#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
'''
Full CI solver for spin-free Hamiltonian. This solver can be used to compute
doublet, triplet,...
The CI wfn are stored as a 2D array [alpha,beta], where each row corresponds
to an alpha string. For each row (alpha string), there are
total-num-beta-strings of columns. Each column corresponds to a beta string.
Different FCI solvers are implemented to support different type of symmetry.
Symmetry
File Point group Spin singlet Real hermitian* Alpha/beta degeneracy
direct_spin0_symm Yes Yes Yes Yes
direct_spin1_symm Yes No Yes Yes
direct_spin0 No Yes Yes Yes
direct_spin1 No No Yes Yes
direct_uhf No No Yes No
direct_nosym No No No** Yes
* Real hermitian Hamiltonian implies (ij|kl) = (ji|kl) = (ij|lk) = (ji|lk)
** Hamiltonian is real but not hermitian, (ij|kl) != (ji|kl) ...
'''
import sys
import ctypes
import numpy
import scipy.linalg
from pyscf import lib
from pyscf import ao2mo
from pyscf.lib import logger
from pyscf.fci import cistring
from pyscf.fci import rdm
from pyscf.fci import spin_op
from pyscf.fci import addons
from pyscf.fci.spin_op import contract_ss
from pyscf.fci.addons import _unpack_nelec
from pyscf import __config__
libfci = cistring.libfci
[docs]
def contract_1e(f1e, fcivec, norb, nelec, link_index=None):
'''Contract the 1-electron Hamiltonian with a FCI vector to get a new FCI
vector.
'''
fcivec = numpy.asarray(fcivec, order='C')
link_indexa, link_indexb = _unpack(norb, nelec, link_index)
na, nlinka = link_indexa.shape[:2]
nb, nlinkb = link_indexb.shape[:2]
assert fcivec.size == na*nb
assert fcivec.dtype == f1e.dtype == numpy.float64
f1e_tril = lib.pack_tril(f1e)
ci1 = numpy.zeros_like(fcivec)
libfci.FCIcontract_a_1e(f1e_tril.ctypes.data_as(ctypes.c_void_p),
fcivec.ctypes.data_as(ctypes.c_void_p),
ci1.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(norb),
ctypes.c_int(na), ctypes.c_int(nb),
ctypes.c_int(nlinka), ctypes.c_int(nlinkb),
link_indexa.ctypes.data_as(ctypes.c_void_p),
link_indexb.ctypes.data_as(ctypes.c_void_p))
libfci.FCIcontract_b_1e(f1e_tril.ctypes.data_as(ctypes.c_void_p),
fcivec.ctypes.data_as(ctypes.c_void_p),
ci1.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(norb),
ctypes.c_int(na), ctypes.c_int(nb),
ctypes.c_int(nlinka), ctypes.c_int(nlinkb),
link_indexa.ctypes.data_as(ctypes.c_void_p),
link_indexb.ctypes.data_as(ctypes.c_void_p))
return ci1.view(FCIvector)
[docs]
def contract_2e(eri, fcivec, norb, nelec, link_index=None):
r'''Contract the 4-index tensor eri[pqrs] with a FCI vector
.. math::
|output\rangle = E_{pq} E_{rs} eri_{pq,rs} |CI\rangle \\
E_{pq}E_{rs} = E_{pr,qs} + \delta_{qr} E_{ps} \\
E_{pq} = p^+ q + \bar{p}^+ \bar{q}
E_{pr,qs} = p^+ r^+ s q + \bar{p}^+ r^+ s \bar{q} + ...
:math:`p,q,...` means spin-up orbitals and :math:`\bar{p}, \bar{q}` means
spin-down orbitals.
Note the input argument eri is NOT the 2e hamiltonian tensor. 2e hamiltonian is
.. math::
h2e &= (pq|rs) E_{pr,qs} \\
&= (pq|rs) (E_{pq}E_{rs} - \delta_{qr} E_{ps}) \\
&= eri_{pq,rs} E_{pq}E_{rs} \\
So the relation between eri and hamiltonian (the 2e-integral tensor) is
.. math::
eri_{pq,rs} = (pq|rs) - (1/Nelec) \sum_q (pq|qs)
to restore the symmetry between pq and rs,
.. math::
eri_{pq,rs} = (pq|rs) - (.5/Nelec) [\sum_q (pq|qs) + \sum_p (pq|rp)]
See also :func:`direct_spin1.absorb_h1e`
'''
fcivec = numpy.asarray(fcivec, order='C')
eri = numpy.asarray(ao2mo.restore(4, eri, norb), order='C')
link_indexa, link_indexb = _unpack(norb, nelec, link_index)
na, nlinka = link_indexa.shape[:2]
nb, nlinkb = link_indexb.shape[:2]
assert fcivec.size == na*nb
assert fcivec.dtype == eri.dtype == numpy.float64
ci1 = numpy.empty_like(fcivec)
libfci.FCIcontract_2e_spin1(eri.ctypes.data_as(ctypes.c_void_p),
fcivec.ctypes.data_as(ctypes.c_void_p),
ci1.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(norb),
ctypes.c_int(na), ctypes.c_int(nb),
ctypes.c_int(nlinka), ctypes.c_int(nlinkb),
link_indexa.ctypes.data_as(ctypes.c_void_p),
link_indexb.ctypes.data_as(ctypes.c_void_p))
return ci1.view(FCIvector)
[docs]
def make_hdiag(h1e, eri, norb, nelec, compress=False):
'''Diagonal Hamiltonian for Davidson preconditioner
Kwargs:
compress (bool) : whether to remove symmetry forbidden elements
'''
if not (h1e.dtype == eri.dtype == numpy.float64):
raise NotImplementedError('Complex Hamiltonian')
neleca, nelecb = _unpack_nelec(nelec)
h1e = numpy.asarray(h1e, order='C')
eri = numpy.asarray(ao2mo.restore(1, eri, norb), order='C')
occslsta = occslstb = cistring.gen_occslst(range(norb), neleca)
if neleca != nelecb:
occslstb = cistring.gen_occslst(range(norb), nelecb)
na = len(occslsta)
nb = len(occslstb)
hdiag = numpy.empty(na*nb)
jdiag = numpy.asarray(numpy.einsum('iijj->ij',eri), order='C')
kdiag = numpy.asarray(numpy.einsum('ijji->ij',eri), order='C')
c_h1e = h1e.ctypes.data_as(ctypes.c_void_p)
c_jdiag = jdiag.ctypes.data_as(ctypes.c_void_p)
c_kdiag = kdiag.ctypes.data_as(ctypes.c_void_p)
libfci.FCImake_hdiag_uhf(hdiag.ctypes.data_as(ctypes.c_void_p),
c_h1e, c_h1e, c_jdiag, c_jdiag, c_jdiag, c_kdiag, c_kdiag,
ctypes.c_int(norb),
ctypes.c_int(na), ctypes.c_int(nb),
ctypes.c_int(neleca), ctypes.c_int(nelecb),
occslsta.ctypes.data_as(ctypes.c_void_p),
occslstb.ctypes.data_as(ctypes.c_void_p))
return hdiag
[docs]
def absorb_h1e(h1e, eri, norb, nelec, fac=1):
'''Modify 2e Hamiltonian to include 1e Hamiltonian contribution.
'''
if h1e.dtype == numpy.complex128 or eri.dtype == numpy.complex128:
raise NotImplementedError('Complex Hamiltonian')
if not isinstance(nelec, (int, numpy.number)):
nelec = sum(nelec)
h2e = ao2mo.restore(1, eri.copy(), norb)
f1e = h1e - numpy.einsum('jiik->jk', h2e) * .5
f1e = f1e * (1./(nelec+1e-100))
for k in range(norb):
h2e[k,k,:,:] += f1e
h2e[:,:,k,k] += f1e
return ao2mo.restore(4, h2e, norb) * fac
[docs]
def pspace(h1e, eri, norb, nelec, hdiag=None, np=400):
'''pspace Hamiltonian to improve Davidson preconditioner. See, CPL, 169, 463
'''
if norb >= 64:
raise NotImplementedError('norb >= 64')
if h1e.dtype == numpy.complex128 or eri.dtype == numpy.complex128:
raise NotImplementedError('Complex Hamiltonian')
neleca, nelecb = _unpack_nelec(nelec)
h1e = numpy.ascontiguousarray(h1e)
eri = ao2mo.restore(1, eri, norb)
na = cistring.num_strings(norb, neleca)
nb = cistring.num_strings(norb, nelecb)
if hdiag is None:
hdiag = make_hdiag(h1e, eri, norb, nelec, compress=False)
assert hdiag.size == na * nb
if hdiag.size <= np:
addr = numpy.arange(hdiag.size)
else:
try:
addr = numpy.argpartition(hdiag, np-1)[:np].copy()
except AttributeError:
addr = numpy.argsort(hdiag)[:np].copy()
addra, addrb = divmod(addr, nb)
stra = cistring.addrs2str(norb, neleca, addra)
strb = cistring.addrs2str(norb, nelecb, addrb)
np = len(addr)
h0 = numpy.zeros((np,np))
libfci.FCIpspace_h0tril(h0.ctypes.data_as(ctypes.c_void_p),
h1e.ctypes.data_as(ctypes.c_void_p),
eri.ctypes.data_as(ctypes.c_void_p),
stra.ctypes.data_as(ctypes.c_void_p),
strb.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(norb), ctypes.c_int(np))
HERMITIAN_THRESHOLD = 1e-10
if (abs(h1e - h1e.T).max() < HERMITIAN_THRESHOLD and
abs(eri - eri.transpose(1,0,3,2)).max() < HERMITIAN_THRESHOLD):
# symmetric Hamiltonian
h0 = lib.hermi_triu(h0)
else:
# Fill the upper triangular part
h0 = numpy.asarray(h0, order='F')
h1e = numpy.asarray(h1e.T, order='C')
eri = numpy.asarray(eri.transpose(1,0,3,2), order='C')
libfci.FCIpspace_h0tril(h0.ctypes.data_as(ctypes.c_void_p),
h1e.ctypes.data_as(ctypes.c_void_p),
eri.ctypes.data_as(ctypes.c_void_p),
stra.ctypes.data_as(ctypes.c_void_p),
strb.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(norb), ctypes.c_int(np))
idx = numpy.arange(np)
h0[idx,idx] = hdiag[addr]
return addr, h0
# be careful with single determinant initial guess. It may diverge the
# preconditioner when the eigvalue of first davidson iter equals to hdiag
[docs]
def kernel(h1e, eri, norb, nelec, ci0=None, level_shift=1e-3, tol=1e-10,
lindep=1e-14, max_cycle=50, max_space=12, nroots=1,
davidson_only=False, pspace_size=400, orbsym=None, wfnsym=None,
ecore=0, **kwargs):
return _kfactory(FCISolver, h1e, eri, norb, nelec, ci0, level_shift,
tol, lindep, max_cycle, max_space, nroots,
davidson_only, pspace_size, ecore=ecore, **kwargs)
def _kfactory(Solver, h1e, eri, norb, nelec, ci0=None, level_shift=1e-3,
tol=1e-10, lindep=1e-14, max_cycle=50, max_space=12, nroots=1,
davidson_only=False, pspace_size=400, ecore=0, **kwargs):
cis = Solver(None)
cis.level_shift = level_shift
cis.conv_tol = tol
cis.lindep = lindep
cis.max_cycle = max_cycle
cis.max_space = max_space
cis.nroots = nroots
cis.davidson_only = davidson_only
cis.pspace_size = pspace_size
unknown = {}
for k in kwargs:
if not hasattr(cis, k):
unknown[k] = kwargs[k]
setattr(cis, k, kwargs[k])
if unknown:
sys.stderr.write('Unknown keys %s for FCI kernel %s\n' %
(str(unknown.keys()), __name__))
e, c = cis.kernel(h1e, eri, norb, nelec, ci0, ecore=ecore, **unknown)
return e, c
[docs]
def energy(h1e, eri, fcivec, norb, nelec, link_index=None):
'''Compute the FCI electronic energy for given Hamiltonian and FCI vector.
'''
h2e = absorb_h1e(h1e, eri, norb, nelec, .5)
ci1 = contract_2e(h2e, fcivec, norb, nelec, link_index)
return numpy.dot(fcivec.reshape(-1), ci1.reshape(-1))
[docs]
def make_rdm1s(fcivec, norb, nelec, link_index=None):
r'''Spin separated 1-particle density matrices.
The return values include two density matrices: (alpha,alpha), (beta,beta)
dm1[p,q] = <q^\dagger p>
The convention is based on McWeeney's book, Eq (5.4.20).
The contraction between 1-particle Hamiltonian and rdm1 is
E = einsum('pq,qp', h1, rdm1)
'''
if link_index is None:
neleca, nelecb = _unpack_nelec(nelec)
link_indexa = cistring.gen_linkstr_index(range(norb), neleca)
link_indexb = cistring.gen_linkstr_index(range(norb), nelecb)
link_index = (link_indexa, link_indexb)
rdm1a = rdm.make_rdm1_spin1('FCImake_rdm1a', fcivec, fcivec,
norb, nelec, link_index)
rdm1b = rdm.make_rdm1_spin1('FCImake_rdm1b', fcivec, fcivec,
norb, nelec, link_index)
return rdm1a, rdm1b
[docs]
def make_rdm1(fcivec, norb, nelec, link_index=None):
r'''Spin-traced one-particle density matrix
dm1[p,q] = <q_alpha^\dagger p_alpha> + <q_beta^\dagger p_beta>
The convention is based on McWeeney's book, Eq (5.4.20)
The contraction between 1-particle Hamiltonian and rdm1 is
E = einsum('pq,qp', h1, rdm1)
'''
rdm1a, rdm1b = make_rdm1s(fcivec, norb, nelec, link_index)
return rdm1a + rdm1b
[docs]
def make_rdm12s(fcivec, norb, nelec, link_index=None, reorder=True):
r'''Spin separated 1- and 2-particle density matrices.
The return values include two lists, a list of 1-particle density matrices
and a list of 2-particle density matrices. The density matrices are:
(alpha,alpha), (beta,beta) for 1-particle density matrices;
(alpha,alpha,alpha,alpha), (alpha,alpha,beta,beta),
(beta,beta,beta,beta) for 2-particle density matrices.
1pdm[p,q] = :math:`\langle q^\dagger p\rangle`;
2pdm[p,q,r,s] = :math:`\langle p^\dagger r^\dagger s q\rangle`.
Energy should be computed as
E = einsum('pq,qp', h1, 1pdm) + 1/2 * einsum('pqrs,pqrs', eri, 2pdm)
where h1[p,q] = <p|h|q> and eri[p,q,r,s] = (pq|rs)
'''
dm1a, dm2aa = rdm.make_rdm12_spin1('FCIrdm12kern_a', fcivec, fcivec,
norb, nelec, link_index, 1)
dm1b, dm2bb = rdm.make_rdm12_spin1('FCIrdm12kern_b', fcivec, fcivec,
norb, nelec, link_index, 1)
_, dm2ab = rdm.make_rdm12_spin1('FCItdm12kern_ab', fcivec, fcivec,
norb, nelec, link_index, 0)
if reorder:
dm1a, dm2aa = rdm.reorder_rdm(dm1a, dm2aa, inplace=True)
dm1b, dm2bb = rdm.reorder_rdm(dm1b, dm2bb, inplace=True)
return (dm1a, dm1b), (dm2aa, dm2ab, dm2bb)
[docs]
def make_rdm12(fcivec, norb, nelec, link_index=None, reorder=True):
r'''Spin traced 1- and 2-particle density matrices.
1pdm[p,q] = :math:`\langle q_\alpha^\dagger p_\alpha \rangle +
\langle q_\beta^\dagger p_\beta \rangle`;
2pdm[p,q,r,s] = :math:`\langle p_\alpha^\dagger r_\alpha^\dagger s_\alpha q_\alpha\rangle +
\langle p_\beta^\dagger r_\alpha^\dagger s_\alpha q_\beta\rangle +
\langle p_\alpha^\dagger r_\beta^\dagger s_\beta q_\alpha\rangle +
\langle p_\beta^\dagger r_\beta^\dagger s_\beta q_\beta\rangle`.
Energy should be computed as
E = einsum('pq,qp', h1, 1pdm) + 1/2 * einsum('pqrs,pqrs', eri, 2pdm)
where h1[p,q] = <p|h|q> and eri[p,q,r,s] = (pq|rs)
'''
#(dm1a, dm1b), (dm2aa, dm2ab, dm2bb) = \
# make_rdm12s(fcivec, norb, nelec, link_index, reorder)
#return dm1a+dm1b, dm2aa+dm2ab+dm2ab.transpose(2,3,0,1)+dm2bb
dm1, dm2 = rdm.make_rdm12_spin1('FCIrdm12kern_sf', fcivec, fcivec,
norb, nelec, link_index, 1)
if reorder:
dm1, dm2 = rdm.reorder_rdm(dm1, dm2, inplace=True)
return dm1, dm2
[docs]
def trans_rdm1s(cibra, ciket, norb, nelec, link_index=None):
r'''Spin separated transition 1-particle density matrices.
The return values include two density matrices: (alpha,alpha), (beta,beta).
See also function :func:`make_rdm1s`
1pdm[p,q] = :math:`\langle q^\dagger p \rangle`
'''
rdm1a = rdm.make_rdm1_spin1('FCItrans_rdm1a', cibra, ciket,
norb, nelec, link_index)
rdm1b = rdm.make_rdm1_spin1('FCItrans_rdm1b', cibra, ciket,
norb, nelec, link_index)
return rdm1a, rdm1b
[docs]
def trans_rdm1(cibra, ciket, norb, nelec, link_index=None):
r'''Spin traced transition 1-particle transition density matrices.
1pdm[p,q] = :math:`\langle q_\alpha^\dagger p_\alpha \rangle
+ \langle q_\beta^\dagger p_\beta \rangle`
'''
rdm1a, rdm1b = trans_rdm1s(cibra, ciket, norb, nelec, link_index)
return rdm1a + rdm1b
[docs]
def trans_rdm12s(cibra, ciket, norb, nelec, link_index=None, reorder=True):
r'''Spin separated 1- and 2-particle transition density matrices.
The return values include two lists, a list of 1-particle transition
density matrices and a list of 2-particle transition density matrices.
The density matrices are:
(alpha,alpha), (beta,beta) for 1-particle transition density matrices;
(alpha,alpha,alpha,alpha), (alpha,alpha,beta,beta),
(beta,beta,alpha,alpha), (beta,beta,beta,beta) for 2-particle transition
density matrices.
1pdm[p,q] = :math:`\langle q^\dagger p\rangle`;
2pdm[p,q,r,s] = :math:`\langle p^\dagger r^\dagger s q\rangle`.
'''
dm1a, dm2aa = rdm.make_rdm12_spin1('FCItdm12kern_a', cibra, ciket,
norb, nelec, link_index, 2)
dm1b, dm2bb = rdm.make_rdm12_spin1('FCItdm12kern_b', cibra, ciket,
norb, nelec, link_index, 2)
_, dm2ab = rdm.make_rdm12_spin1('FCItdm12kern_ab', cibra, ciket,
norb, nelec, link_index, 0)
_, dm2ba = rdm.make_rdm12_spin1('FCItdm12kern_ab', ciket, cibra,
norb, nelec, link_index, 0)
dm2ba = dm2ba.transpose(3,2,1,0)
if reorder:
dm1a, dm2aa = rdm.reorder_rdm(dm1a, dm2aa, inplace=True)
dm1b, dm2bb = rdm.reorder_rdm(dm1b, dm2bb, inplace=True)
return (dm1a, dm1b), (dm2aa, dm2ab, dm2ba, dm2bb)
[docs]
def trans_rdm12(cibra, ciket, norb, nelec, link_index=None, reorder=True):
r'''Spin traced transition 1- and 2-particle transition density matrices.
1pdm[p,q] = :math:`\langle q^\dagger p\rangle`;
2pdm[p,q,r,s] = :math:`\langle p^\dagger r^\dagger s q\rangle`.
'''
#(dm1a, dm1b), (dm2aa, dm2ab, dm2ba, dm2bb) = \
# trans_rdm12s(cibra, ciket, norb, nelec, link_index, reorder)
#return dm1a+dm1b, dm2aa+dm2ab+dm2ba+dm2bb
dm1, dm2 = rdm.make_rdm12_spin1('FCItdm12kern_sf', cibra, ciket,
norb, nelec, link_index, 2)
if reorder:
dm1, dm2 = rdm.reorder_rdm(dm1, dm2, inplace=True)
return dm1, dm2
def _get_init_guess(na, nb, nroots, hdiag, nelec):
# The "nroots" lowest determinats based on energy expectation value.
ci0 = []
neleca, nelecb = _unpack_nelec(nelec)
if neleca == nelecb and na == nb:
hdiag = hdiag.reshape(na, na)
addrs = numpy.argpartition(lib.pack_tril(hdiag), nroots-1)[:nroots]
for addr in addrs:
addra = (int)((2*addr+.25)**.5 - .5 + 1e-7)
addrb = addr - addra*(addra+1)//2
x = numpy.zeros((na, na))
x[addra,addrb] = 1
ci0.append(x.ravel().view(FCIvector))
else:
addrs = numpy.argpartition(hdiag, nroots-1)[:nroots]
for addr in addrs:
x = numpy.zeros((na*nb))
x[addr] = 1
ci0.append(x.view(FCIvector))
# Add noise
ci0[0][0 ] += 1e-5
ci0[0][-1] -= 1e-5
return ci0
[docs]
def get_init_guess(norb, nelec, nroots, hdiag):
'''Initial guess is the single Slater determinant
'''
neleca, nelecb = _unpack_nelec(nelec)
na = cistring.num_strings(norb, neleca)
nb = cistring.num_strings(norb, nelecb)
return _get_init_guess(na, nb, nroots, hdiag, nelec)
###############################################################
# direct-CI driver
###############################################################
[docs]
def kernel_ms1(fci, h1e, eri, norb, nelec, ci0=None, link_index=None,
tol=None, lindep=None, max_cycle=None, max_space=None,
nroots=None, davidson_only=None, pspace_size=None, hop=None,
max_memory=None, verbose=None, ecore=0, **kwargs):
'''
Args:
h1e: ndarray
1-electron Hamiltonian
eri: ndarray
2-electron integrals in chemist's notation
norb: int
Number of orbitals
nelec: int or (int, int)
Number of electrons of the system
Kwargs:
ci0: ndarray
Initial guess
link_index: ndarray
A lookup table to cache the addresses of CI determinants in
wave-function vector
tol: float
Convergence tolerance
lindep: float
Linear dependence threshold
max_cycle: int
Max. iterations for diagonalization
max_space: int
Max. trial vectors to store for sub-space diagonalization method
nroots: int
Number of states to solve
davidson_only: bool
Whether to call subspace diagonlization (davidson solver) or do a
full diagonlization (lapack eigh) for small systems
pspace_size: int
Number of determinants as the threshold of "small systems",
hop: function(c) => array_like_c
Function to use for the Hamiltonian multiplication with trial vector
Note: davidson solver requires more arguments. For the parameters not
dispatched, they can be passed to davidson solver via the extra keyword
arguments **kwargs
'''
if nroots is None: nroots = fci.nroots
if davidson_only is None: davidson_only = fci.davidson_only
if pspace_size is None: pspace_size = fci.pspace_size
if max_memory is None:
max_memory = fci.max_memory - lib.current_memory()[0]
log = logger.new_logger(fci, verbose)
nelec = _unpack_nelec(nelec, fci.spin)
assert (0 <= nelec[0] <= norb and 0 <= nelec[1] <= norb)
hdiag = fci.make_hdiag(h1e, eri, norb, nelec, compress=False).ravel()
num_dets = hdiag.size
pspace_size = min(num_dets, pspace_size)
addr = [0]
pw = pv = None
if pspace_size > 0 and norb < 64:
addr, h0 = fci.pspace(h1e, eri, norb, nelec, hdiag, pspace_size)
pw, pv = fci.eig(h0)
pspace_size = len(addr)
if getattr(fci, 'sym_allowed_idx', None):
# Remove symmetry forbidden elements
sym_idx = numpy.hstack(fci.sym_allowed_idx)
civec_size = sym_idx.size
else:
sym_idx = None
civec_size = num_dets
if max_memory < civec_size*6*8e-6:
log.warn('Not enough memory for FCI solver. '
'The minimal requirement is %.0f MB', civec_size*60e-6)
if pspace_size >= civec_size and ci0 is None and not davidson_only:
if nroots > 1:
nroots = min(civec_size, nroots)
civec = numpy.empty((nroots,civec_size))
civec[:,addr] = pv[:,:nroots].T
return pw[:nroots]+ecore, civec
elif pspace_size == 1 or abs(pw[0]-pw[1]) > 1e-12:
# Check degeneracy. Degenerated wfn may break point group symmetry.
# Davidson iteration with a proper initial guess can avoid this problem.
civec = numpy.empty(civec_size)
civec[addr] = pv[:,0]
return pw[0]+ecore, civec
pw = pv = h0 = None
if sym_idx is None:
precond = fci.make_precond(hdiag)
else:
precond = fci.make_precond(hdiag[sym_idx])
h2e = fci.absorb_h1e(h1e, eri, norb, nelec, .5)
if hop is None:
cpu0 = [logger.process_clock(), logger.perf_counter()]
def hop(c):
hc = fci.contract_2e(h2e, c, norb, nelec, link_index)
cpu0[:] = log.timer_debug1('contract_2e', *cpu0)
return hc.ravel()
def init_guess():
if callable(getattr(fci, 'get_init_guess', None)):
return fci.get_init_guess(norb, nelec, nroots, hdiag)
else:
x0 = []
for i in range(min(len(addr), nroots)):
x = numpy.zeros(civec_size)
x[addr[i]] = 1
x0.append(x)
return x0
if ci0 is None:
ci0 = init_guess # lazy initialization to reduce memory footprint
elif not callable(ci0):
if isinstance(ci0, numpy.ndarray):
ci0 = [ci0.ravel()]
else:
ci0 = [x.ravel() for x in ci0]
if sym_idx is not None and ci0[0].size != civec_size:
ci0 = [x[sym_idx] for x in ci0]
# If provided initial guess ci0 are accidentally the eigenvectors of the
# system, Davidson solver may be failed to find enough roots as it is
# unable to generate more subspace basis from ci0. Adding vectors so
# initial guess to help Davidson solver generate enough basis.
if len(ci0) < nroots:
ci0.extend(init_guess()[len(ci0):])
if tol is None: tol = fci.conv_tol
if lindep is None: lindep = fci.lindep
if max_cycle is None: max_cycle = fci.max_cycle
if max_space is None: max_space = fci.max_space
tol_residual = getattr(fci, 'conv_tol_residual', None)
with lib.with_omp_threads(fci.threads):
e, c = fci.eig(hop, ci0, precond, tol=tol, lindep=lindep,
max_cycle=max_cycle, max_space=max_space, nroots=nroots,
max_memory=max_memory, verbose=log, follow_state=True,
tol_residual=tol_residual, **kwargs)
return e+ecore, c
[docs]
def make_pspace_precond(hdiag, pspaceig, pspaceci, addr, level_shift=0):
# precondition with pspace Hamiltonian, CPL, 169, 463
def precond(r, e0, x0, *args):
#h0e0 = h0 - numpy.eye(len(addr))*(e0-level_shift)
h0e0inv = numpy.dot(pspaceci/(pspaceig-(e0-level_shift)), pspaceci.T)
hdiaginv = 1/(hdiag - (e0-level_shift))
hdiaginv[abs(hdiaginv)>1e8] = 1e8
h0x0 = x0 * hdiaginv
#h0x0[addr] = numpy.linalg.solve(h0e0, x0[addr])
h0x0[addr] = numpy.dot(h0e0inv, x0[addr])
h0r = r * hdiaginv
#h0r[addr] = numpy.linalg.solve(h0e0, r[addr])
h0r[addr] = numpy.dot(h0e0inv, r[addr])
e1 = numpy.dot(x0, h0r) / numpy.dot(x0, h0x0)
x1 = r - e1*x0
#pspace_x1 = x1[addr].copy()
x1 *= hdiaginv
# pspace (h0-e0)^{-1} cause diverging?
#x1[addr] = numpy.linalg.solve(h0e0, pspace_x1)
return x1
return precond
[docs]
def make_diag_precond(hdiag, pspaceig, pspaceci, addr, level_shift=0):
return lib.make_diag_precond(hdiag, level_shift)
[docs]
class FCIBase(lib.StreamObject):
'''Full CI solver
Attributes:
verbose : int
Print level. Default value equals to :class:`Mole.verbose`.
max_cycle : int
Total number of iterations. Default is 100
max_space : tuple of int
Davidson iteration space size. Default is 14.
conv_tol : float
Energy convergence tolerance. Default is 1e-10.
level_shift : float
Level shift applied in the preconditioner to avoid singularity.
Default is 1e-3
davidson_only : bool
By default, the entire Hamiltonian matrix will be constructed and
diagonalized if the system is small (see attribute pspace_size).
Setting this parameter to True will enforce the eigenvalue
problems being solved by Davidson subspace algorithm. This flag
should be enabled when initial guess is given or particular spin
symmetry or point-group symmetry is required because the initial
guess or symmetry are completely ignored in the direct diagonlization.
pspace_size : int
The dimension of Hamiltonian matrix over which Davidson iteration
algorithm will be used for the eigenvalue problem. Default is 400.
This is roughly corresponding to a (6e,6o) system.
nroots : int
Number of states to be solved. Default is 1, the ground state.
spin : int or None
Spin (2S = nalpha-nbeta) of the system. If this attribute is None,
spin will be determined by the argument nelec (number of electrons)
of the kernel function.
wfnsym : str or int
Symmetry of wavefunction. It is used only in direct_spin1_symm
and direct_spin0_symm solver.
Saved results
eci : float or a list of float
FCI energy(ies)
ci : nparray
FCI wfn vector(s)
converged : bool (or a list of bool for multiple roots)
Whether davidson iteration is converged
Examples:
>>> from pyscf import gto, scf, ao2mo, fci
>>> mol = gto.M(atom='Li 0 0 0; Li 0 0 1', basis='sto-3g')
>>> mf = scf.RHF(mol).run()
>>> h1 = mf.mo_coeff.T.dot(mf.get_hcore()).dot(mf.mo_coeff)
>>> eri = ao2mo.kernel(mol, mf.mo_coeff)
>>> cisolver = fci.direct_spin1.FCI(mol)
>>> e, ci = cisolver.kernel(h1, eri, h1.shape[1], mol.nelec, ecore=mol.energy_nuc())
>>> print(e)
-14.4197890826
'''
max_cycle = getattr(__config__, 'fci_direct_spin1_FCI_max_cycle', 100)
max_space = getattr(__config__, 'fci_direct_spin1_FCI_max_space', 12)
conv_tol = getattr(__config__, 'fci_direct_spin1_FCI_conv_tol', 1e-10)
conv_tol_residual = getattr(__config__, 'fci_direct_spin1_FCI_conv_tol_residual', None)
lindep = getattr(__config__, 'fci_direct_spin1_FCI_lindep', 1e-14)
# level shift in preconditioner is helpful to avoid singularity and linear
# dependence basis in davidson diagonalization solver
level_shift = getattr(__config__, 'fci_direct_spin1_FCI_level_shift', 1e-3)
# force the diagonlization use davidson iteration. When the CI space
# is small, the solver exactly diagonlizes the Hamiltonian. But this
# solution will ignore the initial guess. Setting davidson_only can
# enforce the solution on the initial guess state
davidson_only = getattr(__config__, 'fci_direct_spin1_FCI_davidson_only', False)
pspace_size = getattr(__config__, 'fci_direct_spin1_FCI_pspace_size', 400)
threads = getattr(__config__, 'fci_direct_spin1_FCI_threads', None)
lessio = getattr(__config__, 'fci_direct_spin1_FCI_lessio', False)
_keys = {
'max_cycle', 'max_space', 'conv_tol', 'lindep',
'level_shift', 'davidson_only', 'pspace_size', 'threads', 'lessio',
'mol', 'nroots', 'spin', 'orbsym', 'wfnsym', 'converged', 'norb',
'nelec', 'eci', 'ci',
}
def __init__(self, mol=None):
if mol is None:
self.stdout = sys.stdout
self.verbose = logger.NOTE
self.max_memory = lib.param.MAX_MEMORY
else:
self.stdout = mol.stdout
self.verbose = mol.verbose
self.max_memory = mol.max_memory
self.mol = mol
self.nroots = 1
self.spin = None
# Initialize symmetry attributes for the compatibility with direct_spin1_symm
# solver. They are not used by direct_spin1 solver.
self.orbsym = None
self.wfnsym = None
self.converged = False
self.norb = None
self.nelec = None
self.eci = None
self.ci = None
@property
def e_tot(self):
return self.eci
@property
def nstates(self):
return self.nroots
@nstates.setter
def nstates(self, x):
self.nroots = x
[docs]
def dump_flags(self, verbose=None):
log = logger.new_logger(self, verbose)
log.info('******** %s ********', self.__class__)
log.info('max. cycles = %d', self.max_cycle)
log.info('conv_tol = %g', self.conv_tol)
log.info('davidson only = %s', self.davidson_only)
log.info('linear dependence = %g', self.lindep)
log.info('level shift = %g', self.level_shift)
log.info('max iter space = %d', self.max_space)
log.info('max_memory %d MB', self.max_memory)
log.info('nroots = %d', self.nroots)
log.info('pspace_size = %d', self.pspace_size)
log.info('spin = %s', self.spin)
return self
[docs]
@lib.with_doc(absorb_h1e.__doc__)
def absorb_h1e(self, h1e, eri, norb, nelec, fac=1):
nelec = _unpack_nelec(nelec, self.spin)
return absorb_h1e(h1e, eri, norb, nelec, fac)
[docs]
@lib.with_doc(make_hdiag.__doc__)
def make_hdiag(self, h1e, eri, norb, nelec, compress=False):
nelec = _unpack_nelec(nelec, self.spin)
return make_hdiag(h1e, eri, norb, nelec, compress)
[docs]
@lib.with_doc(pspace.__doc__)
def pspace(self, h1e, eri, norb, nelec, hdiag=None, np=400):
nelec = _unpack_nelec(nelec, self.spin)
return pspace(h1e, eri, norb, nelec, hdiag, np)
[docs]
@lib.with_doc(contract_1e.__doc__)
def contract_1e(self, f1e, fcivec, norb, nelec, link_index=None, **kwargs):
nelec = _unpack_nelec(nelec, self.spin)
return contract_1e(f1e, fcivec, norb, nelec, link_index, **kwargs)
[docs]
@lib.with_doc(contract_2e.__doc__)
def contract_2e(self, eri, fcivec, norb, nelec, link_index=None, **kwargs):
nelec = _unpack_nelec(nelec, self.spin)
return contract_2e(eri, fcivec, norb, nelec, link_index, **kwargs)
[docs]
def eig(self, op, x0=None, precond=None, **kwargs):
if isinstance(op, numpy.ndarray):
self.converged = True
return scipy.linalg.eigh(op)
self.converged, e, ci = \
lib.davidson1(lambda xs: [op(x) for x in xs],
x0, precond, lessio=self.lessio, **kwargs)
if kwargs['nroots'] == 1:
self.converged = self.converged[0]
e = e[0]
ci = ci[0]
return e, ci
[docs]
def make_precond(self, hdiag, pspaceig=None, pspaceci=None, addr=None):
if pspaceig is None:
return make_diag_precond(hdiag, pspaceig, pspaceci, addr,
self.level_shift)
else:
# Note: H0 in pspace may break symmetry.
return make_pspace_precond(hdiag, pspaceig, pspaceci, addr,
self.level_shift)
[docs]
@lib.with_doc(get_init_guess.__doc__)
def get_init_guess(self, norb, nelec, nroots, hdiag):
return get_init_guess(norb, nelec, nroots, hdiag)
[docs]
@lib.with_doc(kernel_ms1.__doc__)
def kernel(self, h1e, eri, norb, nelec, ci0=None,
tol=None, lindep=None, max_cycle=None, max_space=None,
nroots=None, davidson_only=None, pspace_size=None,
orbsym=None, wfnsym=None, ecore=0, **kwargs):
if nroots is None: nroots = self.nroots
if self.verbose >= logger.WARN:
self.check_sanity()
self.norb = norb
self.nelec = nelec = _unpack_nelec(nelec, self.spin)
link_index = _unpack(norb, nelec, None)
e, c = kernel_ms1(self, h1e, eri, norb, nelec, ci0, link_index,
tol, lindep, max_cycle, max_space, nroots,
davidson_only, pspace_size, ecore=ecore, **kwargs)
self.eci = e
na = link_index[0].shape[0]
nb = link_index[1].shape[0]
if nroots > 1:
self.ci = [x.reshape(na,nb).view(FCIvector) for x in c]
else:
self.ci = c.reshape(na,nb).view(FCIvector)
return self.eci, self.ci
[docs]
@lib.with_doc(energy.__doc__)
def energy(self, h1e, eri, fcivec, norb, nelec, link_index=None):
nelec = _unpack_nelec(nelec, self.spin)
h2e = self.absorb_h1e(h1e, eri, norb, nelec, .5)
ci1 = self.contract_2e(h2e, fcivec, norb, nelec, link_index)
return numpy.dot(fcivec.reshape(-1), ci1.reshape(-1))
[docs]
def spin_square(self, fcivec, norb, nelec):
nelec = _unpack_nelec(nelec, self.spin)
return spin_op.spin_square0(fcivec, norb, nelec)
spin_square.__doc__ = spin_op.spin_square0.__doc__
[docs]
@lib.with_doc(make_rdm1s.__doc__)
def make_rdm1s(self, fcivec, norb, nelec, link_index=None):
nelec = _unpack_nelec(nelec, self.spin)
return make_rdm1s(fcivec, norb, nelec, link_index)
[docs]
@lib.with_doc(make_rdm1.__doc__)
def make_rdm1(self, fcivec, norb, nelec, link_index=None):
nelec = _unpack_nelec(nelec, self.spin)
return make_rdm1(fcivec, norb, nelec, link_index)
[docs]
@lib.with_doc(make_rdm12s.__doc__)
def make_rdm12s(self, fcivec, norb, nelec, link_index=None, reorder=True):
nelec = _unpack_nelec(nelec, self.spin)
return make_rdm12s(fcivec, norb, nelec, link_index, reorder)
[docs]
@lib.with_doc(make_rdm12.__doc__)
def make_rdm12(self, fcivec, norb, nelec, link_index=None, reorder=True):
nelec = _unpack_nelec(nelec, self.spin)
return make_rdm12(fcivec, norb, nelec, link_index, reorder)
[docs]
def make_rdm2(self, fcivec, norb, nelec, link_index=None, reorder=True):
r'''Spin traced 2-particle density matrice
NOTE the 2pdm is :math:`\langle p^\dagger q^\dagger s r\rangle` but
stored as [p,r,q,s]
'''
nelec = _unpack_nelec(nelec, self.spin)
return self.make_rdm12(fcivec, norb, nelec, link_index, reorder)[1]
[docs]
@lib.with_doc(trans_rdm1s.__doc__)
def trans_rdm1s(self, cibra, ciket, norb, nelec, link_index=None):
nelec = _unpack_nelec(nelec, self.spin)
return trans_rdm1s(cibra, ciket, norb, nelec, link_index)
[docs]
@lib.with_doc(trans_rdm1.__doc__)
def trans_rdm1(self, cibra, ciket, norb, nelec, link_index=None):
nelec = _unpack_nelec(nelec, self.spin)
return trans_rdm1(cibra, ciket, norb, nelec, link_index)
[docs]
@lib.with_doc(trans_rdm12s.__doc__)
def trans_rdm12s(self, cibra, ciket, norb, nelec, link_index=None,
reorder=True):
nelec = _unpack_nelec(nelec, self.spin)
return trans_rdm12s(cibra, ciket, norb, nelec, link_index, reorder)
[docs]
@lib.with_doc(trans_rdm12.__doc__)
def trans_rdm12(self, cibra, ciket, norb, nelec, link_index=None,
reorder=True):
nelec = _unpack_nelec(nelec, self.spin)
return trans_rdm12(cibra, ciket, norb, nelec, link_index, reorder)
[docs]
def large_ci(self, fcivec, norb, nelec,
tol=getattr(__config__, 'fci_addons_large_ci_tol', .1),
return_strs=getattr(__config__, 'fci_addons_large_ci_return_strs', True)):
nelec = _unpack_nelec(nelec, self.spin)
return addons.large_ci(fcivec, norb, nelec, tol, return_strs)
[docs]
def contract_ss(self, fcivec, norb, nelec): # noqa: F811
nelec = _unpack_nelec(nelec, self.spin)
return contract_ss(fcivec, norb, nelec)
[docs]
def gen_linkstr(self, norb, nelec, tril=True, spin=None):
if spin is None:
spin = self.spin
neleca, nelecb = _unpack_nelec(nelec, spin)
if tril:
link_indexa = cistring.gen_linkstr_index_trilidx(range(norb), neleca)
link_indexb = cistring.gen_linkstr_index_trilidx(range(norb), nelecb)
else:
link_indexa = cistring.gen_linkstr_index(range(norb), neleca)
link_indexb = cistring.gen_linkstr_index(range(norb), nelecb)
return link_indexa, link_indexb
[docs]
class FCISolver(FCIBase):
# transform_ci_for_orbital_rotation only available for FCI wavefunctions.
# Some approx FCI solver does not have this functionality.
to_gpu = lib.to_gpu
FCI = FCISolver
[docs]
class FCIvector(numpy.ndarray):
'''An 2D np array for FCI coefficients'''
# Special cases for ndarray when the array was modified (through ufunc)
def __array_wrap__(self, out):
if out.shape == self.shape:
return out
elif out.shape == (): # if ufunc returns a scalar
return out[()]
else:
return out.view(numpy.ndarray)
def _unpack(norb, nelec, link_index, spin=None):
if link_index is None:
neleca, nelecb = _unpack_nelec(nelec, spin)
link_indexa = link_indexb = cistring.gen_linkstr_index_trilidx(range(norb), neleca)
if neleca != nelecb:
link_indexb = cistring.gen_linkstr_index_trilidx(range(norb), nelecb)
return link_indexa, link_indexb
else:
return link_index