#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Yang Gao <younggao1994@gmail.com>
#
'''
Analytical electron-phonon matrix for unrestricted hartree fock
'''
import numpy as np
from pyscf import lib
from pyscf.eph import rhf as rhf_eph
from pyscf.hessian import uhf as uhf_hess
from pyscf.hessian import rhf as rhf_hess
from pyscf.scf._response_functions import _gen_uhf_response
from pyscf.data.nist import MP_ME
CUTOFF_FREQUENCY = rhf_eph.CUTOFF_FREQUENCY
KEEP_IMAG_FREQUENCY = rhf_eph.KEEP_IMAG_FREQUENCY
[docs]
def uhf_deriv_generator(mf, mo_coeff, mo_occ):
nao, nmoa = mo_coeff[0].shape
nmob = mo_coeff[1].shape[1]
mocca = mo_coeff[0][:,mo_occ[0]>0]
moccb = mo_coeff[1][:,mo_occ[1]>0]
nocca = mocca.shape[1]
noccb = moccb.shape[1]
vresp = _gen_uhf_response(mf, mo_coeff, mo_occ, hermi=1)
def fx(mo1):
mo1 = mo1.reshape(-1,nmoa*nocca+nmob*noccb)
nset = len(mo1)
dm1 = np.empty((2,nset,nao,nao))
for i, x in enumerate(mo1):
xa = x[:nmoa*nocca].reshape(nmoa,nocca)
xb = x[nmoa*nocca:].reshape(nmob,noccb)
dma = np.dot(xa, mocca.T)
dmb = np.dot(xb, moccb.T)
dm1[0,i] = dma + dma.T
dm1[1,i] = dmb + dmb.T
v1 = vresp(dm1)
return v1
return fx
[docs]
def get_eph(ephobj, mo1, omega, vec, mo_rep):
if isinstance(mo1, str):
mo1 = lib.chkfile.load(mo1, 'scf_mo1')
mo1a = mo1['0']
mo1b = mo1['1']
mo1a = {int(k): mo1a[k] for k in mo1a}
mo1b = {int(k): mo1b[k] for k in mo1b}
mol = ephobj.mol
mf = ephobj.base
vnuc_deriv = ephobj.vnuc_generator(mol)
aoslices = mol.aoslice_by_atom()
mo_coeff, mo_occ = mf.mo_coeff, mf.mo_occ
vind = uhf_deriv_generator(mf, mf.mo_coeff, mf.mo_occ)
nao, nmo = mo_coeff[0].shape
mocca = mo_coeff[0][:,mo_occ[0]>0]
moccb = mo_coeff[1][:,mo_occ[1]>0]
dm0a = np.dot(mocca, mocca.T)
dm0b = np.dot(moccb, moccb.T)
natoms = mol.natm
vcorea = []
vcoreb = []
for ia in range(natoms):
h1 = vnuc_deriv(ia)
moia = np.hstack((mo1a[ia], mo1b[ia]))
v1 = vind(moia)
shl0, shl1, p0, p1 = aoslices[ia]
shls_slice = (shl0, shl1) + (0, mol.nbas)*3
vja, vjb, vka, vkb= rhf_hess._get_jk(mol, 'int2e_ip1', 3, 's2kl',
['ji->s2kl', -dm0a[:,p0:p1], # vja
'ji->s2kl', -dm0b[:,p0:p1], # vjb
'li->s1kj', -dm0a[:,p0:p1], # vka
'li->s1kj', -dm0b[:,p0:p1]], # vkb
shls_slice=shls_slice)
vhfa = vja + vjb - vka
vhfb = vjb + vjb - vkb
vtota = h1 + v1[0] + vhfa + vhfa.transpose(0,2,1)
vtotb = h1 + v1[1] + vhfb + vhfb.transpose(0,2,1)
vcorea.append(vtota)
vcoreb.append(vtotb)
vcorea = np.asarray(vcorea).reshape(-1,nao,nao)
vcoreb = np.asarray(vcoreb).reshape(-1,nao,nao)
mass = mol.atom_mass_list() * MP_ME
vec = rhf_eph._freq_mass_weighted_vec(vec, omega, mass)
mata = np.einsum('xJ,xuv->Juv', vec, vcorea)
matb = np.einsum('xJ,xuv->Juv', vec, vcoreb)
if mo_rep:
mata = np.einsum('Juv,up,vq->Jpq', mata, mf.mo_coeff[0].conj(), mf.mo_coeff[0], optimize=True)
matb = np.einsum('Juv,up,vq->Jpq', matb, mf.mo_coeff[1].conj(), mf.mo_coeff[1], optimize=True)
return np.asarray([mata,matb])
[docs]
class EPH(uhf_hess.Hessian):
'''EPH for unrestricted Hartree Fock
Attributes:
cutoff_frequency : float or int
cutoff frequency in cm-1. Default is 80
keep_imag_frequency : bool
Whether to keep imaginary frequencies in the output. Default is False
Saved results
omega : numpy.ndarray
Vibrational frequencies in au.
vec : numpy.ndarray
Polarization vectors of the vibration modes
eph : numpy.ndarray
Electron phonon matrix eph[spin,j,a,b] (j in nmodes, a,b in norbs)
'''
def __init__(self, scf_method, cutoff_frequency=CUTOFF_FREQUENCY,
keep_imag_frequency=KEEP_IMAG_FREQUENCY):
uhf_hess.Hessian.__init__(self, scf_method)
self.cutoff_frequency = cutoff_frequency
self.keep_imag_frequency = keep_imag_frequency
get_mode = rhf_eph.get_mode
get_eph = get_eph
vnuc_generator = rhf_eph.vnuc_generator
kernel = rhf_eph.kernel
if __name__ == '__main__':
from pyscf import gto, scf
mol = gto.M()
mol.atom = [['O', [0.000000000000, -0.000000000775, 0.923671924285]],
['H', [-0.000000000000, -1.432564848017, 2.125164039823]],
['H', [0.000000000000, 1.432564848792, 2.125164035930]]]
mol.unit = 'Bohr'
mol.basis = 'sto3g'
mol.verbose=4
mol.build() # this is a pre-computed relaxed geometry
mf = scf.UHF(mol)
mf.conv_tol = 1e-16
mf.conv_tol_grad = 1e-10
mf.max_cycle=100
mf.kernel()
myeph = EPH(mf)
grad = mf.nuc_grad_method().kernel()
print("Force on the atoms/au:")
print(grad)
ephmat, omega = myeph.kernel()
print(np.linalg.norm(ephmat[0]-ephmat[1]))
from pyscf.eph.rhf import EPH as REPH
mf1 = scf.RHF(mol)
mf1.verbose=0
mf1.conv_tol = 1e-16
mf1.conv_tol_grad = 1e-10
mf1.max_cycle=100
mf1.kernel()
myeph1 = REPH(mf1)
rmat, omega = myeph1.kernel()
for i in range(len(rmat)):
print(min(np.linalg.norm(ephmat[0,i]-rmat[i]), np.linalg.norm(ephmat[0,i]+rmat[i])))