Source code for pyscf.eph.uhf

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Yang Gao <younggao1994@gmail.com>

#
'''
Analytical electron-phonon matrix for unrestricted hartree fock
'''
import numpy as np
from pyscf import lib
from pyscf.eph import rhf as rhf_eph
from pyscf.hessian import uhf as uhf_hess
from pyscf.hessian import rhf as rhf_hess
from pyscf.scf._response_functions import _gen_uhf_response
from pyscf.data.nist import MP_ME

CUTOFF_FREQUENCY = rhf_eph.CUTOFF_FREQUENCY
KEEP_IMAG_FREQUENCY = rhf_eph.KEEP_IMAG_FREQUENCY

[docs] def uhf_deriv_generator(mf, mo_coeff, mo_occ): nao, nmoa = mo_coeff[0].shape nmob = mo_coeff[1].shape[1] mocca = mo_coeff[0][:,mo_occ[0]>0] moccb = mo_coeff[1][:,mo_occ[1]>0] nocca = mocca.shape[1] noccb = moccb.shape[1] vresp = _gen_uhf_response(mf, mo_coeff, mo_occ, hermi=1) def fx(mo1): mo1 = mo1.reshape(-1,nmoa*nocca+nmob*noccb) nset = len(mo1) dm1 = np.empty((2,nset,nao,nao)) for i, x in enumerate(mo1): xa = x[:nmoa*nocca].reshape(nmoa,nocca) xb = x[nmoa*nocca:].reshape(nmob,noccb) dma = np.dot(xa, mocca.T) dmb = np.dot(xb, moccb.T) dm1[0,i] = dma + dma.T dm1[1,i] = dmb + dmb.T v1 = vresp(dm1) return v1 return fx
[docs] def get_eph(ephobj, mo1, omega, vec, mo_rep): if isinstance(mo1, str): mo1 = lib.chkfile.load(mo1, 'scf_mo1') mo1a = mo1['0'] mo1b = mo1['1'] mo1a = {int(k): mo1a[k] for k in mo1a} mo1b = {int(k): mo1b[k] for k in mo1b} mol = ephobj.mol mf = ephobj.base vnuc_deriv = ephobj.vnuc_generator(mol) aoslices = mol.aoslice_by_atom() mo_coeff, mo_occ = mf.mo_coeff, mf.mo_occ vind = uhf_deriv_generator(mf, mf.mo_coeff, mf.mo_occ) nao, nmo = mo_coeff[0].shape mocca = mo_coeff[0][:,mo_occ[0]>0] moccb = mo_coeff[1][:,mo_occ[1]>0] dm0a = np.dot(mocca, mocca.T) dm0b = np.dot(moccb, moccb.T) natoms = mol.natm vcorea = [] vcoreb = [] for ia in range(natoms): h1 = vnuc_deriv(ia) moia = np.hstack((mo1a[ia], mo1b[ia])) v1 = vind(moia) shl0, shl1, p0, p1 = aoslices[ia] shls_slice = (shl0, shl1) + (0, mol.nbas)*3 vja, vjb, vka, vkb= rhf_hess._get_jk(mol, 'int2e_ip1', 3, 's2kl', ['ji->s2kl', -dm0a[:,p0:p1], # vja 'ji->s2kl', -dm0b[:,p0:p1], # vjb 'li->s1kj', -dm0a[:,p0:p1], # vka 'li->s1kj', -dm0b[:,p0:p1]], # vkb shls_slice=shls_slice) vhfa = vja + vjb - vka vhfb = vjb + vjb - vkb vtota = h1 + v1[0] + vhfa + vhfa.transpose(0,2,1) vtotb = h1 + v1[1] + vhfb + vhfb.transpose(0,2,1) vcorea.append(vtota) vcoreb.append(vtotb) vcorea = np.asarray(vcorea).reshape(-1,nao,nao) vcoreb = np.asarray(vcoreb).reshape(-1,nao,nao) mass = mol.atom_mass_list() * MP_ME vec = rhf_eph._freq_mass_weighted_vec(vec, omega, mass) mata = np.einsum('xJ,xuv->Juv', vec, vcorea) matb = np.einsum('xJ,xuv->Juv', vec, vcoreb) if mo_rep: mata = np.einsum('Juv,up,vq->Jpq', mata, mf.mo_coeff[0].conj(), mf.mo_coeff[0], optimize=True) matb = np.einsum('Juv,up,vq->Jpq', matb, mf.mo_coeff[1].conj(), mf.mo_coeff[1], optimize=True) return np.asarray([mata,matb])
[docs] class EPH(uhf_hess.Hessian): '''EPH for unrestricted Hartree Fock Attributes: cutoff_frequency : float or int cutoff frequency in cm-1. Default is 80 keep_imag_frequency : bool Whether to keep imaginary frequencies in the output. Default is False Saved results omega : numpy.ndarray Vibrational frequencies in au. vec : numpy.ndarray Polarization vectors of the vibration modes eph : numpy.ndarray Electron phonon matrix eph[spin,j,a,b] (j in nmodes, a,b in norbs) ''' def __init__(self, scf_method, cutoff_frequency=CUTOFF_FREQUENCY, keep_imag_frequency=KEEP_IMAG_FREQUENCY): uhf_hess.Hessian.__init__(self, scf_method) self.cutoff_frequency = cutoff_frequency self.keep_imag_frequency = keep_imag_frequency get_mode = rhf_eph.get_mode get_eph = get_eph vnuc_generator = rhf_eph.vnuc_generator kernel = rhf_eph.kernel
if __name__ == '__main__': from pyscf import gto, scf mol = gto.M() mol.atom = [['O', [0.000000000000, -0.000000000775, 0.923671924285]], ['H', [-0.000000000000, -1.432564848017, 2.125164039823]], ['H', [0.000000000000, 1.432564848792, 2.125164035930]]] mol.unit = 'Bohr' mol.basis = 'sto3g' mol.verbose=4 mol.build() # this is a pre-computed relaxed geometry mf = scf.UHF(mol) mf.conv_tol = 1e-16 mf.conv_tol_grad = 1e-10 mf.max_cycle=100 mf.kernel() myeph = EPH(mf) grad = mf.nuc_grad_method().kernel() print("Force on the atoms/au:") print(grad) ephmat, omega = myeph.kernel() print(np.linalg.norm(ephmat[0]-ephmat[1])) from pyscf.eph.rhf import EPH as REPH mf1 = scf.RHF(mol) mf1.verbose=0 mf1.conv_tol = 1e-16 mf1.conv_tol_grad = 1e-10 mf1.max_cycle=100 mf1.kernel() myeph1 = REPH(mf1) rmat, omega = myeph1.kernel() for i in range(len(rmat)): print(min(np.linalg.norm(ephmat[0,i]-rmat[i]), np.linalg.norm(ephmat[0,i]+rmat[i])))