Source code for pyscf.gto.mole

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Mole class and helper functions to handle parameters and attributes for GTO
integrals. This module serves the interface to the integral library libcint.
'''

import os
import sys
import types
import re

import json
import ctypes
import numpy
import numpy as np
import h5py
import scipy.special
import scipy.linalg
import contextlib
import threading
from pyscf import lib
from pyscf.lib import param
from pyscf.data import elements
from pyscf.lib import logger
from pyscf.gto import cmd_args
from pyscf.gto import basis
from pyscf.gto import moleintor
from pyscf.gto.eval_gto import eval_gto
from pyscf.gto.ecp import core_configuration
from pyscf import __config__

from pyscf.data.elements import ELEMENTS, ELEMENTS_PROTON, \
        _rm_digit, charge, _symbol, _std_symbol, _atom_symbol, is_ghost_atom, \
        _std_symbol_without_ghost

from pyscf.lib.exceptions import BasisNotFoundError, PointGroupSymmetryError
import warnings


# for _atm, _bas, _env
CHARGE_OF  = 0
PTR_COORD  = 1
NUC_MOD_OF = 2
PTR_ZETA   = 3
PTR_FRAC_CHARGE = 4
PTR_RADIUS = 5
ATM_SLOTS  = 6
ATOM_OF    = 0
ANG_OF     = 1
NPRIM_OF   = 2
NCTR_OF    = 3
RADI_POWER = 3 # for ECP
KAPPA_OF   = 4
SO_TYPE_OF = 4 # for ECP
PTR_EXP    = 5
PTR_COEFF  = 6
BAS_SLOTS  = 8
# pointer to env
PTR_EXPCUTOFF   = 0
PTR_COMMON_ORIG = 1
PTR_RINV_ORIG   = 4
PTR_RINV_ZETA   = 7
PTR_RANGE_OMEGA = 8
PTR_F12_ZETA    = 9
PTR_GTG_ZETA    = 10
NGRIDS          = 11
PTR_GRIDS       = 12
AS_RINV_ORIG_ATOM = 17
AS_ECPBAS_OFFSET = 18
AS_NECPBAS      = 19
PTR_ENV_START   = 20
# parameters from libcint
NUC_POINT = 1
NUC_GAUSS = 2
# nucleus with fractional charges. It can be used to mimic MM particles
NUC_FRAC_CHARGE = 3
NUC_ECP = 4  # atoms with pseudo potential

BASE = getattr(__config__, 'BASE', 0)
NORMALIZE_GTO = getattr(__config__, 'NORMALIZE_GTO', True)
DISABLE_EVAL = getattr(__config__, 'DISABLE_EVAL', False)
ARGPARSE = getattr(__config__, 'ARGPARSE', False)

[docs] def M(*args, **kwargs): r'''This is a shortcut to build up Mole object. Args: Same to :func:`Mole.build` Examples: >>> from pyscf import gto >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='6-31g') ''' mol = Mole() mol.build(*args, **kwargs) return mol
[docs] def gaussian_int(n, alpha): r'''int_0^inf x^n exp(-alpha x^2) dx''' n1 = (n + 1) * .5 return scipy.special.gamma(n1) / (2. * alpha**n1)
[docs] def gto_norm(l, expnt): r'''Normalized factor for GTO radial part :math:`g=r^l e^{-\alpha r^2}` .. math:: \frac{1}{\sqrt{\int g^2 r^2 dr}} = \sqrt{\frac{2^{2l+3} (l+1)! (2a)^{l+1.5}}{(2l+2)!\sqrt{\pi}}} Ref: H. B. Schlegel and M. J. Frisch, Int. J. Quant. Chem., 54(1995), 83-87. Args: l (int): angular momentum expnt : exponent :math:`\alpha` Returns: normalization factor Examples: >>> print(gto_norm(0, 1)) 2.5264751109842591 ''' if numpy.all(l >= 0): #f = 2**(2*l+3) * math.factorial(l+1) * (2*expnt)**(l+1.5) \ # / (math.factorial(2*l+2) * math.sqrt(math.pi)) #return math.sqrt(f) return 1/numpy.sqrt(gaussian_int(l*2+2, 2*expnt)) else: raise ValueError('l should be >= 0')
[docs] def cart2sph(l, c_tensor=None, normalized=None): ''' Cartesian to real spherical transformation matrix Kwargs: normalized : How the Cartesian GTOs are normalized. 'sp' means the s and p functions are normalized (this is the convention used by libcint library). ''' nf = (l+1)*(l+2)//2 if c_tensor is None: c_tensor = numpy.eye(nf) else: c_tensor = numpy.asarray(c_tensor, order='F').reshape(-1,nf) if l == 0 or l == 1: if normalized == 'sp': return c_tensor elif l == 0: return c_tensor * 0.282094791773878143 else: return c_tensor * 0.488602511902919921 else: assert l <= 15 nd = l * 2 + 1 ngrid = c_tensor.shape[0] c2sph = numpy.zeros((ngrid,nd), order='F') fn = moleintor.libcgto.CINTc2s_ket_sph fn(c2sph.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrid), c_tensor.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(l)) return c2sph
[docs] def cart2spinor_kappa(kappa, l=None, normalized=None): '''Cartesian to spinor transformation matrix for kappa Kwargs: normalized : How the Cartesian GTOs are normalized. 'sp' means the s and p functions are normalized (this is the convention used by libcint library). ''' if kappa < 0: l = -kappa - 1 nd = l * 2 + 2 elif kappa > 0: l = kappa nd = l * 2 else: assert (l is not None) assert (l <= 12) nd = l * 4 + 2 nf = (l+1)*(l+2)//2 c2smat = numpy.zeros((nf*2,nd), order='F', dtype=numpy.complex128) cmat = numpy.eye(nf) fn = moleintor.libcgto.CINTc2s_ket_spinor_sf1 fn(c2smat.ctypes.data_as(ctypes.c_void_p), c2smat[nf:].ctypes.data_as(ctypes.c_void_p), cmat.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nf*2), ctypes.c_int(nf), ctypes.c_int(1), ctypes.c_int(kappa), ctypes.c_int(l)) if normalized != 'sp': if l == 0: c2smat *= 0.282094791773878143 elif l == 1: c2smat *= 0.488602511902919921 # c2smat[0] is the transformation for spin up # c2smat[1] is the transformation for spin down c2smat = c2smat.reshape(2,nf,nd) return c2smat
cart2j_kappa = cart2spinor_kappa
[docs] def cart2spinor_l(l, normalized=None): '''Cartesian to spinor transformation matrix for angular moment l Kwargs: normalized : How the Cartesian GTOs are normalized. 'sp' means the s and p functions are normalized (this is the convention used by libcint library). ''' return cart2spinor_kappa(0, l, normalized)
cart2j_l = cart2spinor_l
[docs] def sph2spinor_kappa(kappa, l=None): '''Real spherical to spinor transformation matrix for kappa''' from pyscf.symm.sph import sph2spinor ua, ub = sph2spinor(l) if kappa < 0: l = -kappa - 1 ua = ua[:,l*2:] ub = ub[:,l*2:] elif kappa > 0: l = kappa ua = ua[:,:l*2] ub = ub[:,:l*2] else: assert (l is not None) assert (l <= 12) return ua, ub
[docs] def sph2spinor_l(l): '''Real spherical to spinor transformation matrix for angular moment l''' return sph2spinor_kappa(0, l)
[docs] def ao_rotation_matrix(mol, orientation): '''Matrix u to rotate AO basis to a new orientation. atom_new_coords = mol.atom_coords().dot(orientation.T) new_AO = u * mol.AO new_orbitals_coef = u.dot(orbitals_coef) ''' from pyscf.symm.basis import _momentum_rotation_matrices Ds = _momentum_rotation_matrices(mol, orientation) u = [] for i in range(mol.nbas): l = mol.bas_angular(i) nc = mol.bas_nctr(i) u.extend([Ds[l]] * nc) return scipy.linalg.block_diag(*u)
[docs] def atom_types(atoms, basis=None, magmom=None): '''symmetry inequivalent atoms''' atmgroup = {} for ia, a in enumerate(atoms): if 'GHOST' in a[0].upper(): a = ['X'+a[0][5:]] + list(a[1:]) if a[0] in atmgroup: atmgroup[a[0]].append(ia) elif basis is None: atmgroup[a[0]] = [ia] else: stdsymb = _std_symbol(a[0]) if a[0] in basis: if stdsymb in basis and basis[a[0]] == basis[stdsymb]: if stdsymb in atmgroup: atmgroup[stdsymb].append(ia) else: atmgroup[stdsymb] = [ia] else: atmgroup[a[0]] = [ia] elif stdsymb in atmgroup: atmgroup[stdsymb].append(ia) else: atmgroup[stdsymb] = [ia] if magmom is not None: atmgroup_new = {} suffix = {1:'u', -1:'d', 0:'o'} magmom = np.asarray(magmom) for elem, idx in atmgroup.items(): uniq_mag = np.unique(magmom[idx]) if len(uniq_mag) > 1: for i, mag in enumerate(uniq_mag): subgrp = np.asarray(idx)[np.where(magmom[idx] == mag)[0]] if mag not in suffix: raise RuntimeError("Magmom should be chosen from [-1, 0, 1], but %s is given" % mag) atmgroup_new[elem+'_'+suffix[mag]] = subgrp.tolist() else: atmgroup_new[elem] = idx atmgroup = atmgroup_new return atmgroup
[docs] def format_atom(atoms, origin=0, axes=None, unit=getattr(__config__, 'UNIT', 'Ang')): '''Convert the input :attr:`Mole.atom` to the internal data format. Including, changing the nuclear charge to atom symbol, converting the coordinates to AU, rotate and shift the molecule. If the :attr:`~Mole.atom` is a string, it takes ";" and "\\n" for the mark to separate atoms; "," and arbitrary length of blank space to spearate the individual terms for an atom. Blank line will be ignored. Args: atoms : list or str the same to :attr:`Mole.atom` Kwargs: origin : ndarray new axis origin. axes : ndarray (new_x, new_y, new_z), new coordinates unit : str or number If unit is one of strings (B, b, Bohr, bohr, AU, au), the coordinates of the input atoms are the atomic unit; If unit is one of strings (A, a, Angstrom, angstrom, Ang, ang), the coordinates are in the unit of angstrom; If a number is given, the number are considered as the Bohr value (in angstrom), which should be around 0.53. Set unit=1 if wishing to preserve the unit of the coordinates. Returns: "atoms" in the internal format. The internal format is | atom = [[atom1, (x, y, z)], | [atom2, (x, y, z)], | ... | [atomN, (x, y, z)]] Examples: >>> gto.format_atom('9,0,0,0; h@1 0 0 1', origin=(1,1,1)) [['F', [-1.0, -1.0, -1.0]], ['H@1', [-1.0, -1.0, 0.0]]] >>> gto.format_atom(['9,0,0,0', (1, (0, 0, 1))], origin=(1,1,1)) [['F', [-1.0, -1.0, -1.0]], ['H', [-1, -1, 0]]] ''' def str2atm(line): dat = line.split() try: coords = [float(x) for x in dat[1:4]] except ValueError: if DISABLE_EVAL: raise ValueError('Failed to parse geometry %s' % line) else: coords = list(eval(','.join(dat[1:4]))) if len(coords) != 3: raise ValueError('Coordinates error in %s' % line) return [_atom_symbol(dat[0]), coords] if isinstance(atoms, str): # The input atoms points to a geometry file if os.path.isfile(atoms): try: atoms = fromfile(atoms) except ValueError: sys.stderr.write('\nFailed to parse geometry file %s\n\n' % atoms) raise atoms = atoms.replace(';','\n').replace(',',' ').replace('\t',' ') fmt_atoms = [] for dat in atoms.split('\n'): dat = dat.strip() if dat and dat[0] != '#': fmt_atoms.append(dat) if len(fmt_atoms[0].split()) < 4: fmt_atoms = from_zmatrix('\n'.join(fmt_atoms)) else: fmt_atoms = [str2atm(line) for line in fmt_atoms] else: fmt_atoms = [] for atom in atoms: if isinstance(atom, str): if atom.lstrip()[0] != '#': fmt_atoms.append(str2atm(atom.replace(',',' '))) else: if isinstance(atom[1], (int, float)): fmt_atoms.append([_atom_symbol(atom[0]), atom[1:4]]) else: fmt_atoms.append([_atom_symbol(atom[0]), atom[1]]) if len(fmt_atoms) == 0: return [] if axes is None: axes = numpy.eye(3) if isinstance(unit, str): if is_au(unit): unit = 1. else: unit = 1./param.BOHR else: unit = 1./unit c = numpy.array([a[1] for a in fmt_atoms], dtype=numpy.double) c = numpy.einsum('ix,kx->ki', axes * unit, c - origin) z = [a[0] for a in fmt_atoms] return list(zip(z, c.tolist()))
#TODO: sort exponents
[docs] def format_basis(basis_tab, sort_basis=True): '''Convert the input :attr:`Mole.basis` to the internal data format. ``{ atom: [(l, ((-exp, c_1, c_2, ..), (-exp, c_1, c_2, ..))), (l, ((-exp, c_1, c_2, ..), (-exp, c_1, c_2, ..)))], ... }`` Args: basis_tab : dict Similar to :attr:`Mole.basis`, it **cannot** be a str Returns: Formatted :attr:`~Mole.basis` Examples: >>> gto.format_basis({'H':'sto-3g', 'H^2': '3-21g'}) {'H': [[0, [3.4252509099999999, 0.15432897000000001], [0.62391373000000006, 0.53532813999999995], [0.16885539999999999, 0.44463454000000002]]], 'H^2': [[0, [5.4471780000000001, 0.15628500000000001], [0.82454700000000003, 0.90469100000000002]], [0, [0.18319199999999999, 1.0]]]} >>> gto.format_basis({'H':'gth-szv'}) {'H': [[0, (8.3744350009, -0.0283380461), (1.8058681460, -0.1333810052), (0.4852528328, -0.3995676063), (0.1658236932, -0.5531027541)]]} ''' basis_converter = _generate_basis_converter() fmt_basis = {} for atom, atom_basis in basis_tab.items(): symb = _atom_symbol(atom) _basis = basis_converter(symb, atom_basis) if len(_basis) == 0: raise BasisNotFoundError('Basis not found for %s' % symb) # Sort basis accroding to angular momentum. This is important for method # decontract_basis, which assumes that basis functions with the same # angular momentum are grouped together. Related to issue #1620 #1770 if sort_basis: _basis = sorted([b for b in _basis if b], key=lambda b: b[0]) fmt_basis[symb] = _basis return fmt_basis
def _generate_basis_converter(): def nparray_to_list(item): val = [] for x in item: if isinstance(x, (tuple, list)): val.append(nparray_to_list(x)) elif isinstance(x, numpy.ndarray): val.append(x.tolist()) else: val.append(x) return val def load(basis_name, symb): unc = basis_name.lower().startswith('unc') if unc: basis_name = basis_name[3:] if 'gth' in basis_name: from pyscf.pbc.gto.basis import load as pbc_basis_load _basis = pbc_basis_load(basis_name, symb) else: _basis = basis.load(basis_name, symb) if unc: _basis = uncontracted_basis(_basis) return _basis def converter(symb, raw_basis): if isinstance(raw_basis, str): _basis = load(raw_basis, _std_symbol_without_ghost(symb)) elif (any(isinstance(x, str) for x in raw_basis) # The first element is the basis of internal format or not isinstance(raw_basis[0][0], int)): stdsymb = _std_symbol_without_ghost(symb) _basis = [] for rawb in raw_basis: if isinstance(rawb, str): _basis.extend(load(rawb, stdsymb)) else: _basis.extend(nparray_to_list(rawb)) else: _basis = nparray_to_list(raw_basis) return _basis return converter
[docs] def uncontracted_basis(_basis): '''Uncontract internal format _basis Examples: >>> gto.uncontract(gto.load('sto3g', 'He')) [[0, [6.36242139, 1]], [0, [1.158923, 1]], [0, [0.31364979, 1]]] ''' MAXL = 10 ubasis_raw = [[] for l in range(MAXL)] ubasis_exp = [[] for l in range(MAXL)] for b in _basis: angl = b[0] kappa = b[1] if isinstance(kappa, int): coeffs = b[2:] else: coeffs = b[1:] if isinstance(kappa, int) and kappa != 0: warnings.warn('For basis with kappa != 0, the uncontract basis might be wrong. ' 'Please double check the resultant attribute mol._basis') for p in coeffs: ubasis_raw[angl].append([angl, kappa, [p[0], 1]]) ubasis_exp[angl].append(p[0]) else: for p in coeffs: ubasis_raw[angl].append([angl, [p[0], 1]]) ubasis_exp[angl].append(p[0]) # Check linear dependency ubasis = [] for l in range(MAXL): basis_l = ubasis_raw[l] if basis_l: es = numpy.array(ubasis_exp[l]) # Remove duplicated primitive basis functions es, e_idx = numpy.unique(es.round(9), True) # from large exponent to small exponent for i in reversed(e_idx): ubasis.append(basis_l[i]) return ubasis
uncontract = uncontracted_basis contract = contracted_basis = basis.to_general_contraction
[docs] def to_uncontracted_cartesian_basis(mol): '''Decontract the basis of a Mole or a Cell. Returns a Mole (Cell) object with uncontracted Cartesian basis and a list of coefficients that transform the uncontracted basis to the original basis. Each element in the coefficients list corresponds to one shell of the original Mole (Cell). Examples: >>> mol = gto.M(atom='Ne', basis='ccpvdz') >>> pmol, ctr_coeff = mol.to_uncontracted_cartesian_basis() >>> c = scipy.linalg.block_diag(*ctr_coeff) >>> s = reduce(numpy.dot, (c.T, pmol.intor('int1e_ovlp'), c)) >>> abs(s-mol.intor('int1e_ovlp')).max() 0.0 ''' return decontract_basis(mol, to_cart=True)
[docs] def decontract_basis(mol, atoms=None, to_cart=False): '''Decontract the basis of a Mole or a Cell. Returns a Mole (Cell) object with the uncontracted basis environment and a list of coefficients that transform the uncontracted basis to the original basis. Each element in the coefficients list corresponds to one shell of the original Mole (Cell). Kwargs: atoms: list or str Atoms on which the basis to be decontracted. By default, all basis are decontracted to_cart: bool Decontract basis and transfer to Cartesian basis Examples: >>> mol = gto.M(atom='Ne', basis='ccpvdz') >>> pmol, ctr_coeff = mol.decontract_basis() >>> c = scipy.linalg.block_diag(*ctr_coeff) >>> s = reduce(numpy.dot, (c.T, pmol.intor('int1e_ovlp'), c)) >>> abs(s-mol.intor('int1e_ovlp')).max() 0.0 ''' pmol = mol.copy(deep=False) # Some input basis may be segmented basis from a general contracted set. # This may lead to duplicated pGTOs. First contract all basis to remove # duplicated primitive functions. bas_exps = mol.bas_exps() def _to_full_contraction(mol, bas_idx): es = numpy.hstack([bas_exps[i] for i in bas_idx]) cs = scipy.linalg.block_diag(*[mol._libcint_ctr_coeff(ib) for ib in bas_idx]) es, e_idx, rev_idx = numpy.unique(es.round(9), True, True) cs_new = numpy.zeros((es.size, cs.shape[1])) for i, j in enumerate(rev_idx): cs_new[j] += cs[i] return es[::-1], cs_new[::-1] _bas = [] _env = mol._env.copy() contr_coeff = [] lmax = mol._bas[:,ANG_OF].max() if mol.cart: c2s = [numpy.eye((l+1)*(l+2)//2) for l in range(lmax+1)] elif to_cart: c2s = [cart2sph(l, normalized='sp') for l in range(lmax+1)] pmol.cart = True else: c2s = [numpy.eye(l*2+1) for l in range(lmax+1)] aoslices = mol.aoslice_by_atom() for ia, (ib0, ib1) in enumerate(aoslices[:,:2]): if ib0 == ib1: # No basis on atom ia continue if atoms is not None: if isinstance(atoms, str): to_apply = ((atoms == mol.atom_pure_symbol(ia)) or (atoms == mol.atom_symbol(ia))) elif isinstance(atoms, (tuple, list)): to_apply = ((mol.atom_pure_symbol(ia) in atoms) or (mol.atom_symbol(ia) in atoms) or (ia in atoms)) else: to_apply = True if not to_apply: for ib in range(ib0, ib1): l = mol.bas_angular(ib) nc = mol.bas_nctr(ib) c = numpy.einsum('pi,xm->pxim', numpy.eye(nc), c2s[l]) contr_coeff.append(c.reshape(nc * c2s[l].shape[0], -1)) _bas.append(mol._bas[ib0:ib1]) continue lmax = mol._bas[ib0:ib1,ANG_OF].max() pexp = mol._bas[ib0,PTR_EXP] for l in range(lmax+1): bas_idx = ib0 + numpy.where(mol._bas[ib0:ib1,ANG_OF] == l)[0] if len(bas_idx) == 0: continue if bas_idx[0] + len(bas_idx) != bas_idx[-1] + 1: raise NotImplementedError('Discontinuous bases of same angular momentum') mol_exps, b_coeff = _to_full_contraction(mol, bas_idx) nprim, nc = b_coeff.shape bs = numpy.zeros((nprim, BAS_SLOTS), dtype=numpy.int32) bs[:,ATOM_OF] = ia bs[:,ANG_OF ] = l bs[:,NCTR_OF] = bs[:,NPRIM_OF] = 1 norm = gto_norm(l, mol_exps) if atoms is None: bs[:,PTR_EXP] = pexp + numpy.arange(nprim) bs[:,PTR_COEFF] = pexp + numpy.arange(nprim, nprim*2) _env[pexp:pexp+nprim] = mol_exps _env[pexp+nprim:pexp+nprim*2] = norm pexp += nprim * 2 else: bs[:,PTR_EXP] = _env.size + numpy.arange(nprim) bs[:,PTR_COEFF] = _env.size + numpy.arange(nprim, nprim*2) _env = np.hstack([_env, mol_exps, norm]) _bas.append(bs) c = numpy.einsum('pi,p,xm->pxim', b_coeff, 1./norm, c2s[l]) contr_coeff.append(c.reshape(nprim * c2s[l].shape[0], -1)) pmol._bas = numpy.asarray(numpy.vstack(_bas), dtype=numpy.int32) pmol._env = _env return pmol, contr_coeff
[docs] def format_ecp(ecp_tab): r'''Convert the input :attr:`ecp` (dict) to the internal data format:: { atom: (nelec, # core electrons ((l, # l=-1 for UL, l>=0 for Ul to indicate |l><l| (((exp_1, c_1), # for r^0 (exp_2, c_2), ...), ((exp_1, c_1), # for r^1 (exp_2, c_2), ...), ((exp_1, c_1), # for r^2 ...))))), ...} ''' fmt_ecp = {} for atom, atom_ecp in ecp_tab.items(): symb = _atom_symbol(atom) if isinstance(atom_ecp, str): stdsymb = _std_symbol_without_ghost(symb) ecp_dat = basis.load_ecp(str(atom_ecp), stdsymb) if ecp_dat is None or len(ecp_dat) == 0: #raise BasisNotFoundError('ECP not found for %s' % symb) sys.stderr.write('ECP %s not found for %s\n' % (atom_ecp, symb)) else: fmt_ecp[symb] = ecp_dat else: fmt_ecp[symb] = atom_ecp return fmt_ecp
[docs] def format_pseudo(pseudo_tab): r'''Convert the input :attr:`pseudo` (dict) to the internal data format:: { atom: ( (nelec_s, nele_p, nelec_d, ...), rloc, nexp, (cexp_1, cexp_2, ..., cexp_nexp), nproj_types, (r1, nproj1, ( (hproj1[1,1], hproj1[1,2], ..., hproj1[1,nproj1]), (hproj1[2,1], hproj1[2,2], ..., hproj1[2,nproj1]), ... (hproj1[nproj1,1], hproj1[nproj1,2], ... ) )), (r2, nproj2, ( (hproj2[1,1], hproj2[1,2], ..., hproj2[1,nproj1]), ... ) ) ) ... } Args: pseudo_tab : dict Similar to :attr:`pseudo` (a dict), it **cannot** be a str Returns: Formatted :attr:`pseudo` Examples: >>> pbc.format_pseudo({'H':'gth-blyp', 'He': 'gth-pade'}) {'H': [[1], 0.2, 2, [-4.19596147, 0.73049821], 0], 'He': [[2], 0.2, 2, [-9.1120234, 1.69836797], 0]} ''' from pyscf.pbc.gto.pseudo import load fmt_pseudo = {} for atom, atom_pp in pseudo_tab.items(): symb = _symbol(atom) if isinstance(atom_pp, str): stdsymb = _std_symbol_without_ghost(symb) fmt_pseudo[symb] = load(atom_pp, stdsymb) else: fmt_pseudo[symb] = atom_pp return fmt_pseudo
# transform etb to basis format
[docs] def expand_etb(l, n, alpha, beta): r'''Generate the exponents of even tempered basis for :attr:`Mole.basis`. .. math:: e = e^{-\alpha * \beta^{i-1}} for i = 1 .. n Args: l : int Angular momentum n : int Number of GTOs Returns: Formatted :attr:`~Mole.basis` Examples: >>> gto.expand_etb(1, 3, 1.5, 2) [[1, [6.0, 1]], [1, [3.0, 1]], [1, [1.5, 1]]] ''' return [[l, [alpha*beta**i, 1]] for i in reversed(range(n))]
[docs] def expand_etbs(etbs): r'''Generate even tempered basis. See also :func:`expand_etb` Args: etbs = [(l, n, alpha, beta), (l, n, alpha, beta),...] Returns: Formatted :attr:`~Mole.basis` Examples: >>> gto.expand_etbs([(0, 2, 1.5, 2.), (1, 2, 1, 2.)]) [[0, [6.0, 1]], [0, [3.0, 1]], [1, [1., 1]], [1, [2., 1]]] ''' return lib.flatten([expand_etb(*etb) for etb in etbs])
etbs = expand_etbs # concatenate two mol
[docs] def conc_env(atm1, bas1, env1, atm2, bas2, env2): r'''Concatenate two Mole's integral parameters. This function can be used to construct the environment for cross integrals like .. math:: \langle \mu | \nu \rangle, \mu \in mol1, \nu \in mol2 Returns: Concatenated atm, bas, env Examples: Compute the overlap between H2 molecule and O atom >>> mol1 = gto.M(atom='H 0 1 0; H 0 0 1', basis='sto3g') >>> mol2 = gto.M(atom='O 0 0 0', basis='sto3g') >>> atm3, bas3, env3 = gto.conc_env(mol1._atm, mol1._bas, mol1._env, ... mol2._atm, mol2._bas, mol2._env) >>> gto.moleintor.getints('int1e_ovlp_sph', atm3, bas3, env3, range(2), range(2,5)) [[ 0.04875181 0.44714688 0. 0.37820346 0. ] [ 0.04875181 0.44714688 0. 0. 0.37820346]] ''' off = len(env1) natm_off = len(atm1) atm2 = numpy.copy(atm2) bas2 = numpy.copy(bas2) atm2[:,PTR_COORD] += off atm2[:,PTR_ZETA ] += off bas2[:,ATOM_OF ] += natm_off bas2[:,PTR_EXP ] += off bas2[:,PTR_COEFF] += off return (numpy.asarray(numpy.vstack((atm1,atm2)), dtype=numpy.int32), numpy.asarray(numpy.vstack((bas1,bas2)), dtype=numpy.int32), numpy.hstack((env1,env2)))
[docs] def conc_mol(mol1, mol2): '''Concatenate two Mole objects. ''' if not mol1._built: logger.warn(mol1, 'Warning: object %s not initialized. Initializing %s', mol1, mol1) mol1.build() if not mol2._built: logger.warn(mol2, 'Warning: object %s not initialized. Initializing %s', mol2, mol2) mol2.build() mol3 = Mole() mol3._built = True mol3._atm, mol3._bas, mol3._env = \ conc_env(mol1._atm, mol1._bas, mol1._env, mol2._atm, mol2._bas, mol2._env) off = len(mol1._env) natm_off = len(mol1._atm) if len(mol2._ecpbas) == 0: mol3._ecpbas = mol1._ecpbas else: ecpbas2 = numpy.copy(mol2._ecpbas) ecpbas2[:,ATOM_OF ] += natm_off ecpbas2[:,PTR_EXP ] += off ecpbas2[:,PTR_COEFF] += off if len(mol1._ecpbas) == 0: mol3._ecpbas = ecpbas2 else: mol3._ecpbas = numpy.vstack((mol1._ecpbas, ecpbas2)) mol3.verbose = mol1.verbose mol3.output = mol1.output mol3.max_memory = mol1.max_memory mol3.charge = mol1.charge + mol2.charge mol3.spin = abs(mol1.spin - mol2.spin) mol3.symmetry = False mol3.symmetry_subgroup = None mol3.cart = mol1.cart and mol2.cart mol3._atom = mol1._atom + mol2._atom mol3.atom = mol3._atom mol3.unit = 'Bohr' mol3._basis.update(mol2._basis) mol3._basis.update(mol1._basis) mol3._pseudo.update(mol2._pseudo) mol3._pseudo.update(mol1._pseudo) mol3._ecp.update(mol2._ecp) mol3._ecp.update(mol1._ecp) mol3._pseudo.update(mol2._pseudo) mol3._pseudo.update(mol1._pseudo) mol3.basis = mol3._basis mol3.ecp = mol3._ecp mol3.pseudo = mol3._pseudo mol3.nucprop.update(mol1.nucprop) mol3.nucprop.update(mol2.nucprop) return mol3
# <bas-of-mol1|intor|bas-of-mol2>
[docs] def intor_cross(intor, mol1, mol2, comp=None, grids=None): r'''1-electron integrals from two molecules like .. math:: \langle \mu | intor | \nu \rangle, \mu \in mol1, \nu \in mol2 Args: intor : str Name of the 1-electron integral, such as int1e_ovlp_sph (spherical overlap), int1e_nuc_cart (cartesian nuclear attraction), int1e_ipovlp_spinor (spinor overlap gradients), etc. Ref to :func:`getints` for the full list of available 1-electron integral names mol1, mol2: :class:`Mole` objects Kwargs: comp : int Components of the integrals, e.g. int1e_ipovlp_sph has 3 components grids : ndarray Coordinates of grids for the int1e_grids integrals Returns: ndarray of 1-electron integrals, can be either 2-dim or 3-dim, depending on comp Examples: Compute the overlap between H2 molecule and O atom >>> mol1 = gto.M(atom='H 0 1 0; H 0 0 1', basis='sto3g') >>> mol2 = gto.M(atom='O 0 0 0', basis='sto3g') >>> gto.intor_cross('int1e_ovlp_sph', mol1, mol2) [[ 0.04875181 0.44714688 0. 0.37820346 0. ] [ 0.04875181 0.44714688 0. 0. 0.37820346]] ''' nbas1 = len(mol1._bas) nbas2 = len(mol2._bas) atmc, basc, envc = conc_env(mol1._atm, mol1._bas, mol1._env, mol2._atm, mol2._bas, mol2._env) if '_grids' in intor: assert grids is not None envc = numpy.append(envc, grids.ravel()) envc[NGRIDS] = grids.shape[0] envc[PTR_GRIDS] = envc.size - grids.size shls_slice = (0, nbas1, nbas1, nbas1+nbas2) if (intor.endswith('_sph') or intor.startswith('cint') or intor.endswith('_spinor') or intor.endswith('_cart')): return moleintor.getints(intor, atmc, basc, envc, shls_slice, comp, 0) elif mol1.cart == mol2.cart: intor = mol1._add_suffix(intor) return moleintor.getints(intor, atmc, basc, envc, shls_slice, comp, 0) elif mol1.cart: mat = moleintor.getints(intor+'_cart', atmc, basc, envc, shls_slice, comp, 0) return numpy.dot(mat, mol2.cart2sph_coeff()) else: mat = moleintor.getints(intor+'_cart', atmc, basc, envc, shls_slice, comp, 0) return numpy.dot(mol1.cart2sph_coeff().T, mat)
# append (charge, pointer to coordinates, nuc_mod) to _atm
[docs] def make_atm_env(atom, ptr=0, nuclear_model=NUC_POINT, nucprop={}): '''Convert the internal format :attr:`Mole._atom` to the format required by ``libcint`` integrals ''' nuc_charge = charge(atom[0]) if nuclear_model == NUC_POINT: zeta = 0 elif nuclear_model == NUC_GAUSS: zeta = dyall_nuc_mod(nuc_charge, nucprop) else: # callable(nuclear_model) zeta = nuclear_model(nuc_charge, nucprop) nuclear_model = NUC_GAUSS _env = numpy.hstack((atom[1], zeta)) _atm = numpy.zeros(6, dtype=numpy.int32) _atm[CHARGE_OF] = nuc_charge _atm[PTR_COORD] = ptr _atm[NUC_MOD_OF] = nuclear_model _atm[PTR_ZETA ] = ptr + 3 return _atm, _env
# append (atom, l, nprim, nctr, kappa, ptr_exp, ptr_coeff, 0) to bas # absorb normalization into GTO contraction coefficients
[docs] def make_bas_env(basis_add, atom_id=0, ptr=0): '''Convert :attr:`Mole.basis` to the argument ``bas`` for ``libcint`` integrals ''' _bas = [] _env = [] for b in basis_add: angl = b[0] if angl > 14: sys.stderr.write('Warning: integral library does not support basis ' 'with angular momentum > 14\n') if isinstance(b[1], int): kappa = b[1] b_coeff = numpy.array(sorted(b[2:], reverse=True)) else: kappa = 0 b_coeff = numpy.array(sorted(b[1:], reverse=True)) es = b_coeff[:,0] cs = b_coeff[:,1:] nprim, nctr = cs.shape cs = numpy.einsum('pi,p->pi', cs, gto_norm(angl, es)) if NORMALIZE_GTO: cs = _nomalize_contracted_ao(angl, es, cs) _env.append(es) _env.append(cs.T.reshape(-1)) ptr_exp = ptr ptr_coeff = ptr_exp + nprim ptr = ptr_coeff + nprim * nctr _bas.append([atom_id, angl, nprim, nctr, kappa, ptr_exp, ptr_coeff, 0]) _env = lib.flatten(_env) # flatten nested lists return (numpy.array(_bas, numpy.int32).reshape(-1,BAS_SLOTS), numpy.array(_env, numpy.double))
def _nomalize_contracted_ao(l, es, cs): #ee = numpy.empty((nprim,nprim)) #for i in range(nprim): # for j in range(i+1): # ee[i,j] = ee[j,i] = gaussian_int(angl*2+2, es[i]+es[j]) #s1 = 1/numpy.sqrt(numpy.einsum('pi,pq,qi->i', cs, ee, cs)) ee = es.reshape(-1,1) + es.reshape(1,-1) ee = gaussian_int(l*2+2, ee) s1 = 1. / numpy.sqrt(numpy.einsum('pi,pq,qi->i', cs, ee, cs)) return numpy.einsum('pi,i->pi', cs, s1)
[docs] def make_env(atoms, basis, pre_env=[], nucmod={}, nucprop={}): '''Generate the input arguments for ``libcint`` library based on internal format :attr:`Mole._atom` and :attr:`Mole._basis` ''' _atm = [] _bas = [] _env = [pre_env] ptr_env = len(pre_env) for ia, atom in enumerate(atoms): symb = atom[0] stdsymb = _rm_digit(symb) if ia+1 in nucprop: prop = nucprop[ia+1] elif symb in nucprop: prop = nucprop[symb] else: prop = nucprop.get(stdsymb, {}) nuclear_model = NUC_POINT if nucmod: if nucmod is None: nuclear_model = NUC_POINT elif isinstance(nucmod, (int, str, types.FunctionType)): nuclear_model = _parse_nuc_mod(nucmod) elif ia+1 in nucmod: nuclear_model = _parse_nuc_mod(nucmod[ia+1]) elif symb in nucmod: nuclear_model = _parse_nuc_mod(nucmod[symb]) elif stdsymb in nucmod: nuclear_model = _parse_nuc_mod(nucmod[stdsymb]) atm0, env0 = make_atm_env(atom, ptr_env, nuclear_model, prop) ptr_env = ptr_env + len(env0) _atm.append(atm0) _env.append(env0) _basdic = {} for symb, basis_add in basis.items(): bas0, env0 = make_bas_env(basis_add, 0, ptr_env) ptr_env = ptr_env + len(env0) _basdic[symb] = bas0 _env.append(env0) for ia, atom in enumerate(atoms): symb = atom[0] puresymb = _rm_digit(symb) if symb in _basdic: b = _basdic[symb].copy() elif puresymb in _basdic: b = _basdic[puresymb].copy() else: if symb[:2].upper() == 'X-': symb = symb[2:] elif symb[:6].upper() == 'GHOST-': symb = symb[6:] puresymb = _rm_digit(symb) if symb in _basdic: b = _basdic[symb].copy() elif puresymb in _basdic: b = _basdic[puresymb].copy() else: sys.stderr.write('Warning: Basis not found for atom %d %s\n' % (ia, symb)) continue b[:,ATOM_OF] = ia _bas.append(b) if _atm: _atm = numpy.asarray(numpy.vstack(_atm), numpy.int32).reshape(-1, ATM_SLOTS) else: _atm = numpy.zeros((0,ATM_SLOTS), numpy.int32) if _bas: _bas = numpy.asarray(numpy.vstack(_bas), numpy.int32).reshape(-1, BAS_SLOTS) else: _bas = numpy.zeros((0,BAS_SLOTS), numpy.int32) _env = numpy.asarray(numpy.hstack(_env), dtype=numpy.float64) return _atm, _bas, _env
[docs] def make_ecp_env(mol, _atm, ecp, pre_env=[]): '''Generate the input arguments _ecpbas for ECP integrals ''' _env = [] ptr_env = len(pre_env) _ecpdic = {} for symb, ecp_add in ecp.items(): ecp0 = [] nelec = ecp_add[0] for lb in ecp_add[1]: for rorder, bi in enumerate(lb[1]): if len(bi) > 0: ec = numpy.array(sorted(bi, reverse=True)) nexp, ncol = ec.shape _env.append(ec[:,0]) _env.append(ec[:,1]) ptr_exp, ptr_coeff = ptr_env, ptr_env + nexp ecp0.append([0, lb[0], nexp, rorder, 0, ptr_exp, ptr_coeff, 0]) ptr_env += nexp * 2 if ncol == 3: # Has SO-ECP _env.append(ec[:,2]) ptr_coeff, ptr_env = ptr_env, ptr_env + nexp ecp0.append([0, lb[0], nexp, rorder, 1, ptr_exp, ptr_coeff, 0]) _ecpdic[symb] = (nelec, numpy.asarray(ecp0, dtype=numpy.int32)) _ecpbas = [] if _ecpdic: _atm = _atm.copy() for ia, atom in enumerate(mol._atom): symb = atom[0] if symb in _ecpdic: ecp0 = _ecpdic[symb] elif _rm_digit(symb) in _ecpdic: ecp0 = _ecpdic[_rm_digit(symb)] else: ecp0 = None if ecp0 is not None: _atm[ia,CHARGE_OF ] = charge(symb) - ecp0[0] _atm[ia,NUC_MOD_OF] = NUC_ECP b = ecp0[1].copy().reshape(-1,BAS_SLOTS) b[:,ATOM_OF] = ia _ecpbas.append(b) if _ecpbas: _ecpbas = numpy.asarray(numpy.vstack(_ecpbas), numpy.int32) _env = numpy.hstack([pre_env] + _env) else: _ecpbas = numpy.zeros((0,BAS_SLOTS), numpy.int32) _env = pre_env return _atm, _ecpbas, _env
[docs] def tot_electrons(mol): '''Total number of electrons for the given molecule Returns: electron number in integer Examples: >>> mol = gto.M(atom='H 0 1 0; C 0 0 1', charge=1) >>> mol.tot_electrons() 6 ''' if mol._atm.size != 0: nelectron = mol.atom_charges().sum() elif mol._atom: nelectron = sum(charge(a[0]) for a in mol._atom) else: nelectron = sum(charge(a[0]) for a in format_atom(mol.atom)) nelectron -= mol.charge nelectron_int = int(round(nelectron)) if abs(nelectron - nelectron_int) > 1e-4: logger.warn(mol, 'Found fractional number of electrons %f. Round it to %d', nelectron, nelectron_int) return nelectron_int
[docs] def copy(mol, deep=True): '''Deepcopy of the given :class:`Mole` object Some attributes are shared between the original and copied objects. Deepcopy is utilized here to ensure that operations on the copied object do not affect the original object. ''' # Avoid copy.copy(mol) for shallow copy because copy.copy automatically # calls __copy__, __reduce__, __getstate__, __setstate__ methods newmol = mol.view(mol.__class__) if not deep: return newmol import copy newmol._atm = numpy.copy(mol._atm) newmol._bas = numpy.copy(mol._bas) newmol._env = numpy.copy(mol._env) newmol._ecpbas = numpy.copy(mol._ecpbas) newmol.atom = copy.deepcopy(mol.atom) newmol._atom = copy.deepcopy(mol._atom) newmol.basis = copy.deepcopy(mol.basis) newmol._basis = copy.deepcopy(mol._basis) newmol.ecp = copy.deepcopy(mol.ecp) newmol._ecp = copy.deepcopy(mol._ecp) newmol.pseudo = copy.deepcopy(mol.pseudo) newmol._pseudo = copy.deepcopy(mol._pseudo) if mol.magmom is not None: newmol.magmom = list(mol.magmom) return newmol
[docs] def pack(mol): '''Pack the input args of :class:`Mole` to a dict. Note this function only pack the input arguments (not the entire Mole class). Modifications to mol._atm, mol._bas, mol._env are not tracked. Use :func:`dumps` to serialize the entire Mole object. ''' mdic = {'atom' : mol.atom, 'unit' : mol.unit, 'basis' : mol.basis, 'charge' : mol.charge, 'spin' : mol.spin, 'symmetry': mol.symmetry, 'nucmod' : mol.nucmod, 'nucprop' : mol.nucprop, 'ecp' : mol.ecp, 'pseudo' : mol.pseudo, '_nelectron': mol._nelectron, 'magmom' : mol.magmom, 'verbose' : mol.verbose} return mdic
[docs] def unpack(moldic): '''Unpack a dict which is packed by :func:`pack`, to generate the input arguments for :class:`Mole` object. ''' mol = Mole() mol.__dict__.update(moldic) return mol
[docs] def dumps(mol): '''Serialize Mole object to a JSON formatted str. ''' exclude_keys = {'output', 'stdout', '_keys', # Constructing in function loads 'symm_orb', 'irrep_id', 'irrep_name'} # FIXME: nparray and kpts for cell objects may need to be excluded nparray_keys = {'_atm', '_bas', '_env', '_ecpbas', '_symm_orig', '_symm_axes'} moldic = dict(mol.__dict__) for k in exclude_keys: if k in moldic: del (moldic[k]) for k in nparray_keys: if isinstance(moldic[k], numpy.ndarray): moldic[k] = moldic[k].tolist() moldic['atom'] = repr(mol.atom) moldic['basis']= repr(mol.basis) moldic['ecp' ] = repr(mol.ecp) moldic['pseudo'] = repr(mol.pseudo) try: return json.dumps(moldic) except TypeError: def skip_value(dic): dic1 = {} for k,v in dic.items(): if (v is None or isinstance(v, (str, bool, int, float))): dic1[k] = v elif isinstance(v, (list, tuple)): dic1[k] = v # Should I recursively skip_vaule? elif isinstance(v, set): dic1[k] = list(v) elif isinstance(v, dict): dic1[k] = skip_value(v) else: msg =('Function mol.dumps drops attribute %s because ' 'it is not JSON-serializable' % k) warnings.warn(msg) return dic1 return json.dumps(skip_value(moldic), skipkeys=True)
[docs] def loads(molstr): '''Deserialize a str containing a JSON document to a Mole object. ''' # the numpy function array is used by eval function from numpy import array # noqa moldic = json.loads(molstr) mol = Mole() mol.__dict__.update(moldic) mol.atom = eval(mol.atom) mol.basis= eval(mol.basis) mol.ecp = eval(mol.ecp) if 'pseudo' in moldic: # backward compatibility with old dumps function, which does not have # the pseudo attribute mol.pseudo = eval(mol.pseudo) mol._atm = numpy.array(mol._atm, dtype=numpy.int32) mol._bas = numpy.array(mol._bas, dtype=numpy.int32) mol._env = numpy.array(mol._env, dtype=numpy.double) mol._ecpbas = numpy.array(mol._ecpbas, dtype=numpy.int32) # Objects related to symmetry cannot be serialized by dumps function. # Recreate it manually if mol.symmetry and mol._symm_orig is not None: from pyscf import symm mol._symm_orig = numpy.array(mol._symm_orig) mol._symm_axes = numpy.array(mol._symm_axes) mol.symm_orb, mol.irrep_id = \ symm.symm_adapted_basis(mol, mol.groupname, mol._symm_orig, mol._symm_axes) mol.irrep_name = [symm.irrep_id2name(mol.groupname, ir) for ir in mol.irrep_id] elif mol.symmetry and mol.symm_orb is not None: # Backward compatibility. To load symm_orb from chkfile of pyscf-1.6 # and earlier. symm_orb = [] # decompress symm_orb for val, x, y, shape in mol.symm_orb: if isinstance(val[0], list): # backward compatibility for chkfile of pyscf-1.4 in which val # is an array of real floats. In pyscf-1.5, val can be a list # of list, to include the imaginary part val_real, val_imag = val else: val_real, val_imag = val, None if val_imag is None: c = numpy.zeros(shape) c[numpy.array(x),numpy.array(y)] = numpy.array(val_real) else: c = numpy.zeros(shape, dtype=numpy.complex128) val = numpy.array(val_real) + numpy.array(val_imag) * 1j c[numpy.array(x),numpy.array(y)] = val symm_orb.append(c) mol.symm_orb = symm_orb return mol
[docs] def len_spinor(l, kappa): '''The number of spinor associated with given angular momentum and kappa. If kappa is 0, return 4l+2 ''' if kappa == 0: n = (l * 4 + 2) elif kappa < 0: n = (l * 2 + 2) else: n = (l * 2) return n
[docs] def len_cart(l): '''The number of Cartesian function associated with given angular momentum. ''' return (l + 1) * (l + 2) // 2
[docs] def npgto_nr(mol, cart=None): '''Total number of primitive spherical GTOs for the given :class:`Mole` object''' if cart is None: cart = mol.cart l = mol._bas[:,ANG_OF] if cart: return ((l+1)*(l+2)//2 * mol._bas[:,NPRIM_OF]).sum() else: return ((l*2+1) * mol._bas[:,NPRIM_OF]).sum()
[docs] def nao_nr(mol, cart=None): '''Total number of contracted GTOs for the given :class:`Mole` object''' if cart is None: cart = mol.cart if cart: return nao_cart(mol) else: return ((mol._bas[:,ANG_OF]*2+1) * mol._bas[:,NCTR_OF]).sum()
[docs] def nao_cart(mol): '''Total number of contracted cartesian GTOs for the given :class:`Mole` object''' l = mol._bas[:,ANG_OF] return ((l+1)*(l+2)//2 * mol._bas[:,NCTR_OF]).sum()
# nao_id0:nao_id1 corresponding to bas_id0:bas_id1
[docs] def nao_nr_range(mol, bas_id0, bas_id1): '''Lower and upper boundary of contracted spherical basis functions associated with the given shell range Args: mol : :class:`Mole` object bas_id0 : int start shell id bas_id1 : int stop shell id Returns: tuple of start basis function id and the stop function id Examples: >>> mol = gto.M(atom='O 0 0 0; C 0 0 1', basis='6-31g') >>> gto.nao_nr_range(mol, 2, 4) (2, 6) ''' ao_loc = moleintor.make_loc(mol._bas[:bas_id1], 'sph') nao_id0 = ao_loc[bas_id0] nao_id1 = ao_loc[-1] return nao_id0, nao_id1
[docs] def nao_2c(mol): '''Total number of contracted spinor GTOs for the given :class:`Mole` object''' l = mol._bas[:,ANG_OF] kappa = mol._bas[:,KAPPA_OF] dims = (l*4+2) * mol._bas[:,NCTR_OF] dims[kappa<0] = (l[kappa<0] * 2 + 2) * mol._bas[kappa<0,NCTR_OF] dims[kappa>0] = (l[kappa>0] * 2) * mol._bas[kappa>0,NCTR_OF] return dims.sum()
# nao_id0:nao_id1 corresponding to bas_id0:bas_id1
[docs] def nao_2c_range(mol, bas_id0, bas_id1): '''Lower and upper boundary of contracted spinor basis functions associated with the given shell range Args: mol : :class:`Mole` object bas_id0 : int start shell id, 0-based bas_id1 : int stop shell id, 0-based Returns: tuple of start basis function id and the stop function id Examples: >>> mol = gto.M(atom='O 0 0 0; C 0 0 1', basis='6-31g') >>> gto.nao_2c_range(mol, 2, 4) (4, 12) ''' ao_loc = moleintor.make_loc(mol._bas[:bas_id1], '') nao_id0 = ao_loc[bas_id0] nao_id1 = ao_loc[-1] return nao_id0, nao_id1
[docs] def ao_loc_nr(mol, cart=None): '''Offset of every shell in the spherical basis function spectrum Returns: list, each entry is the corresponding start basis function id Examples: >>> mol = gto.M(atom='O 0 0 0; C 0 0 1', basis='6-31g') >>> gto.ao_loc_nr(mol) [0, 1, 2, 3, 6, 9, 10, 11, 12, 15, 18] ''' if cart is None: cart = mol.cart if cart: return moleintor.make_loc(mol._bas, 'cart') else: return moleintor.make_loc(mol._bas, 'sph')
[docs] def ao_loc_2c(mol): '''Offset of every shell in the spinor basis function spectrum Returns: list, each entry is the corresponding start id of spinor function Examples: >>> mol = gto.M(atom='O 0 0 0; C 0 0 1', basis='6-31g') >>> gto.ao_loc_2c(mol) [0, 2, 4, 6, 12, 18, 20, 22, 24, 30, 36] ''' return moleintor.make_loc(mol._bas, 'spinor')
[docs] def time_reversal_map(mol): r'''The index to map the spinor functions and its time reversal counterpart. The returned indices have positive or negative values. For the i-th basis function, if the returned j = idx[i] < 0, it means :math:`T|i\rangle = -|j\rangle`, otherwise :math:`T|i\rangle = |j\rangle` ''' tao = [] i = 0 for b in mol._bas: l = b[ANG_OF] if b[KAPPA_OF] == 0: djs = (l * 2, l * 2 + 2) elif b[KAPPA_OF] > 0: djs = (l * 2,) else: djs = (l * 2 + 2,) if l % 2 == 0: for n in range(b[NCTR_OF]): for dj in djs: for m in range(0, dj, 2): tao.append(-(i + dj - m)) tao.append( i + dj - m - 1) i += dj else: for n in range(b[NCTR_OF]): for dj in djs: for m in range(0, dj, 2): tao.append( i + dj - m) tao.append(-(i + dj - m - 1)) i += dj return numpy.asarray(tao, dtype=numpy.int32)
CHECK_GEOM = getattr(__config__, 'gto_mole_check_geom', True)
[docs] def classical_coulomb_energy(mol, charges=None, coords=None): '''Compute nuclear repulsion energy (AU) or static Coulomb energy Returns float ''' if charges is None: charges = mol.atom_charges() if len(charges) <= 1: return 0 rr = inter_distance(mol, coords) rr[numpy.diag_indices_from(rr)] = 1e200 if CHECK_GEOM and numpy.any(rr < 1e-5): raise_err = False for atm_idx in numpy.argwhere(rr<1e-5): # Only raise error if atoms with charge != 0 have the same coordinates if charges[atm_idx[0]] * charges[atm_idx[1]] != 0: logger.warn(mol, 'Atoms %s have the same coordinates', atm_idx) raise_err = True # At least one of the atoms is a ghost atom; suppress divide by 0 warning else: rr[atm_idx[0], atm_idx[1]] = 1e200 if raise_err: raise RuntimeError('Ill geometry') e = numpy.einsum('i,ij,j->', charges, 1./rr, charges) * .5 return e
energy_nuc = classical_coulomb_energy
[docs] def inter_distance(mol, coords=None): ''' Inter-particle distance array ''' if coords is None: coords = mol.atom_coords() rr = numpy.linalg.norm(coords.reshape(-1,1,3) - coords, axis=2) rr[numpy.diag_indices_from(rr)] = 0 return rr
[docs] def sph_labels(mol, fmt=True, base=BASE): '''Labels for spherical GTO functions Kwargs: fmt : str or bool if fmt is boolean, it controls whether to format the labels and the default format is "%d%3s %s%-4s". if fmt is string, the string will be used as the print format. Returns: List of [(atom-id, symbol-str, nl-str, str-of-real-spherical-notation] or formatted strings based on the argument "fmt" Examples: >>> mol = gto.M(atom='H 0 0 0; Cl 0 0 1', basis='sto-3g') >>> gto.sph_labels(mol) [(0, 'H', '1s', ''), (1, 'Cl', '1s', ''), (1, 'Cl', '2s', ''), (1, 'Cl', '3s', ''), (1, 'Cl', '2p', 'x'), (1, 'Cl', '2p', 'y'), (1, 'Cl', '2p', 'z'), (1, 'Cl', '3p', 'x'), (1, 'Cl', '3p', 'y'), (1, 'Cl', '3p', 'z')] ''' count = numpy.zeros((mol.natm, 9), dtype=int) label = [] for ib in range(mol.nbas): ia = mol.bas_atom(ib) l = mol.bas_angular(ib) strl = param.ANGULAR[l] nc = mol.bas_nctr(ib) symb = mol.atom_symbol(ia) nelec_ecp = mol.atom_nelec_core(ia) if nelec_ecp == 0 or l > 3: shl_start = count[ia,l]+l+1 else: coreshl = core_configuration(nelec_ecp, atom_symbol=_std_symbol(symb)) shl_start = coreshl[l]+count[ia,l]+l+1 count[ia,l] += nc for n in range(shl_start, shl_start+nc): for m in range(-l, l+1): label.append((ia+base, symb, '%d%s' % (n, strl), str(param.REAL_SPHERIC[l][l+m]))) if isinstance(fmt, str): return [(fmt % x) for x in label] elif fmt: return ['%d %s %s%-4s' % x for x in label] else: return label
spheric_labels = spherical_labels = sph_labels
[docs] def cart_labels(mol, fmt=True, base=BASE): '''Labels of Cartesian GTO functions Kwargs: fmt : str or bool if fmt is boolean, it controls whether to format the labels and the default format is "%d%3s %s%-4s". if fmt is string, the string will be used as the print format. Returns: List of [(atom-id, symbol-str, nl-str, str-of-xyz-notation)] or formatted strings based on the argument "fmt" ''' cartxyz = [] for l in range(max(mol._bas[:,ANG_OF])+1): xyz = [] for x in range(l, -1, -1): for y in range(l-x, -1, -1): z = l-x-y xyz.append('x'*x + 'y'*y + 'z'*z) cartxyz.append(xyz) count = numpy.zeros((mol.natm, 9), dtype=int) label = [] for ib in range(len(mol._bas)): ia = mol.bas_atom(ib) l = mol.bas_angular(ib) strl = param.ANGULAR[l] nc = mol.bas_nctr(ib) symb = mol.atom_symbol(ia) nelec_ecp = mol.atom_nelec_core(ia) if nelec_ecp == 0 or l > 3: shl_start = count[ia,l]+l+1 else: coreshl = core_configuration(nelec_ecp, atom_symbol=_std_symbol(symb)) shl_start = coreshl[l]+count[ia,l]+l+1 count[ia,l] += nc ncart = (l + 1) * (l + 2) // 2 for n in range(shl_start, shl_start+nc): for m in range(ncart): label.append((ia+base, symb, '%d%s' % (n, strl), cartxyz[l][m])) if isinstance(fmt, str): return [(fmt % x) for x in label] elif fmt: return ['%d%3s %s%-4s' % x for x in label] else: return label
[docs] def ao_labels(mol, fmt=True, base=BASE): '''Labels of AO basis functions Kwargs: fmt : str or bool if fmt is boolean, it controls whether to format the labels and the default format is "%d%3s %s%-4s". if fmt is string, the string will be used as the print format. Returns: List of [(atom-id, symbol-str, nl-str, str-of-AO-notation)] or formatted strings based on the argument "fmt" ''' if mol.cart: return mol.cart_labels(fmt, base) else: return mol.sph_labels(fmt, base)
[docs] def spinor_labels(mol, fmt=True, base=BASE): ''' Labels of spinor GTO functions ''' count = numpy.zeros((mol.natm, 9), dtype=int) label = [] for ib in range(mol.nbas): ia = mol.bas_atom(ib) l = mol.bas_angular(ib) kappa = mol.bas_kappa(ib) strl = param.ANGULAR[l] nc = mol.bas_nctr(ib) symb = mol.atom_symbol(ia) nelec_ecp = mol.atom_nelec_core(ia) if nelec_ecp == 0 or l > 3: shl_start = count[ia,l]+l+1 else: coreshl = core_configuration(nelec_ecp, atom_symbol=_std_symbol(symb)) shl_start = coreshl[l]+count[ia,l]+l+1 count[ia,l] += nc for n in range(shl_start, shl_start+nc): if kappa >= 0: for m in range(-l*2+1, l*2, 2): label.append((ia+base, symb, '%d%s%d/2' % (n, strl, l*2-1), '%d/2'%m)) if kappa <= 0: for m in range(-l*2-1, l*2+2, 2): label.append((ia+base, symb, '%d%s%d/2' % (n, strl, l*2+1), '%d/2'%m)) if isinstance(fmt, str): return [(fmt % x) for x in label] elif fmt: return ['%d %s %s,%-5s' % x for x in label] else: return label
[docs] def search_ao_label(mol, label): '''Find the index of the AO basis function based on the given ao_label Args: ao_label : string or a list of strings The regular expression pattern to match the orbital labels returned by mol.ao_labels() Returns: A list of index for the AOs that matches the given ao_label RE pattern Examples: >>> mol = gto.M(atom='H 0 0 0; Cl 0 0 1', basis='ccpvtz') >>> mol.search_ao_label('Cl.*p') [19 20 21 22 23 24 25 26 27 28 29 30] >>> mol.search_ao_label('Cl 2p') [19 20 21] >>> mol.search_ao_label(['Cl.*d', 'Cl 4p']) [25 26 27 31 32 33 34 35 36 37 38 39 40] ''' return _aolabels2baslst(mol, label)
def _aolabels2baslst(mol, aolabels_or_baslst, base=BASE): if callable(aolabels_or_baslst): baslst = [i for i,x in enumerate(mol.ao_labels(base=base)) if aolabels_or_baslst(x)] elif isinstance(aolabels_or_baslst, str): aolabels = re.sub(' +', ' ', aolabels_or_baslst.strip(), count=1) aolabels = re.compile(aolabels) baslst = [i for i,s in enumerate(mol.ao_labels(base=base)) if re.search(aolabels, s)] elif len(aolabels_or_baslst) > 0 and isinstance(aolabels_or_baslst[0], str): aolabels = [re.compile(re.sub(' +', ' ', x.strip(), count=1)) for x in aolabels_or_baslst] baslst = [i for i,t in enumerate(mol.ao_labels(base=base)) if any(re.search(x, t) for x in aolabels)] else: baslst = [i-base for i in aolabels_or_baslst] return numpy.asarray(baslst, dtype=int)
[docs] def search_shell_id(mol, atm_id, l): '''Search the first basis/shell id (**not** the basis function id) which matches the given atom-id and angular momentum Args: atm_id : int atom id, 0-based l : int angular momentum Returns: basis id, 0-based. If not found, return None Examples: >>> mol = gto.M(atom='H 0 0 0; Cl 0 0 1', basis='sto-3g') >>> mol.search_shell_id(1, 1) # Cl p shell 4 >>> mol.search_shell_id(1, 2) # Cl d shell None ''' for ib in range(len(mol._bas)): ia = mol.bas_atom(ib) l1 = mol.bas_angular(ib) if ia == atm_id and l1 == l: return ib
[docs] def search_ao_nr(mol, atm_id, l, m, atmshell): '''Search the first basis function id (**not** the shell id) which matches the given atom-id, angular momentum magnetic angular momentum, principal shell. Args: atm_id : int atom id, 0-based l : int angular momentum m : int magnetic angular momentum atmshell : int principal quantum number Returns: basis function id, 0-based. If not found, return None Examples: >>> mol = gto.M(atom='H 0 0 0; Cl 0 0 1', basis='sto-3g') >>> mol.search_ao_nr(1, 1, -1, 3) # Cl 3px 7 ''' ibf = 0 for ib in range(len(mol._bas)): ia = mol.bas_atom(ib) l1 = mol.bas_angular(ib) if mol.cart: degen = (l1 + 1) * (l1 + 2) // 2 else: degen = l1 * 2 + 1 nc = mol.bas_nctr(ib) if ia == atm_id and l1 == l: if atmshell > nc+l1: atmshell = atmshell - nc else: return ibf + (atmshell-l1-1)*degen + (l1+m) ibf += degen * nc raise RuntimeError('Required AO not found')
[docs] def search_ao_r(mol, atm_id, l, j, m, atmshell): raise RuntimeError('TODO')
#TODO: ibf = 0 #TODO: for ib in range(len(mol._bas)): #TODO: ia = mol.bas_atom(ib) #TODO: l1 = mol.bas_angular(ib) #TODO: nc = mol.bas_nctr(ib) #TODO: k = mol.bas_kappa(bas_id) #TODO: degen = len_spinor(l1, k) #TODO: if ia == atm_id and l1 == l and k == kappa: #TODO: if atmshell > nc+l1: #TODO: atmshell = atmshell - nc #TODO: else: #TODO: return ibf + (atmshell-l1-1)*degen + (degen+m) #TODO: ibf += degen
[docs] def offset_2c_by_atom(mol): '''2-component AO offset for each atom. Return a list, each item of the list gives (start-shell-id, stop-shell-id, start-AO-id, stop-AO-id) ''' return aoslice_by_atom(mol, mol.ao_loc_2c())
[docs] def aoslice_by_atom(mol, ao_loc=None): '''AO offsets for each atom. Return a list, each item of the list gives (start-shell-id, stop-shell-id, start-AO-id, stop-AO-id) ''' if ao_loc is None: ao_loc = mol.ao_loc_nr() aorange = numpy.empty((mol.natm,4), dtype=int) if mol.natm == 0: return aorange bas_atom = mol._bas[:,ATOM_OF] delimiter = numpy.where(bas_atom[0:-1] != bas_atom[1:])[0] + 1 if mol.natm == len(delimiter) + 1: aorange[:,0] = shell_start = numpy.append(0, delimiter) aorange[:,1] = shell_end = numpy.append(delimiter, mol.nbas) else: # Some atoms miss basis shell_start = numpy.empty(mol.natm, dtype=int) shell_start[:] = -1 shell_start[0] = 0 shell_start[bas_atom[0]] = 0 shell_start[bas_atom[delimiter]] = delimiter shell_end = numpy.empty(mol.natm, dtype=int) shell_end[0] = 0 shell_end[bas_atom[delimiter-1]] = delimiter shell_end[bas_atom[-1]] = mol.nbas for i in range(1, mol.natm): if shell_start[i] == -1: shell_start[i] = shell_end[i] = shell_end[i-1] aorange[:,0] = shell_start aorange[:,1] = shell_end aorange[:,2] = ao_loc[shell_start] aorange[:,3] = ao_loc[shell_end] return aorange
offset_nr_by_atom = aoslice_by_atom
[docs] def same_basis_set(mol1, mol2): '''Check whether two molecules use the same basis sets. The two molecules can have different geometry. ''' atomtypes1 = atom_types(mol1._atom, mol1._basis) atomtypes2 = atom_types(mol2._atom, mol2._basis) if set(atomtypes1.keys()) != set(atomtypes2.keys()): return False for k in atomtypes1: if len(atomtypes1[k]) != len(atomtypes2[k]): return False elif mol1._basis.get(k, None) != mol2._basis.get(k, None): return False return True
[docs] def same_mol(mol1, mol2, tol=1e-5, cmp_basis=True, ignore_chiral=False): '''Compare the two molecules whether they have the same structure. Kwargs: tol : float In Bohr cmp_basis : bool Whether to compare basis functions for the two molecules ''' from pyscf import symm if mol1._atom.__len__() != mol2._atom.__len__(): return False chg1 = mol1._atm[:,CHARGE_OF] chg2 = mol2._atm[:,CHARGE_OF] if not numpy.all(numpy.sort(chg1) == numpy.sort(chg2)): return False if cmp_basis and not same_basis_set(mol1, mol2): return False def finger(mol, chgs, coord): center = numpy.einsum('z,zr->r', chgs, coord) / chgs.sum() im = inertia_moment(mol, chgs, coord) # Divid im by chgs.sum(), to normalize im. Otherwise the input tol may # not reflect the actual deviation. im /= chgs.sum() w, v = scipy.linalg.eigh(im) axes = v.T if numpy.linalg.det(axes) < 0: axes *= -1 r = numpy.dot(coord-center, axes.T) return w, r coord1 = mol1.atom_coords() coord2 = mol2.atom_coords() w1, r1 = finger(mol1, chg1, coord1) w2, r2 = finger(mol2, chg2, coord2) if not (numpy.allclose(w1, w2, atol=tol)): return False rotate_xy = numpy.array([[-1., 0., 0.], [ 0.,-1., 0.], [ 0., 0., 1.]]) rotate_yz = numpy.array([[ 1., 0., 0.], [ 0.,-1., 0.], [ 0., 0.,-1.]]) rotate_zx = numpy.array([[-1., 0., 0.], [ 0., 1., 0.], [ 0., 0.,-1.]]) def inspect(z1, r1, z2, r2): place = int(-numpy.log10(tol)) - 1 idx = symm.argsort_coords(r2, place) z2 = z2[idx] r2 = r2[idx] for rot in (1, rotate_xy, rotate_yz, rotate_zx): r1new = numpy.dot(r1, rot) idx = symm.argsort_coords(r1new, place) if (numpy.all(z1[idx] == z2) and numpy.allclose(r1new[idx], r2, atol=tol)): return True return False return (inspect(chg1, r1, chg2, r2) or (ignore_chiral and inspect(chg1, r1, chg2, -r2)))
is_same_mol = same_mol
[docs] def chiral_mol(mol1, mol2=None): '''Detect whether the given molelcule is chiral molecule or two molecules are chiral isomers. ''' if mol2 is None: mol2 = mol1.copy() ptr_coord = mol2._atm[:,PTR_COORD] mol2._env[ptr_coord ] *= -1 mol2._env[ptr_coord+1] *= -1 mol2._env[ptr_coord+2] *= -1 return (not same_mol(mol1, mol2, ignore_chiral=False) and same_mol(mol1, mol2, ignore_chiral=True))
[docs] def inertia_moment(mol, mass=None, coords=None): if mass is None: mass = mol.atom_mass_list() if coords is None: coords = mol.atom_coords() mass_center = numpy.einsum('i,ij->j', mass, coords)/mass.sum() coords = coords - mass_center im = numpy.einsum('i,ij,ik->jk', mass, coords, coords) im = numpy.eye(3) * im.trace() - im return im
[docs] def atom_mass_list(mol, isotope_avg=False): '''A list of mass for all atoms in the molecule Kwargs: isotope_avg : boolean Whether to use the isotope average mass as the atomic mass ''' if isotope_avg: mass_table = elements.MASSES else: mass_table = elements.ISOTOPE_MAIN nucprop = mol.nucprop if nucprop: mass = [] for ia in range(mol.natm): z = mol.atom_charge(ia) symb = mol.atom_symbol(ia) stdsymb = _std_symbol(symb) if ia+1 in nucprop: prop = nucprop[ia+1] elif symb in nucprop: prop = nucprop[symb] else: prop = nucprop.get(stdsymb, {}) mass.append(prop.get('mass', mass_table[z])) else: #mass = [mass_table[z] for z in mol.atom_charges()] mass = [] for ia in range(mol.natm): z = charge(mol.atom_symbol(ia)) mass.append(mass_table[z]) return numpy.array(mass)
[docs] def condense_to_shell(mol, mat, compressor='max'): '''The given matrix is first partitioned to blocks, based on AO shell as delimiter. Then call compressor function to abstract each block. Args: compressor: string or function if compressor is a string, its value can be sum, max, min, abssum, absmax, absmin, norm ''' ao_loc = mol.ao_loc_nr() if callable(compressor): abstract = numpy.empty((mol.nbas, mol.nbas)) for i, i0 in enumerate(ao_loc[:mol.nbas]): for j, j0 in enumerate(ao_loc[:mol.nbas]): abstract[i,j] = compressor(mat[i0:ao_loc[i+1],j0:ao_loc[j+1]]) else: abstract = lib.condense(compressor, mat, ao_loc) return abstract
[docs] def get_overlap_cond(mol, shls_slice=None): '''Overlap magnitudes measured by -log(overlap) between two shells Args: mol : an instance of :class:`Mole` Returns: 2D mask array of shape (nbas,nbas) ''' nbas = mol.nbas if shls_slice is None: shls_slice = (0, nbas, 0, nbas) cond = numpy.zeros((nbas, nbas)) moleintor.libcgto.GTOoverlap_cond( cond.ctypes.data_as(ctypes.c_void_p), (ctypes.c_int * 4)(*shls_slice), mol._atm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(mol.natm), mol._bas.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nbas), mol._env.ctypes.data_as(ctypes.c_void_p)) return cond
[docs] def tostring(mol, format='raw'): '''Convert molecular geometry to a string of the required format. Supported output formats: | raw: Each line is <symbol> <x> <y> <z> | xyz: XYZ cartesian coordinates format | zmat: Z-matrix format ''' format = format.lower() if format == 'xyz' or format == 'raw': coords = mol.atom_coords() * param.BOHR output = [] if format == 'xyz': output.append('%d' % mol.natm) output.append('XYZ from PySCF') for i in range(mol.natm): symb = mol.atom_pure_symbol(i) x, y, z = coords[i] output.append('%-4s %14.5f %14.5f %14.5f' % (symb, x, y, z)) return '\n'.join(output) elif format == 'zmat': coords = mol.atom_coords() * param.BOHR zmat = cart2zmat(coords).splitlines() output = [] for i, line in enumerate(zmat): symb = mol.atom_pure_symbol(i) output.append('%-4s %s' % (symb, line)) return '\n'.join(output) else: raise NotImplementedError
[docs] def tofile(mol, filename, format=None): '''Write molecular geometry to a file of the required format. Supported output formats: | raw: Each line is <symbol> <x> <y> <z> | xyz: XYZ cartesian coordinates format | zmat: Z-matrix format ''' if format is None: # Guess format based on filename format = os.path.splitext(filename)[1][1:] string = tostring(mol, format) with open(filename, 'w', encoding='utf-8') as f: f.write(string) f.write('\n') return string
[docs] def fromfile(filename, format=None): '''Read molecular geometry from a file (in testing) Supported formats: | raw: Each line is <symbol> <x> <y> <z> | xyz: XYZ cartesian coordinates format | zmat: Z-matrix format ''' if format is None: # Guess format based on filename format = os.path.splitext(filename)[1][1:].lower() if format not in ('xyz', 'zmat', 'sdf'): format = 'raw' with open(filename, 'r') as f: return fromstring(f.read(), format)
[docs] def fromstring(string, format='xyz'): '''Convert the string of the specified format to internal format (in testing) Supported formats: | raw: Each line is <symbol> <x> <y> <z> | xyz: XYZ cartesian coordinates format | zmat: Z-matrix format ''' format = format.lower() if format == 'zmat': return from_zmatrix(string) elif format == 'xyz': dat = string.splitlines() natm = int(dat[0]) return '\n'.join(dat[2:natm+2]) elif format == 'sdf': raw = string.splitlines() natoms, nbonds = raw[3].split()[:2] atoms = [] for line in raw[4:4+int(natoms)]: d = line.split() atoms.append('%s %s %s %s' % (d[3], d[0], d[1], d[2])) return '\n'.join(atoms) elif format == 'raw': return string else: raise NotImplementedError
[docs] def is_au(unit): '''Return whether the unit is recognized as A.U. or not ''' return unit.upper().startswith(('B', 'AU'))
# # MoleBase handles three layers of basis data: input, internal format, libcint arguments. # The relationship of the three layers are # .atom (input) <=> ._atom (for python) <=> ._atm (for libcint) # .basis (input) <=> ._basis (for python) <=> ._bas (for libcint) # input layer does not talk to libcint directly. Data are held in python # internal format layer. Most of methods defined in this class only operates # on the internal format. Exceptions are make_env, make_atm_env, make_bas_env, # set_common_orig_, set_rinv_orig_ which are used to manipulate the libcint arguments. #
[docs] class MoleBase(lib.StreamObject): '''Basic class to hold molecular structure, integrals and global options Attributes: verbose : int Print level output : str or None Output file, default is None which dumps msg to sys.stdout max_memory : int, float Allowed memory in MB charge : int Charge of molecule. It affects the electron numbers spin : int or None 2S, num. alpha electrons - num. beta electrons to control multiplicity. If spin = None is set, multiplicity will be guessed based on the neutral molecule. symmetry : bool or str Whether to use symmetry. When this variable is set to True, the molecule will be rotated and the highest rotation axis will be placed z-axis. If a string is given as the name of point group, the given point group symmetry will be used. Note that the input molecular coordinates will not be changed in this case. symmetry_subgroup : str subgroup atom : list or str To define molecluar structure. The internal format is | atom = [[atom1, (x, y, z)], | [atom2, (x, y, z)], | ... | [atomN, (x, y, z)]] unit : str Angstrom or Bohr basis : dict or str To define basis set. nucmod : dict or str or [function(nuc_charge, nucprop) => zeta] Nuclear model. 0 or None means point nuclear model. Other values will enable Gaussian nuclear model. If a function is assigned to this attribute, the function will be called to generate the nuclear charge distribution value "zeta" and the relevant nuclear model will be set to Gaussian model. Default is point nuclear model. nucprop : dict Nuclear properties (like g-factor 'g', quadrupole moments 'Q'). It is needed by pyscf.prop module and submodules. cart : boolean Using Cartesian GTO basis and integrals (6d,10f,15g) magmom : list Collinear spin of each atom. Default is [0,]*natm ** Following attributes are generated by :func:`Mole.build` ** stdout : file object Default is sys.stdout if :attr:`Mole.output` is not set topgroup : str Point group of the system. groupname : str The supported subgroup of the point group. It can be one of SO3, Dooh, Coov, D2h, C2h, C2v, D2, Cs, Ci, C2, C1 nelectron : int sum of nuclear charges - :attr:`Mole.charge` symm_orb : a list of numpy.ndarray Symmetry adapted basis. Each element is a set of symm-adapted orbitals for one irreducible representation. The list index does **not** correspond to the id of irreducible representation. irrep_id : a list of int Each element is one irreducible representation id associated with the basis stored in symm_orb. One irrep id stands for one irreducible representation symbol. The irrep symbol and the relevant id are defined in :attr:`symm.param.IRREP_ID_TABLE` irrep_name : a list of str Each element is one irreducible representation symbol associated with the basis stored in symm_orb. The irrep symbols are defined in :attr:`symm.param.IRREP_ID_TABLE` _built : bool To label whether :func:`Mole.build` has been called. It is to ensure certain functions being initialized only once. _basis : dict like :attr:`Mole.basis`, the internal format which is returned from the parser :func:`format_basis` ** Following attributes are arguments used by ``libcint`` library ** _atm : :code:`[[charge, ptr-of-coord, nuc-model, ptr-zeta, 0, 0], [...]]` each element represents one atom natm : number of atoms _bas : :code:`[[atom-id, angular-momentum, num-primitive-GTO, num-contracted-GTO, 0, ptr-of-exps, ptr-of-contract-coeff, 0], [...]]` each element represents one shell nbas : number of shells _env : list of floats to store the coordinates, GTO exponents, contract-coefficients Examples: >>> mol = Mole(atom='H^2 0 0 0; H 0 0 1.1', basis='sto3g').build() >>> print(mol.atom_symbol(0)) H^2 >>> print(mol.atom_pure_symbol(0)) H >>> print(mol.nao_nr()) 2 >>> print(mol.intor('int1e_ovlp_sph')) [[ 0.99999999 0.43958641] [ 0.43958641 0.99999999]] >>> mol.charge = 1 >>> mol.build() <class 'pyscf.gto.mole.Mole'> has no attributes Charge ''' # noqa: E501 output = None max_memory = param.MAX_MEMORY verbose = getattr(__config__, 'VERBOSE', logger.NOTE) # the unit (angstrom/bohr) of the coordinates defined by the input self.atom unit = getattr(__config__, 'UNIT', 'angstrom') # Whether to hold everything in memory incore_anyway = getattr(__config__, 'INCORE_ANYWAY', False) # Using cartesian GTO (6d,10f,15g) cart = getattr(__config__, 'gto_mole_Mole_cart', False) charge = 0 spin = 0 # 2j == nelec_alpha - nelec_beta symmetry = False symmetry_subgroup = None # Store the keys appeared in the module. It is used to check misinput attributes _keys = { 'verbose', 'unit', 'incore_anyway', 'output', 'max_memory', 'cart', 'charge', 'spin', 'symmetry', 'symmetry_subgroup', 'atom', 'basis', 'nucmod', 'ecp', 'nucprop', 'magmom', 'pseudo', 'groupname', 'topgroup', 'symm_orb', 'irrep_id', 'irrep_name', } def __init__(self): # self.atom = [(symb/nuc_charge, (coord(Angstrom):0.,0.,0.)), ...] self.atom = [] # self.basis = {atom_type/nuc_charge: [l, kappa, (expnt, c_1, c_2,..),..]} self.basis = 'sto-3g' # self.nucmod = {atom_symbol: nuclear_model, atom_id: nuc_mod}, atom_id is 1-based self.nucmod = {} # self.ecp = {atom_symbol: [[l, (r_order, expnt, c),...]]} self.ecp = {} # Nuclear property. self.nucprop = {atom_symbol: {key: value}} self.nucprop = {} # Collinear spin of each atom. self.magmom = [0, ...] self.magmom = [] self.pseudo = None ################################################## # don't modify the following private variables, they are not input options self._atm = numpy.zeros((0,6), dtype=numpy.int32) self._bas = numpy.zeros((0,8), dtype=numpy.int32) self._env = numpy.zeros(PTR_ENV_START) self._ecpbas = numpy.zeros((0,8), dtype=numpy.int32) self.stdout = sys.stdout self.groupname = 'C1' self.topgroup = 'C1' self.symm_orb = None self.irrep_id = None self.irrep_name = None self._symm_orig = None self._symm_axes = None self._nelectron = None self._nao = None self._enuc = None self._atom = [] self._basis = {} self._ecp = {} self._pseudo = {} self._built = False # Some methods modify ._env. These method are executed in the context # _TemporaryMoleContext which is protected by the _ctx_lock. self._ctx_lock = None @property def natm(self): return len(self._atm) @property def nbas(self): return len(self._bas) @property def nelec(self): ne = self.nelectron nalpha = (ne + self.spin) // 2 nbeta = nalpha - self.spin assert (nalpha >= 0 and nbeta >= 0) if nalpha + nbeta != ne: raise RuntimeError('Electron number %d and spin %d are not consistent\n' 'Note mol.spin = 2S = Nalpha - Nbeta, not 2S+1' % (ne, self.spin)) return nalpha, nbeta @nelec.setter def nelec(self, neleca_nelecb): neleca, nelecb = neleca_nelecb self._nelectron = neleca + nelecb self.spin = neleca - nelecb @property def nelectron(self): if self._nelectron is None: return self.tot_electrons() else: return self._nelectron @nelectron.setter def nelectron(self, n): self._nelectron = n @property def multiplicity(self): return self.spin + 1 @multiplicity.setter def multiplicity(self, x): if x is None: self.spin = None else: self.spin = x - 1 @property def ms(self): '''Spin quantum number. multiplicity = ms*2+1''' if self.spin % 2 == 0: return self.spin // 2 else: return self.spin * .5 @ms.setter def ms(self, x): if x is None: self.spin = None else: self.spin = int(round(2*x, 4)) @property def enuc(self): '''nuclear repulsion energy''' if self._enuc is None: self._enuc = self.energy_nuc() return self._enuc @enuc.setter def enuc(self, x): self._enuc = x copy = copy pack = pack
[docs] @classmethod @lib.with_doc(unpack.__doc__) def unpack(cls, moldic): return unpack(moldic)
[docs] @lib.with_doc(unpack.__doc__) def unpack_(self, moldic): self.__dict__.update(moldic) return self
dumps = dumps
[docs] @classmethod @lib.with_doc(loads.__doc__) def loads(cls, molstr): return loads(molstr)
[docs] @lib.with_doc(loads.__doc__) def loads_(self, molstr): self.__dict__.update(loads(molstr).__dict__) return self
# when pickling, serialize as a JSON-formatted string __getstate__ = dumps __setstate__ = loads_
[docs] def build(self, dump_input=True, parse_arg=ARGPARSE, verbose=None, output=None, max_memory=None, atom=None, basis=None, unit=None, nucmod=None, ecp=None, pseudo=None, charge=None, spin=0, symmetry=None, symmetry_subgroup=None, cart=None, magmom=None): '''Setup moleclue and initialize some control parameters. Whenever you change the value of the attributes of :class:`Mole`, you need call this function to refresh the internal data of Mole. Kwargs: dump_input : bool whether to dump the contents of input file in the output file parse_arg : bool whether to read the sys.argv and overwrite the relevant parameters verbose : int Print level. If given, overwrite :attr:`Mole.verbose` output : str or None Output file. If given, overwrite :attr:`Mole.output` max_memory : int, float Allowd memory in MB. If given, overwrite :attr:`Mole.max_memory` atom : list or str To define molecluar structure. basis : dict or str To define basis set. nucmod : dict or str Nuclear model. If given, overwrite :attr:`Mole.nucmod` charge : int Charge of molecule. It affects the electron numbers If given, overwrite :attr:`Mole.charge` spin : int 2S, num. alpha electrons - num. beta electrons to control multiplicity. If setting spin = None , multiplicity will be guessed based on the neutral molecule. If given, overwrite :attr:`Mole.spin` symmetry : bool or str Whether to use symmetry. If given a string of point group name, the given point group symmetry will be used. magmom : list Collinear spin of each atom. Default is [0.0,]*natm ''' if isinstance(dump_input, str): sys.stderr.write('Assigning the first argument %s to mol.atom\n' % dump_input) dump_input, atom = True, dump_input if verbose is not None: self.verbose = verbose if output is not None: self.output = output if max_memory is not None: self.max_memory = max_memory if atom is not None: self.atom = atom if basis is not None: self.basis = basis if unit is not None: self.unit = unit if nucmod is not None: self.nucmod = nucmod if ecp is not None: self.ecp = ecp if pseudo is not None: self.pseudo = pseudo if charge is not None: self.charge = charge if spin != 0: self.spin = spin if symmetry is not None: self.symmetry = symmetry if symmetry_subgroup is not None: self.symmetry_subgroup = symmetry_subgroup if cart is not None: self.cart = cart if magmom is not None: self.magmom = magmom if parse_arg: _update_from_cmdargs_(self) # avoid opening output file twice if (self.output is not None # StringIO() does not have attribute 'name' and getattr(self.stdout, 'name', None) != self.output): if self.verbose > logger.QUIET: if os.path.isfile(self.output): print('overwrite output file: %s' % self.output) else: print('output file: %s' % self.output) if self.output == '/dev/null': self.stdout = open(os.devnull, 'w', encoding='utf-8') else: self.stdout = open(self.output, 'w', encoding='utf-8') if self.verbose >= logger.WARN: self.check_sanity() if self.atom: self._atom = self.format_atom(self.atom, unit=self.unit) uniq_atoms = {a[0] for a in self._atom} if self.basis: _basis = _parse_default_basis(self.basis, uniq_atoms) self._basis = self.format_basis(_basis) env = self._env[:PTR_ENV_START] self._atm, self._bas, self._env = \ self.make_env(self._atom, self._basis, env, self.nucmod, self.nucprop) if self.pseudo: self.ecp, self.pseudo = classify_ecp_pseudo(self, self.ecp, self.pseudo) if self.ecp: # Unless explicitly input, ECP should not be assigned to ghost atoms atoms_wo_ghost = [a for a in uniq_atoms if not is_ghost_atom(a)] _ecp = _parse_default_basis(self.ecp, atoms_wo_ghost) self._ecp = self.format_ecp(_ecp) if self._ecp: self._atm, self._ecpbas, self._env = \ self.make_ecp_env(self._atm, self._ecp, self._env) if self.pseudo: # Unless explicitly input, PP should not be assigned to ghost atoms atoms_wo_ghost = [a for a in uniq_atoms if not is_ghost_atom(a)] _pseudo = _parse_default_basis(self.pseudo, atoms_wo_ghost) self._pseudo = _pseudo = self.format_pseudo(_pseudo) if _pseudo: conflicts = set(_pseudo).intersection(self._ecp) if conflicts: raise RuntimeError('Pseudo potential for atoms %s are defined ' 'in both .ecp and .pseudo.' % list(conflicts)) for ia, atom in enumerate(self._atom): symb = atom[0] if (symb in _pseudo and # skip ghost atoms self._atm[ia,0] != 0): self._atm[ia,0] = sum(_pseudo[symb][0]) if self.spin is None: self.spin = self.nelectron % 2 else: # Access self.nelec in which the code checks whether the spin and # number of electrons are consistent. self.nelec # reset nuclear energy self.enuc = None if not self.magmom: self.magmom = [0,] * self.natm elif len(self.magmom) != self.natm: logger.warn(self, 'len(magmom) != natm. Set magmom to zero') self.magmom = [0,] * self.natm elif isinstance(self.magmom, np.ndarray): self.magmom = self.magmom.tolist() if self.spin == 0 and abs(numpy.sum(self.magmom) - self.spin) > 1e-6: #don't check for unrestricted calcs. raise ValueError("mol.magmom is set incorrectly.") if self.symmetry: self._build_symmetry() if dump_input and not self._built and self.verbose > logger.NOTE: self.dump_input() if self.verbose >= logger.DEBUG3: logger.debug3(self, 'arg.atm = %s', self._atm) logger.debug3(self, 'arg.bas = %s', self._bas) logger.debug3(self, 'arg.env = %s', self._env) logger.debug3(self, 'ecpbas = %s', self._ecpbas) self._built = True return self
kernel = build def _build_symmetry(self, *args, **kwargs): ''' Update symmetry related attributes: topgroup, groupname, _symm_orig, _symm_axes, irrep_id, irrep_name, symm_orb ''' from pyscf import symm # TODO: Consider ECP info in point group symmetry initialization self.topgroup, orig, axes = symm.detect_symm(self._atom, self._basis) if isinstance(self.symmetry, str): self.symmetry = str(symm.std_symb(self.symmetry)) groupname = None if abs(axes - np.eye(3)).max() < symm.TOLERANCE: if symm.check_symm(self.symmetry, self._atom, self._basis): # Try to use original axes (issue #1209) groupname = self.symmetry axes = np.eye(3) else: logger.warn(self, 'Unable to to identify input symmetry using original axes.\n' 'Different symmetry axes will be used.') if groupname is None: try: groupname, axes = symm.as_subgroup(self.topgroup, axes, self.symmetry) except PointGroupSymmetryError as e: raise PointGroupSymmetryError( 'Unable to identify input symmetry %s. Try symmetry="%s"' % (self.symmetry, self.topgroup)) from e else: groupname, axes = symm.as_subgroup(self.topgroup, axes, self.symmetry_subgroup) self._symm_orig = orig self._symm_axes = axes if self.cart and groupname in ('Dooh', 'Coov', 'SO3'): if groupname == 'Coov': groupname, lgroup = 'C2v', groupname else: groupname, lgroup = 'D2h', groupname logger.warn(self, 'This version does not support symmetry %s ' 'for cartesian GTO basis. Its subgroup %s is used', lgroup, groupname) self.groupname = groupname self.symm_orb, self.irrep_id = \ symm.symm_adapted_basis(self, groupname, orig, axes) self.irrep_name = [symm.irrep_id2name(groupname, ir) for ir in self.irrep_id] return self format_atom = staticmethod(format_atom) format_basis = staticmethod(format_basis) format_pseudo = staticmethod(format_pseudo) format_ecp = staticmethod(format_ecp) expand_etb = staticmethod(expand_etb) expand_etbs = etbs = staticmethod(expand_etbs)
[docs] @lib.with_doc(make_env.__doc__) def make_env(self, atoms, basis, pre_env=[], nucmod={}, nucprop=None): if nucprop is None: nucprop = self.nucprop return make_env(atoms, basis, pre_env, nucmod, nucprop)
[docs] @lib.with_doc(make_atm_env.__doc__) def make_atm_env(self, atom, ptr=0, nucmod=NUC_POINT, nucprop=None): if nucprop is None: nucprop = self.nucprop.get(atom[0], {}) return make_atm_env(atom, ptr, nucmod, nucprop)
[docs] @lib.with_doc(make_bas_env.__doc__) def make_bas_env(self, basis_add, atom_id=0, ptr=0): return make_bas_env(basis_add, atom_id, ptr)
[docs] @lib.with_doc(make_ecp_env.__doc__) def make_ecp_env(self, _atm, _ecp, pre_env=[]): if _ecp: _atm, _ecpbas, _env = make_ecp_env(self, _atm, _ecp, pre_env) else: _atm, _ecpbas, _env = _atm, numpy.zeros((0,BAS_SLOTS)), pre_env return _atm, _ecpbas, _env
tot_electrons = tot_electrons
[docs] @lib.with_doc(gto_norm.__doc__) def gto_norm(self, l, expnt): return gto_norm(l, expnt)
[docs] def dump_input(self): import __main__ if hasattr(__main__, '__file__'): try: filename = os.path.abspath(__main__.__file__) finput = open(filename, 'r') self.stdout.write('#INFO: **** input file is %s ****\n' % filename) self.stdout.write(finput.read()) self.stdout.write('#INFO: ******************** input file end ********************\n') self.stdout.write('\n') self.stdout.write('\n') finput.close() except IOError: logger.warn(self, 'input file does not exist') self.stdout.write('\n'.join(lib.misc.format_sys_info())) self.stdout.write('\n\n') for key in os.environ: if 'PYSCF' in key: self.stdout.write('[ENV] %s %s\n' % (key, os.environ[key])) if self.verbose >= logger.DEBUG2: for key in dir(__config__): if key[:2] != '__': self.stdout.write('[CONFIG] %s = %s\n' % (key, getattr(__config__, key))) else: conf_file = getattr(__config__, 'conf_file', None) self.stdout.write('[CONFIG] conf_file %s\n' % conf_file) self.stdout.write('[INPUT] verbose = %d\n' % self.verbose) if self.verbose >= logger.DEBUG: self.stdout.write('[INPUT] max_memory = %s \n' % self.max_memory) self.stdout.write('[INPUT] num. atoms = %d\n' % self.natm) self.stdout.write('[INPUT] num. electrons = %d\n' % self.nelectron) self.stdout.write('[INPUT] charge = %d\n' % self.charge) self.stdout.write('[INPUT] spin (= nelec alpha-beta = 2S) = %d\n' % self.spin) self.stdout.write('[INPUT] symmetry %s subgroup %s\n' % (self.symmetry, self.symmetry_subgroup)) self.stdout.write('[INPUT] Mole.unit = %s\n' % self.unit) if self.cart: self.stdout.write('[INPUT] Cartesian GTO integrals (6d 10f)\n') self.stdout.write('[INPUT] Symbol X Y Z unit' ' X Y Z unit Magmom\n') for ia,atom in enumerate(self._atom): coorda = tuple([x * param.BOHR for x in atom[1]]) coordb = tuple([x for x in atom[1]]) magmom = self.magmom[ia] self.stdout.write('[INPUT]%3d %-4s %16.12f %16.12f %16.12f AA ' '%16.12f %16.12f %16.12f Bohr %4.1f\n' % ((ia+1, _symbol(atom[0])) + coorda + coordb + (magmom,))) if self.nucmod: if isinstance(self.nucmod, (int, str, types.FunctionType)): nucatms = [_symbol(atom[0]) for atom in self._atom] else: nucatms = self.nucmod.keys() self.stdout.write('[INPUT] Gaussian nuclear model for atoms %s\n' % nucatms) if self.nucprop: self.stdout.write('[INPUT] nucprop %s\n' % self.nucprop) if self.verbose >= logger.DEBUG: self.stdout.write('[INPUT] ---------------- BASIS SET ---------------- \n') self.stdout.write('[INPUT] l, kappa, [nprim/nctr], ' 'expnt, c_1 c_2 ...\n') for atom, basis_set in self._basis.items(): self.stdout.write('[INPUT] %s\n' % atom) for b in basis_set: if isinstance(b[1], int): kappa = b[1] b_coeff = b[2:] else: kappa = 0 b_coeff = b[1:] nprim = len(b_coeff) nctr = len(b_coeff[0])-1 if nprim < nctr: logger.warn(self, 'num. primitives smaller than num. contracted basis') self.stdout.write('[INPUT] %d %2d [%-5d/%-4d] ' % (b[0], kappa, nprim, nctr)) for k, x in enumerate(b_coeff): if k == 0: self.stdout.write('%-15.12g ' % x[0]) else: self.stdout.write(' '*32+'%-15.12g ' % x[0]) for c in x[1:]: self.stdout.write(' %4.12g' % c) self.stdout.write('\n') if self.verbose >= logger.INFO: self.stdout.write('\n') logger.info(self, 'nuclear repulsion = %.15g', self.enuc) if self.symmetry: if self.topgroup == self.groupname: logger.info(self, 'point group symmetry = %s', self.topgroup) else: logger.info(self, 'point group symmetry = %s, use subgroup %s', self.topgroup, self.groupname) logger.info(self, "symmetry origin: %s", self._symm_orig) logger.info(self, "symmetry axis x: %s", self._symm_axes[0]) logger.info(self, "symmetry axis y: %s", self._symm_axes[1]) logger.info(self, "symmetry axis z: %s", self._symm_axes[2]) for ir in range(self.symm_orb.__len__()): logger.info(self, 'num. orbitals of irrep %s = %d', self.irrep_name[ir], self.symm_orb[ir].shape[1]) logger.info(self, 'number of shells = %d', self.nbas) logger.info(self, 'number of NR pGTOs = %d', self.npgto_nr()) logger.info(self, 'number of NR cGTOs = %d', self.nao_nr()) logger.info(self, 'basis = %s', self.basis) logger.info(self, 'ecp = %s', self.ecp) if self.verbose >= logger.DEBUG2: for i in range(len(self._bas)): exps = self.bas_exp(i) logger.debug1(self, 'bas %d, expnt(s) = %s', i, str(exps)) logger.info(self, 'CPU time: %12.2f', logger.process_clock()) return self
[docs] def set_common_origin(self, coord): '''Update common origin for integrals of dipole, rxp etc. **Note** the unit of the coordinates needs to be Bohr Examples: >>> mol.set_common_origin(0) >>> mol.set_common_origin((1,0,0)) ''' self._env[PTR_COMMON_ORIG:PTR_COMMON_ORIG+3] = coord return self
set_common_orig = set_common_origin set_common_orig_ = set_common_orig # for backward compatibility set_common_origin_ = set_common_orig # for backward compatibility
[docs] def with_common_origin(self, coord): '''Return a temporary mol context which has the rquired common origin. The required common origin has no effects out of the temporary context. See also :func:`mol.set_common_origin` Examples: >>> with mol.with_common_origin((1,0,0)): ... mol.intor('int1e_r', comp=3) ''' coord0 = self._env[PTR_COMMON_ORIG:PTR_COMMON_ORIG+3].copy() return self._TemporaryMoleContext(self.set_common_origin, (coord,), (coord0,))
with_common_orig = with_common_origin
[docs] def set_rinv_origin(self, coord): r'''Update origin for operator :math:`\frac{1}{|r-R_O|}`. **Note** the unit is Bohr Examples: >>> mol.set_rinv_origin(0) >>> mol.set_rinv_origin((0,1,0)) ''' self._env[PTR_RINV_ORIG:PTR_RINV_ORIG+3] = coord[:3] return self
set_rinv_orig = set_rinv_origin set_rinv_orig_ = set_rinv_orig # for backward compatibility set_rinv_origin_ = set_rinv_orig # for backward compatibility
[docs] def with_rinv_origin(self, coord): '''Return a temporary mol context which has the rquired origin of 1/r operator. The required origin has no effects out of the temporary context. See also :func:`mol.set_rinv_origin` Examples: >>> with mol.with_rinv_origin((1,0,0)): ... mol.intor('int1e_rinv') ''' coord0 = self._env[PTR_RINV_ORIG:PTR_RINV_ORIG+3].copy() return self._TemporaryMoleContext(self.set_rinv_origin, (coord,), (coord0,))
with_rinv_orig = with_rinv_origin
[docs] def set_range_coulomb(self, omega): '''Switch on range-separated Coulomb operator for **all** 2e integrals Args: omega : double | = 0 : Regular electron repulsion integral | > 0 : Long-range operator erf(omega r12) / r12 | < 0 : Short-range operator erfc(omega r12) /r12 ''' if omega is not None: self._env[PTR_RANGE_OMEGA] = omega
set_range_coulomb_ = set_range_coulomb # for backward compatibility @property def omega(self): return self._env[PTR_RANGE_OMEGA] omega = omega.setter(set_range_coulomb)
[docs] def with_range_coulomb(self, omega): '''Return a temporary mol context which sets the required parameter omega for range-separated Coulomb operator. If omega = None, return the context for regular Coulomb integrals. See also :func:`mol.set_range_coulomb` Examples: >>> with mol.with_range_coulomb(omega=1.5): ... mol.intor('int2e') ''' if omega is None: return contextlib.nullcontext() omega0 = self._env[PTR_RANGE_OMEGA].copy() return self._TemporaryMoleContext(self.set_range_coulomb, (omega,), (omega0,))
[docs] def with_long_range_coulomb(self, omega): '''Return a temporary mol context for long-range part of range-separated Coulomb operator. ''' if omega is None: return contextlib.nullcontext() return self.with_range_coulomb(abs(omega))
[docs] def with_short_range_coulomb(self, omega): '''Return a temporary mol context for short-range part of range-separated Coulomb operator. ''' if omega is None: return contextlib.nullcontext() return self.with_range_coulomb(-abs(omega))
[docs] def set_f12_zeta(self, zeta): '''Set zeta for YP exp(-zeta r12)/r12 or STG exp(-zeta r12) type integrals ''' self._env[PTR_F12_ZETA] = zeta
[docs] def set_nuc_mod(self, atm_id, zeta): '''Change the nuclear charge distribution of the given atom ID. The charge distribution is defined as: rho(r) = nuc_charge * Norm * exp(-zeta * r^2). This function can **only** be called after .build() method is executed. Examples: >>> for ia in range(mol.natm): ... zeta = gto.filatov_nuc_mod(mol.atom_charge(ia)) ... mol.set_nuc_mod(ia, zeta) ''' ptr = self._atm[atm_id,PTR_ZETA] self._env[ptr] = zeta if zeta == 0: self._atm[atm_id,NUC_MOD_OF] = NUC_POINT else: self._atm[atm_id,NUC_MOD_OF] = NUC_GAUSS return self
set_nuc_mod_ = set_nuc_mod # for backward compatibility
[docs] def set_rinv_zeta(self, zeta): '''Assume the charge distribution on the "rinv_origin". zeta is the parameter to control the charge distribution: rho(r) = Norm * exp(-zeta * r^2). **Be careful** when call this function. It affects the behavior of int1e_rinv_* functions. Make sure to set it back to 0 after using it! ''' self._env[PTR_RINV_ZETA] = zeta return self
set_rinv_zeta_ = set_rinv_zeta # for backward compatibility
[docs] def with_rinv_zeta(self, zeta): '''Return a temporary mol context which has the rquired Gaussian charge distribution placed at "rinv_origin": rho(r) = Norm * exp(-zeta * r^2). See also :func:`mol.set_rinv_zeta` Examples: >>> with mol.with_rinv_zeta(zeta=1.5), mol.with_rinv_origin((1.,0,0)): ... mol.intor('int1e_rinv') ''' zeta0 = self._env[PTR_RINV_ZETA].copy() return self._TemporaryMoleContext(self.set_rinv_zeta, (zeta,), (zeta0,))
[docs] def with_rinv_at_nucleus(self, atm_id): '''Return a temporary mol context in which the rinv operator (1/r) is treated like the Coulomb potential of a Gaussian charge distribution rho(r) = Norm * exp(-zeta * r^2) at the place of the input atm_id. Examples: >>> with mol.with_rinv_at_nucleus(3): ... mol.intor('int1e_rinv') ''' zeta = self._env[self._atm[atm_id,PTR_ZETA]] rinv = self.atom_coord(atm_id) if zeta == 0: self._env[AS_RINV_ORIG_ATOM] = atm_id # required by ecp gradients return self.with_rinv_origin(rinv) else: self._env[AS_RINV_ORIG_ATOM] = atm_id # required by ecp gradients rinv0 = self._env[PTR_RINV_ORIG:PTR_RINV_ORIG+3].copy() zeta0 = self._env[PTR_RINV_ZETA].copy() def set_rinv(z, r): self._env[PTR_RINV_ZETA] = z self._env[PTR_RINV_ORIG:PTR_RINV_ORIG+3] = r return self._TemporaryMoleContext(set_rinv, (zeta,rinv), (zeta0,rinv0))
with_rinv_as_nucleus = with_rinv_at_nucleus # For backward compatibility
[docs] def with_integral_screen(self, threshold): '''Return a temporary mol context which has the required integral screen threshold ''' if threshold is None: # This calls the default cutoff settings in cint library expcutoff = 0 else: expcutoff = abs(numpy.log(threshold)) expcutoff0 = self._env[PTR_EXPCUTOFF] def set_cutoff(cut): self._env[PTR_EXPCUTOFF] = cut return self._TemporaryMoleContext(set_cutoff, (expcutoff,), (expcutoff0,))
[docs] def set_geom_(self, atoms_or_coords, unit=None, symmetry=None, inplace=True): '''Update geometry ''' if inplace: mol = self else: mol = self.copy(deep=False) mol._env = mol._env.copy() if unit is None: unit = mol.unit else: mol.unit = unit if symmetry is None: symmetry = mol.symmetry if isinstance(atoms_or_coords, numpy.ndarray): mol.atom = list(zip([x[0] for x in mol._atom], atoms_or_coords.tolist())) else: mol.atom = atoms_or_coords if isinstance(atoms_or_coords, numpy.ndarray) and not symmetry: if isinstance(unit, str): if is_au(unit): unit = 1. else: unit = 1./param.BOHR else: unit = 1./unit mol._atom = list(zip([x[0] for x in mol._atom], (atoms_or_coords * unit).tolist())) ptr = mol._atm[:,PTR_COORD] mol._env[ptr+0] = unit * atoms_or_coords[:,0] mol._env[ptr+1] = unit * atoms_or_coords[:,1] mol._env[ptr+2] = unit * atoms_or_coords[:,2] else: mol.symmetry = symmetry mol.build(False, False) # reset nuclear energy mol.enuc = None if mol.verbose >= logger.INFO: logger.info(mol, 'New geometry') for ia, atom in enumerate(mol._atom): coorda = tuple([x * param.BOHR for x in atom[1]]) coordb = tuple([x for x in atom[1]]) coords = coorda + coordb logger.info(mol, ' %3d %-4s %16.12f %16.12f %16.12f AA ' '%16.12f %16.12f %16.12f Bohr\n', ia+1, mol.atom_symbol(ia), *coords) return mol
[docs] def update(self, chkfile): return self.update_from_chk(chkfile)
[docs] def update_from_chk(self, chkfile): with h5py.File(chkfile, 'r') as fh5: mol = loads(fh5['mol'][()]) self.__dict__.update(mol.__dict__) return self
[docs] def has_ecp(self): '''Whether pseudo potential is used in the system.''' return len(self._ecpbas) > 0 or self._pseudo
[docs] def has_ecp_soc(self): '''Whether spin-orbit coupling is enabled in ECP.''' return (len(self._ecpbas) > 0 and numpy.any(self._ecpbas[:,SO_TYPE_OF] == 1))
[docs] def atom_symbol(self, atm_id): r'''For the given atom id, return the input symbol (without striping special characters) Args: atm_id : int 0-based Examples: >>> mol.build(atom='H^2 0 0 0; H 0 0 1.1') >>> mol.atom_symbol(0) H^2 ''' return _symbol(self._atom[atm_id][0])
[docs] def atom_pure_symbol(self, atm_id): r'''For the given atom id, return the standard symbol (striping special characters) Args: atm_id : int 0-based Examples: >>> mol.build(atom='H^2 0 0 0; H 0 0 1.1') >>> mol.atom_symbol(0) H ''' return _std_symbol(self._atom[atm_id][0])
@property def elements(self): '''A list of elements in the molecule''' return [self.atom_pure_symbol(i) for i in range(self.natm)]
[docs] def atom_charge(self, atm_id): r'''Nuclear effective charge of the given atom id Note "atom_charge /= charge(atom_symbol)" when ECP is enabled. Number of electrons screened by ECP can be obtained by charge(atom_symbol)-atom_charge Args: atm_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1') >>> mol.atom_charge(1) 17 ''' if self._atm[atm_id,NUC_MOD_OF] != NUC_FRAC_CHARGE: # regular QM atoms return self._atm[atm_id,CHARGE_OF] else: # MM atoms with fractional charges return self._env[self._atm[atm_id,PTR_FRAC_CHARGE]]
[docs] def atom_charges(self): '''np.asarray([mol.atom_charge(i) for i in range(mol.natm)])''' z = self._atm[:,CHARGE_OF] if numpy.any(self._atm[:,NUC_MOD_OF] == NUC_FRAC_CHARGE): # Create the integer nuclear charges first then replace the MM # particles with the MM charges that saved in _env[PTR_FRAC_CHARGE] z = numpy.array(z, dtype=numpy.double) idx = self._atm[:,NUC_MOD_OF] == NUC_FRAC_CHARGE # MM fractional charges can be positive or negative z[idx] = self._env[self._atm[idx,PTR_FRAC_CHARGE]] return z
[docs] def atom_nelec_core(self, atm_id): '''Number of core electrons for pseudo potential. ''' return charge(self.atom_symbol(atm_id)) - self.atom_charge(atm_id)
[docs] def atom_coord(self, atm_id, unit='Bohr'): r'''Coordinates (ndarray) of the given atom id Args: atm_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1') >>> mol.atom_coord(1) [ 0. 0. 2.07869874] ''' ptr = self._atm[atm_id,PTR_COORD] if not is_au(unit): return self._env[ptr:ptr+3] * param.BOHR else: return self._env[ptr:ptr+3].copy()
[docs] def atom_coords(self, unit='Bohr'): '''np.asarray([mol.atom_coord(i) for i in range(mol.natm)])''' ptr = self._atm[:,PTR_COORD] c = self._env[numpy.vstack((ptr,ptr+1,ptr+2)).T].copy() if not is_au(unit): c *= param.BOHR return c
atom_mass_list = atom_mass_list
[docs] def atom_nshells(self, atm_id): r'''Number of basis/shells of the given atom Args: atm_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1') >>> mol.atom_nshells(1) 5 ''' return (self._bas[:,ATOM_OF] == atm_id).sum()
[docs] def atom_shell_ids(self, atm_id): r'''A list of the shell-ids of the given atom Args: atm_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1', basis='cc-pvdz') >>> mol.atom_shell_ids(1) [3, 4, 5, 6, 7] ''' return numpy.where(self._bas[:,ATOM_OF] == atm_id)[0]
[docs] def bas_coord(self, bas_id): r'''Coordinates (ndarray) associated with the given basis id Args: bas_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1') >>> mol.bas_coord(1) [ 0. 0. 2.07869874] ''' atm_id = self.bas_atom(bas_id) ptr = self._atm[atm_id,PTR_COORD] return self._env[ptr:ptr+3].copy()
[docs] def bas_atom(self, bas_id): r'''The atom (0-based id) that the given basis sits on Args: bas_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1', basis='cc-pvdz') >>> mol.bas_atom(7) 1 ''' return self._bas[bas_id,ATOM_OF].copy()
[docs] def bas_angular(self, bas_id): r'''The angular momentum associated with the given basis Args: bas_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1', basis='cc-pvdz') >>> mol.bas_atom(7) 2 ''' return self._bas[bas_id,ANG_OF].copy()
[docs] def bas_nctr(self, bas_id): r'''The number of contracted GTOs for the given shell Args: bas_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1', basis='cc-pvdz') >>> mol.bas_atom(3) 3 ''' return self._bas[bas_id,NCTR_OF].copy()
[docs] def bas_nprim(self, bas_id): r'''The number of primitive GTOs for the given shell Args: bas_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1', basis='cc-pvdz') >>> mol.bas_atom(3) 11 ''' return self._bas[bas_id,NPRIM_OF].copy()
[docs] def bas_kappa(self, bas_id): r'''Kappa (if l < j, -l-1, else l) of the given shell Args: bas_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1', basis='cc-pvdz') >>> mol.bas_kappa(3) 0 ''' return self._bas[bas_id,KAPPA_OF].copy()
[docs] def bas_exp(self, bas_id): r'''exponents (ndarray) of the given shell Args: bas_id : int 0-based Examples: >>> mol.build(atom='H 0 0 0; Cl 0 0 1.1', basis='cc-pvdz') >>> mol.bas_kappa(0) [ 13.01 1.962 0.4446] ''' nprim = self.bas_nprim(bas_id) ptr = self._bas[bas_id,PTR_EXP] return self._env[ptr:ptr+nprim].copy()
[docs] def bas_exps(self): '''exponents of all basis return [mol.bas_exp(i) for i in range(self.nbas)] ''' nprims = self._bas[:,NPRIM_OF] pexps = self._bas[:,PTR_EXP] exps = [self._env[i0:i1] for i0, i1 in zip(pexps, pexps + nprims)] return exps
def _libcint_ctr_coeff(self, bas_id): nprim = self.bas_nprim(bas_id) nctr = self.bas_nctr(bas_id) ptr = self._bas[bas_id,PTR_COEFF] return self._env[ptr:ptr+nprim*nctr].reshape(nctr,nprim).T
[docs] def bas_ctr_coeff(self, bas_id): r'''Contract coefficients (ndarray) of the given shell Args: bas_id : int 0-based Examples: >>> mol.M(atom='H 0 0 0; Cl 0 0 1.1', basis='cc-pvdz') >>> mol.bas_ctr_coeff(0) [[ 10.03400444] [ 4.1188704 ] [ 1.53971186]] ''' l = self.bas_angular(bas_id) es = self.bas_exp(bas_id) cs = self._libcint_ctr_coeff(bas_id) cs = numpy.einsum('pi,p->pi', cs, 1/gto_norm(l, es)) return cs
[docs] def bas_len_spinor(self, bas_id): '''The number of spinor associated with given basis If kappa is 0, return 4l+2 ''' l = self.bas_angular(bas_id) k = self.bas_kappa(bas_id) return len_spinor(l, k)
[docs] def bas_len_cart(self, bas_id): '''The number of Cartesian function associated with given basis ''' return len_cart(self._bas[bas_id,ANG_OF])
npgto_nr = npgto_nr nao_nr = nao_nr nao_2c = nao_2c nao_cart = nao_cart nao_nr_range = nao_nr_range nao_2c_range = nao_2c_range ao_loc_nr = ao_loc_nr ao_loc_2c = ao_loc_2c @property def nao(self): if self._nao is None: return self.nao_nr() else: return self._nao @nao.setter def nao(self, x): self._nao = x ao_loc = property(ao_loc_nr) tmap = time_reversal_map = time_reversal_map
[docs] def intor(self, intor, comp=None, hermi=0, aosym='s1', out=None, shls_slice=None, grids=None): '''Integral generator. Args: intor : str Name of the 1e or 2e AO integrals. Ref to :func:`getints` for the complete list of available 1-electron integral names Kwargs: comp : int Components of the integrals, e.g. int1e_ipovlp_sph has 3 components. hermi : int Symmetry of the integrals | 0 : no symmetry assumed (default) | 1 : hermitian | 2 : anti-hermitian grids : ndarray Coordinates of grids for the int1e_grids integrals Returns: ndarray of 1-electron integrals, can be either 2-dim or 3-dim, depending on comp Examples: >>> mol.build(atom='H 0 0 0; H 0 0 1.1', basis='sto-3g') >>> mol.intor('int1e_ipnuc_sph', comp=3) # <nabla i | V_nuc | j> [[[ 0. 0. ] [ 0. 0. ]] [[ 0. 0. ] [ 0. 0. ]] [[ 0.10289944 0.48176097] [-0.48176097 -0.10289944]]] >>> mol.intor('int1e_nuc_spinor') [[-1.69771092+0.j 0.00000000+0.j -0.67146312+0.j 0.00000000+0.j] [ 0.00000000+0.j -1.69771092+0.j 0.00000000+0.j -0.67146312+0.j] [-0.67146312+0.j 0.00000000+0.j -1.69771092+0.j 0.00000000+0.j] [ 0.00000000+0.j -0.67146312+0.j 0.00000000+0.j -1.69771092+0.j]] ''' if not self._built: logger.warn(self, 'Warning: intor envs of %s not initialized.', self) # FIXME: Whether to check _built and call build? ._bas and .basis # may not be consistent. calling .build() may leads to wrong intor env. #self.build(False, False) intor = self._add_suffix(intor) bas = self._bas env = self._env if 'ECP' in intor: assert (self._ecp is not None) bas = numpy.vstack((self._bas, self._ecpbas)) env[AS_ECPBAS_OFFSET] = len(self._bas) env[AS_NECPBAS] = len(self._ecpbas) if shls_slice is None: shls_slice = (0, self.nbas, 0, self.nbas) elif '_grids' in intor: assert grids is not None env = numpy.append(env, grids.ravel()) env[NGRIDS] = grids.shape[0] env[PTR_GRIDS] = env.size - grids.size return moleintor.getints(intor, self._atm, bas, env, shls_slice, comp, hermi, aosym, out=out)
def _add_suffix(self, intor, cart=None): if not (intor[:4] == 'cint' or intor.endswith(('_sph', '_cart', '_spinor', '_ssc'))): if cart is None: cart = self.cart if cart: intor = intor + '_cart' else: intor = intor + '_sph' return intor
[docs] def intor_symmetric(self, intor, comp=None, grids=None): '''One-electron integral generator. The integrals are assumed to be hermitian Args: intor : str Name of the 1-electron integral. Ref to :func:`getints` for the complete list of available 1-electron integral names Kwargs: comp : int Components of the integrals, e.g. int1e_ipovlp_sph has 3 components. grids : ndarray Coordinates of grids for the int1e_grids integrals Returns: ndarray of 1-electron integrals, can be either 2-dim or 3-dim, depending on comp Examples: >>> mol.build(atom='H 0 0 0; H 0 0 1.1', basis='sto-3g') >>> mol.intor_symmetric('int1e_nuc_spinor') [[-1.69771092+0.j 0.00000000+0.j -0.67146312+0.j 0.00000000+0.j] [ 0.00000000+0.j -1.69771092+0.j 0.00000000+0.j -0.67146312+0.j] [-0.67146312+0.j 0.00000000+0.j -1.69771092+0.j 0.00000000+0.j] [ 0.00000000+0.j -0.67146312+0.j 0.00000000+0.j -1.69771092+0.j]] ''' return self.intor(intor, comp, 1, aosym='s4', grids=grids)
[docs] def intor_asymmetric(self, intor, comp=None, grids=None): '''One-electron integral generator. The integrals are assumed to be anti-hermitian Args: intor : str Name of the 1-electron integral. Ref to :func:`getints` for the complete list of available 1-electron integral names Kwargs: comp : int Components of the integrals, e.g. int1e_ipovlp has 3 components. grids : ndarray Coordinates of grids for the int1e_grids integrals Returns: ndarray of 1-electron integrals, can be either 2-dim or 3-dim, depending on comp Examples: >>> mol.build(atom='H 0 0 0; H 0 0 1.1', basis='sto-3g') >>> mol.intor_asymmetric('int1e_nuc_spinor') [[-1.69771092+0.j 0.00000000+0.j 0.67146312+0.j 0.00000000+0.j] [ 0.00000000+0.j -1.69771092+0.j 0.00000000+0.j 0.67146312+0.j] [-0.67146312+0.j 0.00000000+0.j -1.69771092+0.j 0.00000000+0.j] [ 0.00000000+0.j -0.67146312+0.j 0.00000000+0.j -1.69771092+0.j]] ''' return self.intor(intor, comp, 2, aosym='a4', grids=grids)
[docs] @lib.with_doc(moleintor.getints_by_shell.__doc__) def intor_by_shell(self, intor, shells, comp=None, grids=None): intor = self._add_suffix(intor) if 'ECP' in intor: assert (self._ecp is not None) bas = numpy.vstack((self._bas, self._ecpbas)) self._env[AS_ECPBAS_OFFSET] = len(self._bas) self._env[AS_NECPBAS] = len(self._ecpbas) else: bas = self._bas return moleintor.getints_by_shell(intor, shells, self._atm, bas, self._env, comp)
eval_ao = eval_gto = eval_gto energy_nuc = energy_nuc
[docs] def get_enuc(self): return self.enuc
[docs] def get_ao_indices(self, bas_list, ao_loc=None): ''' Generate (dis-continued) AO indices for basis specified in bas_list ''' if ao_loc is None: ao_loc = self.ao_loc return lib.locs_to_indices(ao_loc, bas_list)
sph_labels = spheric_labels = sph_labels cart_labels = cart_labels ao_labels = ao_labels spinor_labels = spinor_labels search_ao_label = search_ao_label
[docs] def search_shell_id(self, atm_id, l): return search_shell_id(self, atm_id, l)
search_ao_nr = search_ao_nr search_ao_r = search_ao_r aoslice_by_atom = aoslice_nr_by_atom = offset_ao_by_atom = offset_nr_by_atom = aoslice_by_atom aoslice_2c_by_atom = offset_2c_by_atom = offset_2c_by_atom condense_to_shell = condense_to_shell get_overlap_cond = get_overlap_cond to_uncontracted_cartesian_basis = to_uncontracted_cartesian_basis decontract_basis = decontract_basis ao_rotation_matrix = ao_rotation_matrix
[docs] def cart2sph_coeff(self, normalized='sp'): '''Transformation matrix that transforms Cartesian GTOs to spherical GTOs for all basis functions Kwargs: normalized : string or boolean How the Cartesian GTOs are normalized. Except s and p functions, Cartesian GTOs do not have the universal normalization coefficients for the different components of the same shell. The value of this argument can be one of 'sp', 'all', None. 'sp' means the Cartesian s and p basis are normalized. 'all' means all Cartesian functions are normalized. None means none of the Cartesian functions are normalized. The default value 'sp' is the convention used by libcint library. Examples: >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvtz') >>> c = mol.cart2sph_coeff() >>> s0 = mol.intor('int1e_ovlp_sph') >>> s1 = c.T.dot(mol.intor('int1e_ovlp_cart')).dot(c) >>> print(abs(s1-s0).sum()) >>> 4.58676826646e-15 ''' c2s_l = [cart2sph(l, normalized=normalized) for l in range(12)] c2s = [] for ib in range(self.nbas): l = self.bas_angular(ib) for n in range(self.bas_nctr(ib)): c2s.append(c2s_l[l]) return scipy.linalg.block_diag(*c2s)
[docs] def sph2spinor_coeff(self): '''Transformation matrix that transforms real-spherical GTOs to spinor GTOs for all basis functions Examples: >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvtz') >>> ca, cb = mol.sph2spinor_coeff() >>> s0 = mol.intor('int1e_ovlp_spinor') >>> s1 = ca.conj().T.dot(mol.intor('int1e_ovlp_sph')).dot(ca) >>> s1+= cb.conj().T.dot(mol.intor('int1e_ovlp_sph')).dot(cb) >>> print(abs(s1-s0).max()) >>> 6.66133814775e-16 ''' from pyscf.symm import sph return sph.sph2spinor_coeff(self)
[docs] def apply(self, fn, *args, **kwargs): if callable(fn): return lib.StreamObject.apply(self, fn, *args, **kwargs) elif isinstance(fn, str): method = getattr(self, fn.upper()) return method(*args, **kwargs) else: raise TypeError('First argument of .apply method must be a ' 'function/class or a name (string) of a method.')
@contextlib.contextmanager def _TemporaryMoleContext(self, method, args, args_bak): '''Almost every method depends on the Mole environment. Ensure the modification in temporary environment being thread safe ''' haslock = self._ctx_lock if haslock is None: self._ctx_lock = threading.RLock() with self._ctx_lock: method(*args) try: yield finally: method(*args_bak) if haslock is None: self._ctx_lock = None
[docs] class Mole(MoleBase): '''A Mole object to hold the basic information of a molecule. ''' __add__ = conc_mol inertia_moment = inertia_moment tostring = tostring tofile = tofile def __init__(self, **kwargs): MoleBase.__init__(self) for key, val in kwargs.items(): setattr(self, key, val)
[docs] def fromstring(self, string, format='xyz'): '''Update the Mole object based on the input geometry string''' atom = self.format_atom(fromstring(string, format), unit=1) self.set_geom_(atom, unit='Angstrom', inplace=True) if format == 'sdf' and 'M CHG' in string: raise NotImplementedError #FIXME self.charge = 0 return self
[docs] def fromfile(self, filename, format=None): '''Update the Mole object based on the input geometry file''' atom = self.format_atom(fromfile(filename, format), unit=1) self.set_geom_(atom, unit='Angstrom', inplace=True) if format == 'sdf': raise NotImplementedError return self
def __getattr__(self, key): '''To support accessing methods (mol.HF, mol.KS, mol.CCSD, mol.CASSCF, ...) from Mole object. ''' if key[0] == '_': # Skip private attributes and Python builtins # https://bugs.python.org/issue45985 # https://github.com/python/cpython/issues/103936 # @property and __getattr__ conflicts. As a temporary fix, call # object.__getattribute__ method to re-raise AttributeError return object.__getattribute__(self, key) # Import all available modules. Some methods are registered to other # classes/modules when importing modules in __all__. from pyscf import __all__ # noqa from pyscf import scf, dft for mod in (scf, dft): method = getattr(mod, key, None) if callable(method): return method(self) if 'TD' in key[:3]: if key in ('TDHF', 'TDA'): mf = scf.HF(self) else: mf = dft.KS(self) xc = key.split('TD', 1)[1] if xc in dft.XC: mf.xc = xc key = 'TDDFT' elif 'CI' in key or 'CC' in key or 'CAS' in key or 'MP' in key: mf = scf.HF(self) else: return object.__getattribute__(self, key) method = getattr(mf, key) # Initialize SCF object for post-SCF methods if applicable if self.nelectron != 0: mf.run() return method
[docs] def ao2mo(self, mo_coeffs, erifile=None, dataname='eri_mo', intor='int2e', **kwargs): '''Integral transformation for arbitrary orbitals and arbitrary integrals. See more detalied documentation in func:`ao2mo.kernel`. Args: mo_coeffs (an np array or a list of arrays) : A matrix of orbital coefficients if it is a numpy ndarray, or four sets of orbital coefficients, corresponding to the four indices of (ij|kl). Kwargs: erifile (str or h5py File or h5py Group object) : The file/object to store the transformed integrals. If not given, the return value is an array (in memory) of the transformed integrals. dataname : str *Note* this argument is effective if erifile is given. The dataset name in the erifile (ref the hierarchy of HDF5 format http://www.hdfgroup.org/HDF5/doc1.6/UG/09_Groups.html). By assigning different dataname, the existed integral file can be reused. If the erifile contains the specified dataname, the old integrals will be replaced by the new one under the key dataname. intor (str) : integral name Name of the 2-electron integral. Ref to :func:`getints_by_shell` for the complete list of available 2-electron integral names Returns: An array of transformed integrals if erifile is not given. Otherwise, return the file/fileobject if erifile is assigned. Examples: >>> import pyscf >>> mol = pyscf.M(atom='O 0 0 0; H 0 1 0; H 0 0 1', basis='sto3g') >>> mo1 = numpy.random.random((mol.nao_nr(), 10)) >>> mo2 = numpy.random.random((mol.nao_nr(), 8)) >>> eri1 = mol.ao2mo(mo1) >>> print(eri1.shape) (55, 55) >>> eri1 = mol.ao2mo(mo1, compact=False) >>> print(eri1.shape) (100, 100) >>> eri1 = mol.ao2mo(eri, (mo1,mo2,mo2,mo2)) >>> print(eri1.shape) (80, 36) >>> eri1 = mol.ao2mo(eri, (mo1,mo2,mo2,mo2), erifile='water.h5') ''' from pyscf import ao2mo return ao2mo.kernel(self, mo_coeffs, erifile, dataname, intor, **kwargs)
[docs] def to_cell(self, a, dimension=3): '''Put a molecule in a cell with periodic boundary condictions Args: a : (3,3) ndarray Lattice primitive vectors. Each row is a lattice vector ''' from pyscf.pbc.gto import Cell cell = Cell() cell.__dict__.update(self.__dict__) cell.dimension = dimension cell.build(False, False) return cell
def _parse_default_basis(basis, uniq_atoms): if isinstance(basis, (str, tuple, list)): # default basis for all atoms _basis = {a: basis for a in uniq_atoms} elif 'default' in basis: default_basis = basis['default'] _basis = {a: default_basis for a in uniq_atoms} _basis.update(basis) del _basis['default'] else: _basis = basis return _basis def _parse_nuc_mod(str_or_int_or_fn): nucmod = NUC_POINT if callable(str_or_int_or_fn): nucmod = str_or_int_or_fn elif (isinstance(str_or_int_or_fn, str) and str_or_int_or_fn[0].upper() == 'G'): # 'gauss_nuc' nucmod = NUC_GAUSS elif str_or_int_or_fn != 0: nucmod = NUC_GAUSS return nucmod def _update_from_cmdargs_(mol): try: # Detect whether in Ipython shell __IPYTHON__ # noqa: F821 return except Exception: pass if not mol._built: # parse cmdline args only once opts = cmd_args.cmd_args() if opts.verbose: mol.verbose = opts.verbose if opts.max_memory: mol.max_memory = opts.max_memory if opts.output: mol.output = opts.output
[docs] def from_zmatrix(atomstr): '''>>> a = """H H 1 2.67247631453057 H 1 4.22555607338457 2 50.7684795164077 H 1 2.90305235726773 2 79.3904651036893 3 6.20854462618583""" >>> for x in zmat2cart(a): print(x) ['H', array([ 0., 0., 0.])] ['H', array([ 2.67247631, 0. , 0. ])] ['H', array([ 2.67247631, 0. , 3.27310166])] ['H', array([ 0.53449526, 0.30859098, 2.83668811])] ''' from pyscf.symm import rotation_mat atomstr = atomstr.replace(';','\n').replace(',',' ') symbols = [] coord = [] min_items_per_line = 1 for line_id, line in enumerate(atomstr.splitlines()): line = line.strip() if line and line[0] != '#': rawd = line.split() if len(rawd) < min_items_per_line: raise ValueError('Zmatrix format error at L%d %s' % (line_id, line)) symbols.append(rawd[0]) if len(rawd) < 3: coord.append(numpy.zeros(3)) min_items_per_line = 3 elif len(rawd) == 3: if DISABLE_EVAL: coord.append(numpy.array((float(rawd[2]), 0, 0))) else: coord.append(numpy.array((eval(rawd[2]), 0, 0))) min_items_per_line = 5 elif len(rawd) == 5: if DISABLE_EVAL: vals = rawd[1:] else: vals = eval(','.join(rawd[1:])) bonda = int(vals[0]) - 1 bond = float(vals[1]) anga = int(vals[2]) - 1 ang = float(vals[3])/180*numpy.pi assert (ang >= 0) v1 = coord[anga] - coord[bonda] if not numpy.allclose(v1[:2], 0): vecn = numpy.cross(v1, numpy.array((0.,0.,1.))) else: # on z vecn = numpy.array((0.,0.,1.)) rmat = rotation_mat(vecn, ang) c = numpy.dot(rmat, v1) * (bond/numpy.linalg.norm(v1)) coord.append(coord[bonda]+c) min_items_per_line = 7 else: if DISABLE_EVAL: vals = rawd[1:] else: vals = eval(','.join(rawd[1:])) bonda = int(vals[0]) - 1 bond = float(vals[1]) anga = int(vals[2]) - 1 ang = float(vals[3])/180*numpy.pi assert (ang >= 0 and ang <= numpy.pi) v1 = coord[anga] - coord[bonda] v1 /= numpy.linalg.norm(v1) if ang < 1e-7: c = v1 * bond elif numpy.pi-ang < 1e-7: c = -v1 * bond else: diha = int(vals[4]) - 1 dih = float(vals[5])/180*numpy.pi v2 = coord[diha] - coord[anga] vecn = numpy.cross(v2, -v1) vecn_norm = numpy.linalg.norm(vecn) if vecn_norm < 1e-7: if not numpy.allclose(v1[:2], 0): vecn = numpy.cross(v1, numpy.array((0.,0.,1.))) else: # on z vecn = numpy.array((0.,0.,1.)) rmat = rotation_mat(vecn, ang) c = numpy.dot(rmat, v1) * bond else: rmat = rotation_mat(v1, -dih) vecn = numpy.dot(rmat, vecn) / vecn_norm rmat = rotation_mat(vecn, ang) c = numpy.dot(rmat, v1) * bond coord.append(coord[bonda]+c) atoms = list(zip([_atom_symbol(x) for x in symbols], coord)) return atoms
zmat2cart = zmat = from_zmatrix
[docs] def cart2zmat(coord): '''>>> c = numpy.array(( (0.000000000000, 1.889726124565, 0.000000000000), (0.000000000000, 0.000000000000, -1.889726124565), (1.889726124565, -1.889726124565, 0.000000000000), (1.889726124565, 0.000000000000, 1.133835674739))) >>> print(cart2zmat(c)) 1 1 2.67247631453057 1 4.22555607338457 2 50.7684795164077 1 2.90305235726773 2 79.3904651036893 3 6.20854462618583 ''' zstr = [] zstr.append('1') if len(coord) > 1: r1 = coord[1] - coord[0] nr1 = numpy.linalg.norm(r1) zstr.append('1 %.15g' % nr1) if len(coord) > 2: r2 = coord[2] - coord[0] nr2 = numpy.linalg.norm(r2) a = numpy.arccos(numpy.dot(r1,r2)/(nr1*nr2)) zstr.append('1 %.15g 2 %.15g' % (nr2, a*180/numpy.pi)) if len(coord) > 3: o0, o1, o2 = coord[:3] p0, p1, p2 = 1, 2, 3 for k, c in enumerate(coord[3:]): r0 = c - o0 nr0 = numpy.linalg.norm(r0) r1 = o1 - o0 nr1 = numpy.linalg.norm(r1) a1 = numpy.arccos(numpy.dot(r0,r1)/(nr0*nr1)) b0 = numpy.cross(r0, r1) nb0 = numpy.linalg.norm(b0) if abs(nb0) < 1e-7: # o0, o1, c in line a2 = 0 zstr.append('%d %.15g %d %.15g %d %.15g' % (p0, nr0, p1, a1*180/numpy.pi, p2, a2)) else: b1 = numpy.cross(o2-o0, r1) nb1 = numpy.linalg.norm(b1) if abs(nb1) < 1e-7: # o0 o1 o2 in line a2 = 0 zstr.append('%d %.15g %d %.15g %d %.15g' % (p0, nr0, p1, a1*180/numpy.pi, p2, a2)) o2 = c p2 = 4 + k else: if numpy.dot(numpy.cross(b1, b0), r1) < 0: a2 = numpy.arccos(numpy.dot(b1, b0) / (nb0*nb1)) else: a2 =-numpy.arccos(numpy.dot(b1, b0) / (nb0*nb1)) zstr.append('%d %.15g %d %.15g %d %.15g' % (p0, nr0, p1, a1*180/numpy.pi, p2, a2*180/numpy.pi)) return '\n'.join(zstr)
[docs] def dyall_nuc_mod(nuc_charge, nucprop={}): ''' Generate the nuclear charge distribution parameter zeta rho(r) = nuc_charge * Norm * exp(-zeta * r^2) Ref. L. Visscher and K. Dyall, At. Data Nucl. Data Tables, 67, 207 (1997) ''' mass = nucprop.get('mass', elements.ISOTOPE_MAIN[nuc_charge]) r = (0.836 * mass**(1./3) + 0.570) / 52917.7249 zeta = 1.5 / (r**2) return zeta
[docs] def filatov_nuc_mod(nuc_charge, nucprop={}): ''' Generate the nuclear charge distribution parameter zeta rho(r) = nuc_charge * Norm * exp(-zeta * r^2) Ref. M. Filatov and D. Cremer, Theor. Chem. Acc. 108, 168 (2002) M. Filatov and D. Cremer, Chem. Phys. Lett. 351, 259 (2002) ''' c = param.LIGHT_SPEED nuc_charge = charge(nuc_charge) r = (-0.263188*nuc_charge + 106.016974 + 138.985999/nuc_charge) / c**2 zeta = 1 / (r**2) return zeta
[docs] def fakemol_for_charges(coords, expnt=1e16): '''Construct a fake Mole object that holds the charges on the given coordinates (coords). The shape of the charge can be a normal distribution with the Gaussian exponent (expnt). ''' nbas = coords.shape[0] expnt = numpy.asarray(expnt).ravel() fakeatm = numpy.zeros((nbas,ATM_SLOTS), dtype=numpy.int32) fakebas = numpy.zeros((nbas,BAS_SLOTS), dtype=numpy.int32) fakeenv = [0] * PTR_ENV_START ptr = PTR_ENV_START fakeatm[:,PTR_COORD] = numpy.arange(ptr, ptr+nbas*3, 3) fakeenv.append(coords.ravel()) ptr += nbas*3 fakebas[:,ATOM_OF] = numpy.arange(nbas) fakebas[:,NPRIM_OF] = 1 fakebas[:,NCTR_OF] = 1 if expnt.size == 1: expnt = expnt[0] # approximate point charge with gaussian distribution exp(-1e16*r^2) fakebas[:,PTR_EXP] = ptr fakebas[:,PTR_COEFF] = ptr+1 fakeenv.append([expnt, 1/(2*numpy.sqrt(numpy.pi)*gaussian_int(2,expnt))]) ptr += 2 else: assert expnt.size == nbas # approximate point charge with gaussian distribution exp(-expnt*r^2) fakebas[:,PTR_EXP] = ptr + numpy.arange(nbas) * 2 fakebas[:,PTR_COEFF] = ptr + numpy.arange(nbas) * 2 + 1 coeff = 1 / (2 * numpy.sqrt(numpy.pi) * gaussian_int(2, expnt)) fakeenv.append(numpy.vstack((expnt, coeff)).T.ravel()) fakemol = Mole() fakemol._atm = fakeatm fakemol._bas = fakebas fakemol._env = numpy.hstack(fakeenv) fakemol._built = True return fakemol
[docs] def classify_ecp_pseudo(mol, ecp, pp): ''' Check whether ecp keywords are presented in pp and whether pp keywords are presented in ecp. The return (ecp, pp) should have only the ecp keywords and pp keywords in each dict. The "misplaced" ecp/pp keywords have the lowest priority. E.g., if an atom is defined in ecp, the same ecp atom found in pp does NOT replace the definition in ecp, and vise versa. ''' def classify(ecp, pp_alias): if isinstance(ecp, str): if basis._format_pseudo_name(ecp)[0] in pp_alias: return {}, {'default': str(ecp)} elif isinstance(ecp, dict): ecp_as_pp = {} for atom in ecp: key = ecp[atom] if (isinstance(key, str) and basis._format_pseudo_name(key)[0] in pp_alias): ecp_as_pp[atom] = str(key) if ecp_as_pp: ecp_left = dict(ecp) for atom in ecp_as_pp: ecp_left.pop(atom) return ecp_left, ecp_as_pp return ecp, {} ecp_left, ecp_as_pp = classify(ecp, basis.PP_ALIAS) pp_left , pp_as_ecp = classify(pp, basis.ALIAS) # ecp = ecp_left + pp_as_ecp # pp = pp_left + ecp_as_pp ecp = ecp_left if pp_as_ecp and not isinstance(ecp_left, str): # If ecp is a str, all atoms have ecp definition. # The misplaced ecp has no effects. logger.info(mol, 'pseudo-potentials keywords for %s found in .ecp', pp_as_ecp.keys()) if ecp_left: pp_as_ecp.update(ecp_left) ecp = pp_as_ecp pp = pp_left if ecp_as_pp and not isinstance(pp_left, str): logger.info(mol, 'ECP keywords for %s found in .pseudo', ecp_as_pp.keys()) if pp_left: ecp_as_pp.update(pp_left) pp = ecp_as_pp return ecp, pp