Source code for pyscf.eph.uks

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Yang Gao <younggao1994@gmail.com>

#
'''
Analytical electron-phonon matrix for unrestricted kohn sham
'''
import time
import numpy as np
from pyscf import lib
from pyscf.hessian import uks as uks_hess
from pyscf.hessian import rks as rks_hess
from pyscf.hessian import rhf as rhf_hess
from pyscf.grad import rks as rks_grad
from pyscf.dft import numint
from pyscf.eph import rhf as rhf_eph
from pyscf.eph.uhf import uhf_deriv_generator
from pyscf.data.nist import MP_ME

CUTOFF_FREQUENCY = rhf_eph.CUTOFF_FREQUENCY
KEEP_IMAG_FREQUENCY = rhf_eph.KEEP_IMAG_FREQUENCY

def _get_vxc_deriv1(hessobj, mo_coeff, mo_occ, max_memory):
    mol = hessobj.mol
    mf = hessobj.base
    if hessobj.grids is not None:
        grids = hessobj.grids
    else:
        grids = mf.grids
    if grids.coords is None:
        grids.build(with_non0tab=True)

    nao, nmo = mo_coeff[0].shape
    ni = mf._numint
    xctype = ni._xc_type(mf.xc)
    aoslices = mol.aoslice_by_atom()
    shls_slice = (0, mol.nbas)
    ao_loc = mol.ao_loc_nr()
    dm0a, dm0b = mf.make_rdm1(mo_coeff, mo_occ)

    vmata = np.zeros((mol.natm,3,nao,nao))
    vmatb = np.zeros((mol.natm,3,nao,nao))
    max_memory = max(2000, max_memory-(vmata.size+vmatb.size)*8/1e6)
    if xctype == 'LDA':
        ao_deriv = 1
        for ao, mask, weight, coords \
                in ni.block_loop(mol, grids, nao, ao_deriv, max_memory):
            rhoa = ni.eval_rho2(mol, ao[0], mo_coeff[0], mo_occ[0], mask, xctype)
            rhob = ni.eval_rho2(mol, ao[0], mo_coeff[1], mo_occ[1], mask, xctype)
            vxc, fxc = ni.eval_xc(mf.xc, (rhoa,rhob), 1, deriv=2)[1:3]
            u_u, u_d, d_d = fxc[0].T

            ao_dm0a = numint._dot_ao_dm(mol, ao[0], dm0a, mask, shls_slice, ao_loc)
            ao_dm0b = numint._dot_ao_dm(mol, ao[0], dm0b, mask, shls_slice, ao_loc)
            for ia in range(mol.natm):
                p0, p1 = aoslices[ia][2:]
                # First order density = rho1 * 2.  *2 is not applied because + c.c. in the end
                rho1a = np.einsum('xpi,pi->xp', ao[1:,:,p0:p1], ao_dm0a[:,p0:p1])
                rho1b = np.einsum('xpi,pi->xp', ao[1:,:,p0:p1], ao_dm0b[:,p0:p1])

                wv = u_u * rho1a + u_d * rho1b
                wv *= weight
                aow = np.einsum('pi,xp->xpi', ao[0], wv)
                rks_grad._d1_dot_(vmata[ia], mol, aow, ao[0], mask, ao_loc, True)

                wv = u_d * rho1a + d_d * rho1b
                wv *= weight
                aow = np.einsum('pi,xp->xpi', ao[0], wv)
                rks_grad._d1_dot_(vmatb[ia], mol, aow, ao[0], mask, ao_loc, True)
            ao_dm0a = ao_dm0b = aow = None

        for ia in range(mol.natm):
            vmata[ia] = -vmata[ia] - vmata[ia].transpose(0,2,1)
            vmatb[ia] = -vmatb[ia] - vmatb[ia].transpose(0,2,1)

    elif xctype == 'GGA':
        ao_deriv = 2
        for ao, mask, weight, coords \
                in ni.block_loop(mol, grids, nao, ao_deriv, max_memory):
            rhoa = ni.eval_rho2(mol, ao[:4], mo_coeff[0], mo_occ[0], mask, xctype)
            rhob = ni.eval_rho2(mol, ao[:4], mo_coeff[1], mo_occ[1], mask, xctype)
            vxc, fxc = ni.eval_xc(mf.xc, (rhoa,rhob), 1, deriv=2)[1:3]

            wva, wvb = numint._uks_gga_wv0((rhoa,rhob), vxc, weight)

            ao_dm0a = [numint._dot_ao_dm(mol, ao[i], dm0a, mask, shls_slice, ao_loc)
                       for i in range(4)]
            ao_dm0b = [numint._dot_ao_dm(mol, ao[i], dm0b, mask, shls_slice, ao_loc)
                       for i in range(4)]
            for ia in range(mol.natm):
                wva = dR_rho1a = rks_hess._make_dR_rho1(ao, ao_dm0a, ia, aoslices, xctype)
                wvb = dR_rho1b = rks_hess._make_dR_rho1(ao, ao_dm0b, ia, aoslices, xctype)
                wva[0], wvb[0] = numint._uks_gga_wv1((rhoa,rhob), (dR_rho1a[0],dR_rho1b[0]), vxc, fxc, weight)
                wva[1], wvb[1] = numint._uks_gga_wv1((rhoa,rhob), (dR_rho1a[1],dR_rho1b[1]), vxc, fxc, weight)
                wva[2], wvb[2] = numint._uks_gga_wv1((rhoa,rhob), (dR_rho1a[2],dR_rho1b[2]), vxc, fxc, weight)

                aow = np.einsum('npi,Xnp->Xpi', ao[:4], wva)
                rks_grad._d1_dot_(vmata[ia], mol, aow, ao[0], mask, ao_loc, True)
                aow = np.einsum('npi,Xnp->Xpi', ao[:4], wvb)
                rks_grad._d1_dot_(vmatb[ia], mol, aow, ao[0], mask, ao_loc, True)
            ao_dm0a = ao_dm0b = aow = None

        for ia in range(mol.natm):
            vmata[ia] = -vmata[ia] - vmata[ia].transpose(0,2,1)
            vmatb[ia] = -vmatb[ia] - vmatb[ia].transpose(0,2,1)

    elif xctype == 'MGGA':
        raise NotImplementedError('meta-GGA')

    return vmata, vmatb

[docs] def get_eph(ephobj, mo1, omega, vec, mo_rep): if isinstance(mo1, str): mo1 = lib.chkfile.load(mo1, 'scf_mo1') mo1a = mo1['0'] mo1b = mo1['1'] mo1a = {int(k): mo1a[k] for k in mo1a} mo1b = {int(k): mo1b[k] for k in mo1b} mol = ephobj.mol mf = ephobj.base ni = mf._numint ni.libxc.test_deriv_order(mf.xc, 2, raise_error=True) omg, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin) hybrid = ni.libxc.is_hybrid_xc(mf.xc) vnuc_deriv = ephobj.vnuc_generator(mol) aoslices = mol.aoslice_by_atom() mo_coeff, mo_occ = mf.mo_coeff, mf.mo_occ vind = uhf_deriv_generator(mf, mf.mo_coeff, mf.mo_occ) mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.9-mem_now) vxc1aoa, vxc1aob = _get_vxc_deriv1(ephobj, mf.mo_coeff, mf.mo_occ, max_memory) nao, nmo = mo_coeff[0].shape mocca = mo_coeff[0][:,mo_occ[0]>0] moccb = mo_coeff[1][:,mo_occ[1]>0] dm0a = np.dot(mocca, mocca.T) dm0b = np.dot(moccb, moccb.T) natoms = mol.natm vcorea = [] vcoreb = [] for ia in range(natoms): h1 = vnuc_deriv(ia) moia = np.hstack((mo1a[ia], mo1b[ia])) v1 = vind(moia) shl0, shl1, p0, p1 = aoslices[ia] shls_slice = (shl0, shl1) + (0, mol.nbas)*3 if hybrid: vja, vjb, vka, vkb = \ rhf_hess._get_jk(mol, 'int2e_ip1', 3, 's2kl', ['ji->s2kl', -dm0a[:,p0:p1], #vja 'ji->s2kl', -dm0b[:,p0:p1], #vjb 'li->s1kj', -dm0a[:,p0:p1], 'li->s1kj', -dm0b[:,p0:p1]], #vka shls_slice=shls_slice) vhfa = vja + vjb - hyb * vka vhfb = vjb + vja - hyb * vkb if omg != 0: with mol.with_range_coulomb(omg): vka, vkb = \ rhf_hess._get_jk(mol, 'int2e_ip1', 3, 's2kl', ['li->s1kj', -dm0a[:,p0:p1], 'li->s1kj', -dm0b[:,p0:p1]], # vk1 shls_slice=shls_slice) vhfa -= (alpha-hyb) * vka vhfb -= (alpha-hyb) * vkb else: vja, vjb = rhf_hess._get_jk(mol, 'int2e_ip1', 3, 's2kl', ['ji->s2kl', -dm0a[:,p0:p1], 'ji->s2kl', -dm0b[:,p0:p1]], # vj1 shls_slice=shls_slice) vhfa = vhfb = vja + vjb vtota = h1 + v1[0] + vxc1aoa[ia] + vhfa + vhfa.transpose(0,2,1) vtotb = h1 + v1[1] + vxc1aob[ia] + vhfb + vhfb.transpose(0,2,1) vcorea.append(vtota) vcoreb.append(vtotb) vcorea = np.asarray(vcorea).reshape(-1,nao,nao) vcoreb = np.asarray(vcoreb).reshape(-1,nao,nao) mass = mol.atom_mass_list() * MP_ME vec = rhf_eph._freq_mass_weighted_vec(vec, omega, mass) mata = np.einsum('xJ,xuv->Juv', vec, vcorea) matb = np.einsum('xJ,xuv->Juv', vec, vcoreb) if mo_rep: mata = np.einsum('Juv,up,vq->Jpq', mata, mf.mo_coeff[0].conj(), mf.mo_coeff[0], optimize=True) matb = np.einsum('Juv,up,vq->Jpq', matb, mf.mo_coeff[1].conj(), mf.mo_coeff[1], optimize=True) return np.asarray([mata,matb])
[docs] class EPH(uks_hess.Hessian): '''EPH for unrestricted DFT Attributes: cutoff_frequency : float or int cutoff frequency in cm-1. Default is 80 keep_imag_frequency : bool Whether to keep imaginary frequencies in the output. Default is False Saved results omega : numpy.ndarray Vibrational frequencies in au. vec : numpy.ndarray Polarization vectors of the vibration modes eph : numpy.ndarray Electron phonon matrix eph[spin,j,a,b] (j in nmodes, a,b in norbs) ''' def __init__(self, scf_method, cutoff_frequency=CUTOFF_FREQUENCY, keep_imag_frequency=KEEP_IMAG_FREQUENCY): uks_hess.Hessian.__init__(self, scf_method) self.cutoff_frequency = cutoff_frequency self.keep_imag_frequency = keep_imag_frequency get_mode = rhf_eph.get_mode get_eph = get_eph vnuc_generator = rhf_eph.vnuc_generator kernel = rhf_eph.kernel
if __name__ == '__main__': from pyscf import gto, dft mol = gto.M() mol.atom = [['O', [0.000000000000, 0.000000002577,0.868557119905]], ['H', [0.000000000000,-1.456050381698,2.152719488376]], ['H', [0.000000000000, 1.456050379121,2.152719486067]]] mol.unit = 'Bohr' mol.basis = 'sto3g' mol.verbose=4 mol.build() # this is a pre-computed relaxed geometry mf = dft.UKS(mol) mf.grids.level=6 mf.xc = 'b3lyp' mf.conv_tol = 1e-16 mf.conv_tol_grad = 1e-10 mf.kernel() grad = mf.nuc_grad_method().kernel() print("Force on the atoms/au:") print(grad) myeph = EPH(mf) (epha, ephb), omega = myeph.kernel() from pyscf.eph.rks import EPH as REPH mf = dft.RKS(mol) mf.grids.level=6 mf.xc = 'b3lyp' mf.conv_tol = 1e-16 mf.conv_tol_grad = 1e-10 mf.kernel() myeph = REPH(mf) rmat, omega = myeph.kernel() print(np.linalg.norm(epha-ephb)) for i in range(len(rmat)): print(min(np.linalg.norm(epha[i]-rmat[i]), np.linalg.norm(epha[i]+rmat[i])))