_a, tau_a], [density_b, (nabla_x)_b, (nabla_y)_b, (nabla_z)_b, tau_b]]. It differs from the eval_xc method in the derivatives of non-local part. The eval_xc method returns the XC functional derivatives to sigma (|\nabla \rho|^2) Args: rho: 2-dimensional or 3-dimensional array Total density or (spin-up, spin-down) densities (and their derivatives if GGA or MGGA functionals) on grids Kwargs: deriv: int derivative orders omega: float define the exponent in the attenuated Coulomb for RSH functional ''' if omega is None: omega = self.omega if xctype is None: xctype = self._xc_type(xc_code) rho = numpy.asarray(rho, order='C', dtype=numpy.double) if xctype == 'MGGA' and rho.shape[-2] == 6: rho = numpy.asarray(rho[...,[0,1,2,3,5],:], order='C') spin_polarized = rho.ndim >= 2 and rho.shape[0] == 2 if spin_polarized: spin = 1 else: spin = 0 out = self.libxc.eval_xc1(xc_code, rho, spin, deriv, omega) evfk = [out[0]] for order in range(1, deriv+1): evfk.append(xc_deriv.transform_xc(rho, out, xctype, spin, order)) if deriv < 3: # The return has at least [e, v, f, k] terms evfk.extend([None] * (3 - deriv)) return evfk
def _xc_type(self, xc_code): return self.libxc.xc_type(xc_code)
[docs] def rsh_and_hybrid_coeff(self, xc_code, spin=0): '''Range-separated parameter and HF exchange components: omega, alpha, beta Exc_RSH = c_SR * SR_HFX + c_LR * LR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec = alpha * HFX + beta * SR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec = alpha * LR_HFX + hyb * SR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec SR_HFX = < pi | (1-erf(-omega r_{12}))/r_{12} | iq > LR_HFX = < pi | erf(-omega r_{12})/r_{12} | iq > alpha = c_LR beta = c_SR - c_LR ''' omega, alpha, beta = self.rsh_coeff(xc_code) if self.omega is not None: omega = self.omega if abs(omega) > 1e-10: hyb = alpha + beta else: hyb = self.hybrid_coeff(xc_code, spin) return omega, alpha, hyb
# Export the symbol _NumIntMixin for backward compatibility. # _NumIntMixin should be dropped in the future. _NumIntMixin = LibXCMixin
[docs] class NumInt(lib.StreamObject, LibXCMixin): '''Numerical integration methods for non-relativistic RKS and UKS''' cutoff = CUTOFF * 1e2 # cutoff for small AO product
[docs] @lib.with_doc(nr_vxc.__doc__) def nr_vxc(self, mol, grids, xc_code, dms, spin=0, relativity=0, hermi=0, max_memory=2000, verbose=None): if spin == 0: return self.nr_rks(mol, grids, xc_code, dms, relativity, hermi, max_memory, verbose) else: return self.nr_uks(mol, grids, xc_code, dms, relativity, hermi, max_memory, verbose)
get_vxc = nr_vxc
[docs] @lib.with_doc(nr_fxc.__doc__) def nr_fxc(self, mol, grids, xc_code, dm0, dms, spin=0, relativity=0, hermi=0, rho0=None, vxc=None, fxc=None, max_memory=2000, verbose=None): if spin == 0: return self.nr_rks_fxc(mol, grids, xc_code, dm0, dms, relativity, hermi, rho0, vxc, fxc, max_memory, verbose) else: return self.nr_uks_fxc(mol, grids, xc_code, dm0, dms, relativity, hermi, rho0, vxc, fxc, max_memory, verbose)
get_fxc = nr_fxc nr_rks = nr_rks nr_uks = nr_uks nr_nlc_vxc = nr_nlc_vxc nr_sap = nr_sap_vxc = nr_sap_vxc nr_rks_fxc = nr_rks_fxc nr_uks_fxc = nr_uks_fxc nr_rks_fxc_st = nr_rks_fxc_st cache_xc_kernel = cache_xc_kernel cache_xc_kernel1 = cache_xc_kernel1 make_mask = staticmethod(make_mask) eval_ao = staticmethod(eval_ao) eval_rho = staticmethod(eval_rho) eval_rho1 = lib.module_method(eval_rho1, absences=['cutoff']) eval_rho2 = staticmethod(eval_rho2) get_rho = get_rho
[docs] def block_loop(self, mol, grids, nao=None, deriv=0, max_memory=2000, non0tab=None, blksize=None, buf=None): '''Define this macro to loop over grids by blocks. ''' if grids.coords is None: grids.build(with_non0tab=True) if nao is None: nao = mol.nao ngrids = grids.coords.shape[0] comp = (deriv+1)*(deriv+2)*(deriv+3)//6 # NOTE to index grids.non0tab, the blksize needs to be an integer # multiplier of BLKSIZE if blksize is None: blksize = int(max_memory*1e6/((comp+1)*nao*8*BLKSIZE)) blksize = max(4, min(blksize, ngrids//BLKSIZE+1, 1200)) * BLKSIZE assert blksize % BLKSIZE == 0 if non0tab is None and mol is grids.mol: non0tab = grids.non0tab if non0tab is None: non0tab = numpy.empty(((ngrids+BLKSIZE-1)//BLKSIZE,mol.nbas), dtype=numpy.uint8) non0tab[:] = NBINS + 1 # Corresponding to AO value ~= 1 screen_index = non0tab # the xxx_sparse() functions require ngrids 8-byte aligned allow_sparse = ngrids % ALIGNMENT_UNIT == 0 and nao > SWITCH_SIZE if buf is None: buf = _empty_aligned(comp * blksize * nao) for ip0, ip1 in lib.prange(0, ngrids, blksize): coords = grids.coords[ip0:ip1] weight = grids.weights[ip0:ip1] mask = screen_index[ip0//BLKSIZE:] # TODO: pass grids.cutoff to eval_ao ao = self.eval_ao(mol, coords, deriv=deriv, non0tab=mask, cutoff=grids.cutoff, out=buf) if not allow_sparse and not _sparse_enough(mask): # Unset mask for dense AO tensor. It determines which eval_rho # to be called in make_rho mask = None yield ao, mask, weight, coords
def _gen_rho_evaluator(self, mol, dms, hermi=0, with_lapl=True, grids=None): if getattr(dms, 'mo_coeff', None) is not None: #TODO: test whether dm.mo_coeff matching dm mo_coeff = dms.mo_coeff mo_occ = dms.mo_occ if isinstance(dms, numpy.ndarray) and dms.ndim == 2: mo_coeff = [mo_coeff] mo_occ = [mo_occ] else: mo_coeff = mo_occ = None if isinstance(dms, numpy.ndarray) and dms.ndim == 2: dms = dms[numpy.newaxis] if hermi != 1 and dms[0].dtype == numpy.double: # (D + D.T)/2 because eval_rho computes 2*(|\nabla i> D_ij <j|) instead of # |\nabla i> D_ij <j| + |i> D_ij <\nabla j| for efficiency when dm is real dms = lib.hermi_sum(numpy.asarray(dms, order='C'), axes=(0,2,1)) * .5 hermi = 1 nao = dms[0].shape[0] ndms = len(dms) if grids is not None: ovlp_cond = mol.get_overlap_cond() if dms[0].dtype == numpy.double: dm_cond = [mol.condense_to_shell(dm, 'absmax') for dm in dms] dm_cond = numpy.max(dm_cond, axis=0) pair_mask = numpy.exp(-ovlp_cond) * dm_cond > self.cutoff else: pair_mask = ovlp_cond < -numpy.log(self.cutoff) pair_mask = numpy.asarray(pair_mask, dtype=numpy.uint8) def make_rho(idm, ao, sindex, xctype): if sindex is not None and grids is not None: return self.eval_rho1(mol, ao, dms[idm], sindex, xctype, hermi, with_lapl, cutoff=self.cutoff, ao_cutoff=grids.cutoff, pair_mask=pair_mask) elif mo_coeff is not None: return self.eval_rho2(mol, ao, mo_coeff[idm], mo_occ[idm], sindex, xctype, with_lapl) else: return self.eval_rho(mol, ao, dms[idm], sindex, xctype, hermi, with_lapl) return make_rho, ndms, nao
[docs] def to_gpu(self): try: from gpu4pyscf.dft import numint # type: ignore return numint.NumInt() except ImportError: raise ImportError('Cannot find GPU4PySCF')
_NumInt = NumInt if __name__ == '__main__': from pyscf import gto from pyscf import dft mol = gto.M(atom=[ ["O" , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)] ], basis='6311g**') mf = dft.RKS(mol) mf.grids.atom_grid = {"H": (30, 194), "O": (30, 194),} mf.grids.prune = None mf.grids.build() dm = mf.get_init_guess(key='minao') numpy.random.seed(1) dm1 = numpy.random.random((dm.shape)) dm1 = lib.hermi_triu(dm1) res = mf._numint.nr_vxc(mol, mf.grids, mf.xc, dm1, spin=0) print(res[1] - -37.084047825971282) res = mf._numint.nr_vxc(mol, mf.grids, mf.xc, (dm1,dm1), spin=1) print(res[1] - -92.436362308687094) res = mf._numint.nr_vxc(mol, mf.grids, mf.xc, dm, spin=0) print(res[1] - -8.6313329288394947) res = mf._numint.nr_vxc(mol, mf.grids, mf.xc, (dm,dm), spin=1) print(res[1] - -21.520301399504582)