Source code for pyscf.dft.xc_deriv
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
'''
Transform XC functional derivatives between different representations
'''
import math
import itertools
from functools import lru_cache
import ctypes
import numpy as np
from pyscf import lib
libdft = lib.load_library('libdft')
[docs]
def transform_vxc(rho, vxc, xctype, spin=0):
r'''
Transform libxc functional derivatives to the derivative tensor of
parameters in rho:
[[density_a, (nabla_x)_a, (nabla_y)_a, (nabla_z)_a, tau_a],
[density_b, (nabla_x)_b, (nabla_y)_b, (nabla_z)_b, tau_b]].
The output tensor has the shape:
* spin polarized
LDA : [2,1,N]
GGA : [2,4,N]
MGGA: [2,5,N]
* spin unpolarized
LDA : [1,N]
GGA : [4,N]
MGGA: [5,N]
'''
rho = np.asarray(rho, order='C')
if xctype == 'GGA':
order = 1
nvar = 4
fr = vxc[0].T
fg = vxc[1].T
elif xctype == 'MGGA':
order = 2
nvar = 5
fr = vxc[0].T
fg = vxc[1].T
ft = vxc[3].T
else: # LDA
order = 0
nvar = 1
fr = vxc[0].T
ngrids = rho.shape[-1]
if spin == 1:
if order == 0:
vp = fr.reshape(2, nvar, ngrids)
else:
vp = np.empty((2,nvar, ngrids))
vp[:,0] = fr
#:vp[:,1:4] = np.einsum('abg,bxg->axg', _stack_fg(fg), rho[:,1:4])
vp[:,1:4] = _stack_fg(fg, rho=rho)
if order > 1:
vp[:,4] = ft
else:
if order == 0:
vp = fr.reshape(nvar, ngrids)
else:
vp = np.empty((nvar, ngrids))
vp[0] = fr
vp[1:4] = 2 * fg * rho[1:4]
if order > 1:
vp[4] = ft
return vp
[docs]
def transform_fxc(rho, vxc, fxc, xctype, spin=0):
r'''
Transform libxc functional derivatives to the derivative tensor of
parameters in rho:
[[density_a, (nabla_x)_a, (nabla_y)_a, (nabla_z)_a, tau_a],
[density_b, (nabla_x)_b, (nabla_y)_b, (nabla_z)_b, tau_b]].
The output tensor has the shape:
* spin polarized
LDA : [2,1,2,1,N]
GGA : [2,4,2,4,N]
MGGA: [2,5,2,5,N]
* spin unpolarized
LDA : [1,1,N]
GGA : [4,4,N]
MGGA: [5,5,N]
'''
rho = np.asarray(rho, order='C')
if xctype == 'GGA':
order = 1
nvar = 4
fg = vxc[1].T
frr = fxc[0].T
frg = fxc[1].T
fgg = fxc[2].T
elif xctype == 'MGGA':
order = 2
nvar = 5
fg = vxc[1].T
frr, frg, fgg, ftt, frt, fgt = [fxc[i].T for i in [0, 1, 2, 4, 6, 9]]
else: # LDA
order = 0
nvar = 1
frr = fxc[0].T
ngrids = rho.shape[-1]
if spin == 1:
if order == 0:
vp = _stack_frr(frr).reshape(2,nvar, 2,nvar, ngrids).transpose(1,3,0,2,4)
else:
vp = np.empty((2,nvar, 2,nvar, ngrids)).transpose(1,3,0,2,4)
vp[0,0] = _stack_frr(frr)
i3 = np.arange(3)
#:qgg = _stack_fgg(fgg)
#:qgg = np.einsum('abcdg,axg->xbcdg', qgg, rho[:,1:4])
#:qgg = np.einsum('xbcdg,cyg->xybdg', qgg, rho[:,1:4])
qgg = _stack_fgg(fgg, rho=rho).transpose(1,3,0,2,4)
qgg[i3,i3] += _stack_fg(fg)
vp[1:4,1:4] = qgg
frg = frg.reshape(2,3,ngrids)
#:qrg = _stack_fg(frg, axis=1)
#:qrg = np.einsum('rabg,axg->xrbg', qrg, rho[:,1:4])
qrg = _stack_fg(frg, axis=1, rho=rho).transpose(2,0,1,3)
vp[0,1:4] = qrg
vp[1:4,0] = qrg.transpose(0,2,1,3)
if order > 1:
fgt = fgt.reshape(3,2,ngrids)
#:qgt = _stack_fg(fgt, axis=0)
#:qgt = np.einsum('abrg,axg->xbrg', qgt, rho[:,1:4])
qgt = _stack_fg(fgt, axis=0, rho=rho).transpose(1,0,2,3)
vp[1:4,4] = qgt
vp[4,1:4] = qgt.transpose(0,2,1,3)
qrt = frt.reshape(2,2,ngrids)
vp[0,4] = qrt
vp[4,0] = qrt.transpose(1,0,2)
vp[4,4] = _stack_frr(ftt)
vp = vp.transpose(2,0,3,1,4)
else:
if order == 0:
vp = frr.reshape(nvar, nvar, ngrids)
else:
vp = np.empty((nvar, nvar, ngrids))
vp[0,0] = frr
i3 = np.arange(3)
qgg = 4 * fgg * rho[1:4] * rho[1:4,None]
qgg[i3,i3] += fg * 2
vp[1:4,1:4] = qgg
vp[0,1:4] = vp[1:4,0] = 2 * frg * rho[1:4]
if order > 1:
vp[4,1:4] = vp[1:4,4] = 2 * fgt * rho[1:4]
vp[0,4] = frt
vp[4,0] = frt
vp[4,4] = ftt
return vp
[docs]
def transform_kxc(rho, fxc, kxc, xctype, spin=0):
r'''
Transform libxc functional derivatives to the derivative tensor of
parameters in rho:
[[density_a, (nabla_x)_a, (nabla_y)_a, (nabla_z)_a, tau_a],
[density_b, (nabla_x)_b, (nabla_y)_b, (nabla_z)_b, tau_b]].
The output tensor has the shape:
* spin polarized
LDA : [2,1,2,1,2,1,N]
GGA : [2,4,2,4,2,4,N]
MGGA: [2,5,2,5,2,5,N]
* spin unpolarized
LDA : [1,1,1,N]
GGA : [4,4,4,N]
MGGA: [5,5,5,N]
'''
rho = np.asarray(rho, order='C')
if xctype == 'GGA':
order = 1
nvar = 4
frg = fxc[1].T
fgg = fxc[2].T
frrr, frrg, frgg, fggg = [x.T for x in kxc[:4]]
elif xctype == 'MGGA':
order = 2
nvar = 5
frg = fxc[1].T
fgg = fxc[2].T
fgt = fxc[9].T
frrr, frrg, frgg, fggg, frrt, frgt, frtt, fggt, fgtt, fttt = \
[kxc[i].T for i in [0, 1, 2, 3, 5, 7, 10, 12, 15, 19]]
else: # LDA
order = 0
nvar = 1
frrr = kxc[0].T
ngrids = rho.shape[-1]
if spin == 1:
if order == 0:
vp = _stack_frrr(frrr).reshape(2,nvar, 2,nvar, 2,nvar, ngrids).transpose(1,3,5,0,2,4,6)
else:
vp = np.empty((2,nvar, 2,nvar, 2,nvar, ngrids)).transpose(1,3,5,0,2,4,6)
vp[0,0,0] = _stack_frrr(frrr)
i3 = np.arange(3)
#:qggg = _stack_fggg(fggg)
#:qggg = np.einsum('abcdefg,axg->xbcdefg', qggg, rho[:,1:4])
#:qggg = np.einsum('xbcdefg,cyg->xybdefg', qggg, rho[:,1:4])
#:qggg = np.einsum('xybdefg,ezg->xyzbdfg', qggg, rho[:,1:4])
qggg = _stack_fggg(fggg, rho=rho).transpose(1,3,5,0,2,4,6)
qgg = _stack_fgg(fgg)
qgg = np.einsum('abcdg,axg->xbcdg', qgg, rho[:,1:4])
for i in range(3):
qggg[:,i,i] += qgg
qggg[i,:,i] += qgg.transpose(0,2,1,3,4)
qggg[i,i,:] += qgg.transpose(0,2,3,1,4)
vp[1:4,1:4,1:4] = qggg
frgg = frgg.reshape(2,6,ngrids)
#:qrgg = _stack_fgg(frgg, axis=1)
#:qrgg = np.einsum('rabcdg,axg->xrbcdg', qrgg, rho[:,1:4])
#:qrgg = np.einsum('xrbcdg,cyg->xyrbdg', qrgg, rho[:,1:4])
qrgg = _stack_fgg(frgg, axis=1, rho=rho).transpose(2,4,0,1,3,5)
qrg = _stack_fg(frg.reshape(2,3,ngrids), axis=1)
qrgg[i3,i3] += qrg
vp[0,1:4,1:4] = qrgg
vp[1:4,0,1:4] = qrgg.transpose(0,1,3,2,4,5)
vp[1:4,1:4,0] = qrgg.transpose(0,1,3,4,2,5)
frrg = frrg.reshape(3,3,ngrids)
qrrg = _stack_frr(frrg, axis=0)
#:qrrg = _stack_fg(qrrg, axis=2)
#:qrrg = np.einsum('rsabg,axg->rsxbg', qrrg, rho[:,1:4])
qrrg = _stack_fg(qrrg, axis=2, rho=rho).transpose(3,0,1,2,4)
vp[0,0,1:4] = qrrg
vp[0,1:4,0] = qrrg.transpose(0,1,3,2,4)
vp[1:4,0,0] = qrrg.transpose(0,3,1,2,4)
if order > 1:
fggt = fggt.reshape(6,2,ngrids)
#:qggt = _stack_fgg(fggt, axis=0)
#:qggt = np.einsum('abcdrg,axg->xbcdrg', qggt, rho[:,1:4])
#:qggt = np.einsum('xbcdrg,cyg->xybdrg', qggt, rho[:,1:4])
qggt = _stack_fgg(fggt, axis=0, rho=rho).transpose(1,3,0,2,4,5)
qgt = _stack_fg(fgt.reshape(3,2,ngrids), axis=0)
i3 = np.arange(3)
qggt[i3,i3] += qgt
vp[1:4,1:4,4] = qggt
vp[1:4,4,1:4] = qggt.transpose(0,1,2,4,3,5)
vp[4,1:4,1:4] = qggt.transpose(0,1,4,2,3,5)
qgtt = _stack_frr(fgtt.reshape(3,3,ngrids), axis=1)
#:qgtt = _stack_fg(qgtt, axis=0)
#:qgtt = np.einsum('abrsg,axg->xbrsg', qgtt, rho[:,1:4])
qgtt = _stack_fg(qgtt, axis=0, rho=rho).transpose(1,0,2,3,4)
vp[1:4,4,4] = qgtt
vp[4,1:4,4] = qgtt.transpose(0,2,1,3,4)
vp[4,4,1:4] = qgtt.transpose(0,2,3,1,4)
frgt = frgt.reshape(2,3,2,ngrids)
#:qrgt = _stack_fg(frgt, axis=1)
#:qrgt = np.einsum('rabsg,axg->xrbsg', qrgt, rho[:,1:4])
qrgt = _stack_fg(frgt, axis=1, rho=rho).transpose(2,0,1,3,4)
vp[0,1:4,4] = qrgt
vp[0,4,1:4] = qrgt.transpose(0,1,3,2,4)
vp[1:4,0,4] = qrgt.transpose(0,2,1,3,4)
vp[4,0,1:4] = qrgt.transpose(0,3,1,2,4)
vp[1:4,4,0] = qrgt.transpose(0,2,3,1,4)
vp[4,1:4,0] = qrgt.transpose(0,3,2,1,4)
qrrt = _stack_frr(frrt.reshape(3,2,ngrids), axis=0)
vp[0,0,4] = qrrt
vp[0,4,0] = qrrt.transpose(0,2,1,3)
vp[4,0,0] = qrrt.transpose(2,0,1,3)
qrtt = _stack_frr(frtt.reshape(2,3,ngrids), axis=1)
vp[0,4,4] = qrtt
vp[4,0,4] = qrtt.transpose(1,0,2,3)
vp[4,4,0] = qrtt.transpose(1,2,0,3)
vp[4,4,4] = _stack_frrr(fttt, axis=0)
vp = vp.transpose(3,0,4,1,5,2,6)
else:
if order == 0:
vp = frrr.reshape(nvar, nvar, nvar, ngrids)
else:
vp = np.empty((nvar, nvar, nvar, ngrids))
vp[0,0,0] = frrr
i3 = np.arange(3)
qggg = 8 * fggg * rho[1:4] * rho[1:4,None] * rho[1:4,None,None]
qgg = 4 * fgg * rho[1:4]
for i in range(3):
qggg[i,i,:] += qgg
qggg[i,:,i] += qgg
qggg[:,i,i] += qgg
vp[1:4,1:4,1:4] = qggg
qrgg = 4 * frgg * rho[1:4] * rho[1:4,None]
qrgg[i3,i3] += frg * 2
vp[0,1:4,1:4] = qrgg
vp[1:4,0,1:4] = qrgg
vp[1:4,1:4,0] = qrgg
qrrg = 2 * frrg * rho[1:4]
vp[0,0,1:4] = qrrg
vp[0,1:4,0] = qrrg
vp[1:4,0,0] = qrrg
if order > 1:
qggt = 4 * fggt * rho[1:4] * rho[1:4,None]
qggt[i3,i3] += fgt * 2
vp[1:4,1:4,4] = qggt
vp[1:4,4,1:4] = qggt
vp[4,1:4,1:4] = qggt
qgtt = 2 * fgtt * rho[1:4]
vp[1:4,4,4] = qgtt
vp[4,1:4,4] = qgtt
vp[4,4,1:4] = qgtt
qrgt = 2 * frgt * rho[1:4]
vp[0,1:4,4] = qrgt
vp[0,4,1:4] = qrgt
vp[1:4,0,4] = qrgt
vp[4,0,1:4] = qrgt
vp[1:4,4,0] = qrgt
vp[4,1:4,0] = qrgt
vp[0,0,4] = frrt
vp[0,4,0] = frrt
vp[4,0,0] = frrt
vp[0,4,4] = frtt
vp[4,0,4] = frtt
vp[4,4,0] = frtt
vp[4,4,4] = fttt
return vp
[docs]
def transform_lxc(rho, fxc, kxc, lxc, xctype, spin=0):
r'''
Transform libxc vxc functional output to the derivative tensor of parameters
in rho: [density, nabla_x, nabla_y, nabla_z, tau]. The output tensor has the
shape:
* spin polarized
LDA : [2,1,2,1,2,1,2,1,N]
GGA : [2,4,2,4,2,4,2,4,N]
MGGA: [2,5,2,5,2,5,2,5,N]
* spin unpolarized
LDA : [1,1,1,1,N]
GGA : [4,4,4,4,N]
MGGA: [5,5,5,5,N]
'''
raise NotImplementedError
def _stack_fg(fg, axis=0, rho=None, out=None):
'''fg [uu, ud, dd] -> [[uu*2, ud], [du, dd*2]]'''
if rho is None:
qg = _stack_frr(fg, axis)
if axis == 0:
qg[0,0] *= 2
qg[1,1] *= 2
elif axis == 1:
qg[:,0,0] *= 2
qg[:,1,1] *= 2
elif axis == 2:
qg[:,:,0,0] *= 2
qg[:,:,1,1] *= 2
else:
raise NotImplementedError
return qg
else:
rho = np.asarray(rho, order='C')
fg = np.asarray(fg, order='C')
if fg.shape[axis] != 3:
fg = fg.reshape(fg.shape[:axis] + (3, -1) + fg.shape[axis+1:])
nvar, ngrids = rho.shape[1:]
ncounts = int(np.prod(fg.shape[:axis]))
mcounts = int(np.prod(fg.shape[axis+1:-1]))
qg = np.empty(fg.shape[:axis] + (2, 3) + fg.shape[axis+1:])
rho = libdft.VXCfg_to_direct_deriv(
qg.ctypes.data_as(ctypes.c_void_p),
fg.ctypes.data_as(ctypes.c_void_p),
rho.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(ncounts), ctypes.c_int(nvar), ctypes.c_int(mcounts),
ctypes.c_int(ngrids))
return qg
def _stack_frr(frr, axis=0):
'''frr [u_u, u_d, d_d] -> [[u_u, u_d], [d_u, d_d]]'''
if frr.shape[axis] != 3:
frr = frr.reshape(frr.shape[:axis] + (3, -1) + frr.shape[axis+1:])
slices = [slice(None)] * frr.ndim
slices[axis] = [[0,1],[1,2]]
return frr[tuple(slices)]
def _stack_fgg(fgg, axis=0, rho=None):
'''
fgg [uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd] ->
[[uu_uu, ud_ud, ud_dd],
[ud_uu, ud_ud, ud_dd],
[dd_uu, dd_ud, dd_dd]] -> tensor with shape [2,2, 2,2, ...]
'''
if fgg.shape[axis] != 6:
fgg = fgg.reshape(fgg.shape[:axis] + (6, -1) + fgg.shape[axis+1:])
slices = [slice(None)] * fgg.ndim
slices[axis] = [[0, 1, 2], [1, 3, 4], [2, 4, 5]]
fgg = fgg[tuple(slices)]
return _stack_fg(_stack_fg(fgg, axis=axis+1, rho=rho), axis=axis, rho=rho)
def _stack_frrr(frrr, axis=0):
'''
frrr [u_u_u, u_u_d, u_d_d, d_d_d]
-> tensor with shape [2, 2, 2, ...]
'''
if frrr.shape[axis] != 4:
frrr = frrr.reshape(frrr.shape[:axis] + (4, -1) + frrr.shape[axis+1:])
slices = [slice(None)] * frrr.ndim
slices[axis] = [[[0, 1], [1, 2]],
[[1, 2], [2, 3]]]
return frrr[tuple(slices)]
def _stack_fggg(fggg, axis=0, rho=None):
'''
fggg [uu_uu_uu, uu_uu_ud, uu_uu_dd, uu_ud_ud, uu_ud_dd, uu_dd_dd, ud_ud_ud, ud_ud_dd, ud_dd_dd, dd_dd_dd]
-> tensor with shape [2,2, 2,2, 2,2, ...]
'''
if fggg.shape[axis] != 10:
fggg = fggg.reshape(fggg.shape[:axis] + (10, 2) + fggg.shape[axis+1:])
slices = [slice(None)] * fggg.ndim
slices[axis] = [[[0, 1, 2], [1, 3, 4], [2, 4, 5]],
[[1, 3, 4], [3, 6, 7], [4, 7, 8]],
[[2, 4, 5], [4, 7, 8], [5, 8, 9]]]
fggg = fggg[tuple(slices)]
fggg = _stack_fg(fggg, axis=axis+2, rho=rho)
fggg = _stack_fg(fggg, axis=axis+1, rho=rho)
return _stack_fg(fggg, axis=axis, rho=rho)
@lru_cache(100)
def _product_uniq_indices(nvars, order):
'''
Indexing the symmetry unique elements in cartensian product
'''
# n = 0
# for i range(nvars):
# for j in range(i, nvars):
# for k in range(k, nvars):
# ...
# prod[(i,j,k,...)] = n
# n += 1
prod = np.ones([nvars] * order, dtype=int)
uniq_idx = list(itertools.combinations_with_replacement(range(nvars), order))
prod[tuple(np.array(uniq_idx).T)] = np.arange(len(uniq_idx))
idx = np.where(prod)
sidx = np.sort(idx, axis=0)
prod[idx] = prod[tuple(sidx)]
return prod
def _pair_combinations(lst):
n = len(lst)
if n <= 2:
return [[tuple(lst)]]
a = lst[0]
results = []
for i in range(1, n):
pair = (a, lst[i])
rests = _pair_combinations(lst[1:i]+lst[i+1:])
for rest in rests:
rest.append(pair)
results.extend(rests)
return results
def _unfold_gga(rho, xc_val, spin, order, nvar, xlen, reserve=0):
assert nvar >= 4
ngrids = rho.shape[-1]
n_transform = order - reserve
if spin == 0:
nvar2 = nvar
drv = libdft.VXCunfold_sigma_spin0
else:
nvar2 = nvar * 2
drv = libdft.VXCunfold_sigma_spin1
# xc_val[idx] expands unique xc elements to n-order tensors
idx = _product_uniq_indices(xlen, order)
xc_tensor = np.empty((xlen**reserve * nvar2**n_transform, ngrids))
xc_tensor[:idx.size] = xc_val[idx.ravel()]
buf = np.empty_like(xc_tensor)
for i in range(n_transform):
xc_tensor, buf = buf, xc_tensor
ncounts = xlen**(order-1-i) * nvar2**i
drv(xc_tensor.ctypes, buf.ctypes, rho.ctypes,
ctypes.c_int(ncounts), ctypes.c_int(nvar), ctypes.c_int(ngrids))
if spin == 0:
xc_tensor = xc_tensor.reshape([xlen]*reserve + [nvar]*n_transform + [ngrids])
else:
xc_tensor = xc_tensor.reshape([xlen]*reserve + [2,nvar]*n_transform + [ngrids])
return xc_tensor
def _diagonal_indices(idx, order):
assert order > 0
n = len(idx)
diag_idx = [np.asarray(idx)]
for i in range(1, order):
last_dim = diag_idx[-1]
diag_idx = [np.repeat(idx, n) for x in diag_idx]
diag_idx.append(np.tile(last_dim, n))
# repeat(diag_idx, 2)
return tuple(x for x in diag_idx for i in range(2))
_XC_NVAR = {
('HF', 0): (1, 1),
('HF', 1): (1, 2),
('LDA', 0): (1, 1),
('LDA', 1): (1, 2),
('GGA', 0): (4, 2),
('GGA', 1): (4, 5),
('MGGA', 0): (5, 3),
('MGGA', 1): (5, 7),
}
[docs]
def transform_xc(rho, xc_val, xctype, spin, order):
'''General transformation to construct XC derivative tensor'''
xc_val = np.asarray(xc_val, order='C')
if order == 0:
return xc_val[0]
nvar, xlen = _XC_NVAR[xctype, spin]
ngrids = xc_val.shape[-1]
offsets = [0] + [count_combinations(xlen, o) for o in range(order+1)]
p0, p1 = offsets[order:order+2]
if xctype == 'LDA' or xctype == 'HF':
xc_out = xc_val[p0:p1]
if spin == 0:
return xc_out.reshape([1]*order + [ngrids])
else:
idx = _product_uniq_indices(xlen, order)
return xc_out[idx].reshape([2,1]*order + [ngrids])
rho = np.asarray(rho, order='C')
assert rho.size == (spin+1) * nvar * ngrids
xc_tensor = _unfold_gga(rho, xc_val[p0:p1], spin, order, nvar, xlen)
nabla_idx = np.arange(1, 4)
if spin == 0:
for n_pairs in range(1, order//2+1):
p0, p1 = offsets[order-n_pairs:order-n_pairs+2]
xc_sub = _unfold_gga(rho, xc_val[p0:p1], spin, order-n_pairs,
nvar, xlen, n_pairs)
# Just the sigma components
xc_sub = xc_sub[(1,)*n_pairs] * 2**n_pairs
# low_sigmas indicates the index for the extra sigma terms
low_sigmas = itertools.combinations(range(order), n_pairs*2)
pair_combs = [list(itertools.chain(*p[::-1]))
for p in _pair_combinations(list(range(n_pairs*2)))]
diag_idx = _diagonal_indices(nabla_idx, n_pairs)
for dim_lst in low_sigmas:
rest_dims = [i for i in range(xc_tensor.ndim) if i not in dim_lst]
for pair_comb in pair_combs:
xc_tensor_1 = xc_tensor.transpose(
[dim_lst[i] for i in pair_comb] + rest_dims)
xc_tensor_1[diag_idx] += xc_sub
else:
i3to2x2 = _product_uniq_indices(2, 2)
for n_pairs in range(1, order//2+1):
p0, p1 = offsets[order-n_pairs:order-n_pairs+2]
xc_sub = _unfold_gga(rho, xc_val[p0:p1], spin, order-n_pairs,
nvar, xlen, n_pairs)
# Just the sigma components
xc_sub = xc_sub[(slice(2,5),) * n_pairs]
for i in range(n_pairs):
xc_sub[(slice(None),)*i+(0,)] *= 2
xc_sub[(slice(None),)*i+(2,)] *= 2
sigma_idx = (i3to2x2[(slice(None),)*2 + (np.newaxis,)*(i*2)]
for i in reversed(range(n_pairs)))
xc_sub = xc_sub[tuple(sigma_idx)]
low_sigmas = itertools.combinations(range(order), n_pairs*2)
pair_combs = [list(itertools.chain(*p[::-1]))
for p in _pair_combinations(list(range(n_pairs*2)))]
diag_idx = _diagonal_indices(nabla_idx, n_pairs)
for dim_lst in low_sigmas:
dim_lst2 = np.array(dim_lst)*2 + np.array([1, 0])[:,None]
rest_dims = [i for i in range(xc_tensor.ndim) if i not in dim_lst2]
for pair_comb in pair_combs:
leading_dims = list(dim_lst2[:,pair_comb].ravel())
xc_tensor_1 = xc_tensor.transpose(leading_dims + rest_dims)
xc_tensor_1[diag_idx] += xc_sub
return xc_tensor
[docs]
def count_combinations(nvar, order):
'''sum(len(combinations_with_replacement(range(nvar), o) for o in range(order))'''
return lib.comb(nvar+order, order)
[docs]
def ud2ts(v_ud):
'''XC derivatives spin-up/spin-down representations to
total-density/spin-density representations'''
v_ud = np.asarray(v_ud, order='C')
v_ts = np.empty_like(v_ud)
nvar, ngrids = v_ts.shape[-2:]
nvar2 = nvar * 2
order = v_ud.ndim // 2
drv = libdft.VXCud2ts
v_ts, v_ud = v_ud, v_ts
for i in range(order):
v_ts, v_ud = v_ud, v_ts
n = nvar2**i
nvg = nvar * nvar2**(order-1-i) * ngrids
#:c = np.array([[.5, .5], # vrho = (va + vb) / 2
#: [.5, -.5]]) # vs = (va - vb) / 2
#:v_ts = np.einsum('ra,...ax...g->...rx...g', c, v_ud)
drv(v_ts.ctypes, v_ud.ctypes, ctypes.c_int(n), ctypes.c_int(nvg))
return v_ts
[docs]
def ts2ud(v_ts):
'''XC derivatives total-density/spin-density representations to
spin-up/spin-down representations'''
v_ts = np.asarray(v_ts, order='C')
v_ud = np.empty_like(v_ts)
nvar, ngrids = v_ts.shape[-2:]
nvar2 = nvar * 2
order = v_ud.ndim // 2
drv = libdft.VXCts2ud
v_ts, v_ud = v_ud, v_ts
for i in range(order):
v_ts, v_ud = v_ud, v_ts
n = nvar2**i
nvg = nvar * nvar2**(order-1-i) * ngrids
#:c = np.array([[1, 1], # va = vrho + vs
#: [1, -1]]) # vb = vrho - vs
#:v_ud = np.einsum('ra,...ax...g->...rx...g', c, v_ts)
drv(v_ud.ctypes, v_ts.ctypes, ctypes.c_int(n), ctypes.c_int(nvg))
return v_ud