Source code for pyscf.gw.ugw_ac

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Tianyu Zhu <zhutianyu1991@gmail.com>
#

'''
Spin-unrestricted G0W0 approximation with analytic continuation

This implementation has N^4 scaling, and is faster than GW-CD (N^4)
and analytic GW (N^6) methods.
GW-AC is recommended for valence states only, and is inaccuarate for core states.

Method:
    See T. Zhu and G.K.-L. Chan, arxiv:2007.03148 (2020) for details
    Compute Sigma on imaginary frequency with density fitting,
    then analytically continued to real frequency

Useful References:
    J. Chem. Theory Comput. 12, 3623-3635 (2016)
    New J. Phys. 14, 053020 (2012)
'''

from functools import reduce
import numpy
import numpy as np
import h5py
from scipy.optimize import newton, least_squares

from pyscf import lib
from pyscf.lib import logger
from pyscf.ao2mo import _ao2mo
from pyscf import df, scf
from pyscf.mp.ump2 import get_nocc, get_nmo, get_frozen_mask
from pyscf import __config__

einsum = lib.einsum

[docs] def kernel(gw, mo_energy, mo_coeff, Lpq=None, orbs=None, nw=None, vhf_df=False, verbose=logger.NOTE): ''' GW-corrected quasiparticle orbital energies Returns: A list : converged, mo_energy, mo_coeff ''' mf = gw._scf mol = gw.mol if gw.frozen is None: frozen = 0 else: frozen = gw.frozen assert (isinstance(frozen, int)) nocca, noccb = gw.nocc nmoa, nmob = gw.nmo # only support frozen core assert (frozen < nocca and frozen < noccb) if Lpq is None: Lpq = gw.ao2mo(mo_coeff) if orbs is None: orbs = range(nmoa) else: orbs = [x - frozen for x in orbs] if orbs[0] < 0: logger.warn(gw, 'GW orbs must be larger than frozen core!') raise RuntimeError # v_xc v_mf = mf.get_veff() vj = mf.get_j() v_mf[0] = v_mf[0] - (vj[0] + vj[1]) v_mf[1] = v_mf[1] - (vj[0] + vj[1]) v_mf_frz = np.zeros((2, nmoa-frozen, nmob-frozen)) for s in range(2): v_mf_frz[s] = reduce(numpy.dot, (mo_coeff[s].T, v_mf[s], mo_coeff[s])) v_mf = v_mf_frz # v_hf from DFT/HF density if vhf_df and frozen == 0: # density fitting vk vk = np.zeros_like(v_mf) vk[0] = -einsum('Lni,Lim->nm',Lpq[0,:,:,:nocca],Lpq[0,:,:nocca,:]) vk[1] = -einsum('Lni,Lim->nm',Lpq[1,:,:,:noccb],Lpq[1,:,:noccb,:]) else: # exact vk without density fitting dm = mf.make_rdm1() uhf = scf.UHF(mol) vk = uhf.get_veff(mol, dm) vj = uhf.get_j(mol, dm) vk[0] = vk[0] - (vj[0] + vj[1]) vk[1] = vk[1] - (vj[0] + vj[1]) vk_frz = np.zeros((2, nmoa-frozen, nmob-frozen)) for s in range(2): vk_frz[s] = reduce(numpy.dot, (mo_coeff[s].T, vk[s], mo_coeff[s])) vk = vk_frz # Grids for integration on imaginary axis freqs,wts = _get_scaled_legendre_roots(nw) # Compute self-energy on imaginary axis i*[0,iw_cutoff] sigmaI,omega = get_sigma_diag(gw, orbs, Lpq, freqs, wts, iw_cutoff=5.) # Analytic continuation if gw.ac == 'twopole': coeff_a = AC_twopole_diag(sigmaI[0], omega[0], orbs, nocca) coeff_b = AC_twopole_diag(sigmaI[1], omega[1], orbs, noccb) elif gw.ac == 'pade': coeff_a, omega_fit_a = AC_pade_thiele_diag(sigmaI[0], omega[0]) coeff_b, omega_fit_b = AC_pade_thiele_diag(sigmaI[1], omega[1]) omega_fit = np.asarray((omega_fit_a,omega_fit_b)) coeff = np.asarray((coeff_a,coeff_b)) conv = True homo = max(mo_energy[0][nocca-1], mo_energy[1][noccb-1]) lumo = min(mo_energy[0][nocca], mo_energy[1][noccb]) ef = (homo+lumo)/2. mf_mo_energy = mo_energy.copy() mo_energy = np.zeros_like(np.asarray(gw._scf.mo_energy)) for s in range(2): for p in orbs: if gw.linearized: # linearized G0W0 de = 1e-6 ep = mf_mo_energy[s][p] #TODO: analytic sigma derivative if gw.ac == 'twopole': sigmaR = two_pole(ep-ef, coeff[s,:,p-orbs[0]]).real dsigma = two_pole(ep-ef+de, coeff[s,:,p-orbs[0]]).real - sigmaR.real elif gw.ac == 'pade': sigmaR = pade_thiele(ep-ef, omega_fit[s,p-orbs[0]], coeff[s,:,p-orbs[0]]).real dsigma = pade_thiele(ep-ef+de, omega_fit[s,p-orbs[0]], coeff[s,:,p-orbs[0]]).real - sigmaR.real zn = 1.0/(1.0-dsigma/de) e = ep + zn*(sigmaR.real + vk[s,p,p] - v_mf[s,p,p]) mo_energy[s,p+frozen] = e else: # self-consistently solve QP equation def quasiparticle(omega): if gw.ac == 'twopole': sigmaR = two_pole(omega-ef, coeff[s,:,p-orbs[0]]).real elif gw.ac == 'pade': sigmaR = pade_thiele(omega-ef, omega_fit[s,p-orbs[0]], coeff[s,:,p-orbs[0]]).real return omega - mf_mo_energy[s][p] - (sigmaR.real + vk[s,p,p] - v_mf[s,p,p]) try: e = newton(quasiparticle, mf_mo_energy[s][p], tol=1e-6, maxiter=100) mo_energy[s,p+frozen] = e except RuntimeError: conv = False mo_coeff = gw._scf.mo_coeff if gw.verbose >= logger.DEBUG: numpy.set_printoptions(threshold=nmoa) logger.debug(gw, ' GW mo_energy spin-up =\n%s', mo_energy[0]) logger.debug(gw, ' GW mo_energy spin-down =\n%s', mo_energy[1]) numpy.set_printoptions(threshold=1000) return conv, mo_energy, mo_coeff
[docs] def get_rho_response(omega, mo_energy, Lpqa, Lpqb): ''' Compute density response function in auxiliary basis at freq iw ''' naux, nocca, nvira = Lpqa.shape naux, noccb, nvirb = Lpqb.shape eia_a = mo_energy[0,:nocca,None] - mo_energy[0,None,nocca:] eia_b = mo_energy[1,:noccb,None] - mo_energy[1,None,noccb:] eia_a = eia_a/(omega**2+eia_a*eia_a) eia_b = eia_b/(omega**2+eia_b*eia_b) Pia_a = einsum('Pia,ia->Pia',Lpqa,eia_a) Pia_b = einsum('Pia,ia->Pia',Lpqb,eia_b) # Response from both spin-up and spin-down density Pi = 2.* (einsum('Pia,Qia->PQ',Pia_a,Lpqa) + einsum('Pia,Qia->PQ',Pia_b,Lpqb)) return Pi
[docs] def get_sigma_diag(gw, orbs, Lpq, freqs, wts, iw_cutoff=None): ''' Compute GW correlation self-energy (diagonal elements) in MO basis on imaginary axis ''' mo_energy = _mo_energy_without_core(gw, gw._scf.mo_energy) nocca, noccb = gw.nocc nmoa, nmob = gw.nmo nw = len(freqs) naux = Lpq[0].shape[0] norbs = len(orbs) # TODO: Treatment of degeneracy homo = max(mo_energy[0][nocca-1], mo_energy[1][noccb-1]) lumo = min(mo_energy[0][nocca], mo_energy[1][noccb]) if (lumo-homo) < 1e-3: logger.warn(gw, 'GW not well-defined for degeneracy!') ef = (homo+lumo)/2. # Integration on numerical grids if iw_cutoff is not None: nw_sigma = sum(iw < iw_cutoff for iw in freqs) + 1 else: nw_sigma = nw + 1 # Compute occ for -iw and vir for iw separately # to avoid branch cuts in analytic continuation omega_occ = np.zeros((nw_sigma), dtype=np.complex128) omega_vir = np.zeros((nw_sigma), dtype=np.complex128) omega_occ[0] = 0.j omega_vir[0] = 0.j omega_occ[1:] = -1j*freqs[:(nw_sigma-1)] omega_vir[1:] = 1j*freqs[:(nw_sigma-1)] orbs_occ_a = [i for i in orbs if i < nocca] orbs_occ_b = [i for i in orbs if i < noccb] norbs_occ_a = len(orbs_occ_a) norbs_occ_b = len(orbs_occ_b) emo_occ_a = omega_occ[None,:] + ef - mo_energy[0,:,None] emo_occ_b = omega_occ[None,:] + ef - mo_energy[1,:,None] emo_vir_a = omega_vir[None,:] + ef - mo_energy[0,:,None] emo_vir_b = omega_vir[None,:] + ef - mo_energy[1,:,None] sigma = np.zeros((2,norbs,nw_sigma),dtype=np.complex128) omega = np.zeros((2,norbs,nw_sigma),dtype=np.complex128) for s in range(2): for p in range(norbs): orbp = orbs[p] if orbp < gw.nocc[s]: omega[s,p] = omega_occ.copy() else: omega[s,p] = omega_vir.copy() for w in range(nw): Pi = get_rho_response(freqs[w], mo_energy, Lpq[0,:,:nocca,nocca:], Lpq[1,:,:noccb,noccb:]) Pi_inv = np.linalg.inv(np.eye(naux)-Pi)-np.eye(naux) g0_occ_a = wts[w] * emo_occ_a / (emo_occ_a**2+freqs[w]**2) g0_vir_a = wts[w] * emo_vir_a / (emo_vir_a**2+freqs[w]**2) g0_occ_b = wts[w] * emo_occ_b / (emo_occ_b**2+freqs[w]**2) g0_vir_b = wts[w] * emo_vir_b / (emo_vir_b**2+freqs[w]**2) Qnm_a = einsum('Pnm,PQ->Qnm',Lpq[0][:,orbs,:],Pi_inv) Qnm_b = einsum('Pnm,PQ->Qnm',Lpq[1][:,orbs,:],Pi_inv) Wmn_a = einsum('Qnm,Qmn->mn',Qnm_a,Lpq[0][:,:,orbs]) Wmn_b = einsum('Qnm,Qmn->mn',Qnm_b,Lpq[1][:,:,orbs]) sigma[0,:norbs_occ_a] += -einsum('mn,mw->nw',Wmn_a[:,:norbs_occ_a],g0_occ_a)/np.pi sigma[0,norbs_occ_a:] += -einsum('mn,mw->nw',Wmn_a[:,norbs_occ_a:],g0_vir_a)/np.pi sigma[1,:norbs_occ_b] += -einsum('mn,mw->nw',Wmn_b[:,:norbs_occ_b],g0_occ_b)/np.pi sigma[1,norbs_occ_b:] += -einsum('mn,mw->nw',Wmn_b[:,norbs_occ_b:],g0_vir_b)/np.pi return sigma, omega
def _get_scaled_legendre_roots(nw): """ Scale nw Legendre roots, which lie in the interval [-1, 1], so that they lie in [0, inf) Ref: www.cond-mat.de/events/correl19/manuscripts/ren.pdf Returns: freqs : 1D ndarray wts : 1D ndarray """ freqs, wts = np.polynomial.legendre.leggauss(nw) x0 = 0.5 freqs_new = x0*(1.+freqs)/(1.-freqs) wts = wts*2.*x0/(1.-freqs)**2 return freqs_new, wts def _get_clenshaw_curtis_roots(nw): """ Clenshaw-Curtis qaudrature on [0,inf) Ref: J. Chem. Phys. 132, 234114 (2010) Returns: freqs : 1D ndarray wts : 1D ndarray """ freqs = np.zeros(nw) wts = np.zeros(nw) a = 0.2 for w in range(nw): t = (w+1.0)/nw * np.pi/2. freqs[w] = a / np.tan(t) if w != nw-1: wts[w] = a*np.pi/2./nw/(np.sin(t)**2) else: wts[w] = a*np.pi/4./nw/(np.sin(t)**2) return freqs[::-1], wts[::-1]
[docs] def two_pole_fit(coeff, omega, sigma): cf = coeff[:5] + 1j*coeff[5:] f = cf[0] + cf[1]/(omega+cf[3]) + cf[2]/(omega+cf[4]) - sigma f[0] = f[0]/0.01 return np.array([f.real,f.imag]).reshape(-1)
[docs] def two_pole(freqs, coeff): cf = coeff[:5] + 1j*coeff[5:] return cf[0] + cf[1]/(freqs+cf[3]) + cf[2]/(freqs+cf[4])
[docs] def AC_twopole_diag(sigma, omega, orbs, nocc): """ Analytic continuation to real axis using a two-pole model Returns: coeff: 2D array (ncoeff, norbs) """ norbs, nw = sigma.shape coeff = np.zeros((10,norbs)) for p in range(norbs): # target = np.array([sigma[p].real,sigma[p].imag]).reshape(-1) if orbs[p] < nocc: x0 = np.array([0, 1, 1, 1, -1, 0, 0, 0, -1.0, -0.5]) else: x0 = np.array([0, 1, 1, 1, -1, 0, 0, 0, 1.0, 0.5]) #TODO: analytic gradient xopt = least_squares(two_pole_fit, x0, jac='3-point', method='trf', xtol=1e-10, gtol = 1e-10, max_nfev=1000, verbose=0, args=(omega[p], sigma[p])) if xopt.success is False: print('WARN: 2P-Fit Orb %d not converged, cost function %e'%(p,xopt.cost)) coeff[:,p] = xopt.x.copy() return coeff
[docs] def thiele(fn,zn): nfit = len(zn) g = np.zeros((nfit,nfit),dtype=np.complex128) g[:,0] = fn.copy() for i in range(1,nfit): g[i:,i] = (g[i-1,i-1]-g[i:,i-1])/((zn[i:]-zn[i-1])*g[i:,i-1]) a = g.diagonal() return a
[docs] def pade_thiele(freqs,zn,coeff): nfit = len(coeff) X = coeff[-1]*(freqs-zn[-2]) for i in range(nfit-1): idx = nfit-i-1 X = coeff[idx]*(freqs-zn[idx-1])/(1.+X) X = coeff[0]/(1.+X) return X
[docs] def AC_pade_thiele_diag(sigma, omega): """ Analytic continuation to real axis using a Pade approximation from Thiele's reciprocal difference method Reference: J. Low Temp. Phys. 29, 179 (1977) Returns: coeff: 2D array (ncoeff, norbs) omega: 2D array (norbs, npade) """ idx = range(1,40,6) sigma1 = sigma[:,idx].copy() sigma2 = sigma[:,(idx[-1]+4)::4].copy() sigma = np.hstack((sigma1,sigma2)) omega1 = omega[:,idx].copy() omega2 = omega[:,(idx[-1]+4)::4].copy() omega = np.hstack((omega1,omega2)) norbs, nw = sigma.shape npade = nw // 2 coeff = np.zeros((npade*2,norbs),dtype=np.complex128) for p in range(norbs): coeff[:,p] = thiele(sigma[p,:npade*2], omega[p,:npade*2]) return coeff, omega[:,:npade*2]
def _mo_energy_without_core(gw, mo_energy): moidx = get_frozen_mask(gw) mo_energy = (mo_energy[0][moidx[0]], mo_energy[1][moidx[1]]) return np.asarray(mo_energy) def _mo_without_core(gw, mo): moidx = get_frozen_mask(gw) mo = (mo[0][:,moidx[0]], mo[1][:,moidx[1]]) return np.asarray(mo)
[docs] class UGWAC(lib.StreamObject): linearized = getattr(__config__, 'gw_ugw_UGW_linearized', False) # Analytic continuation: pade or twopole ac = getattr(__config__, 'gw_ugw_UGW_ac', 'pade') _keys = { 'linearized','ac', 'mol', 'frozen', 'with_df', 'mo_energy', 'mo_coeff', 'mo_occ', 'sigma', } def __init__(self, mf, frozen=None): self.mol = mf.mol self._scf = mf self.verbose = self.mol.verbose self.stdout = self.mol.stdout self.max_memory = mf.max_memory self.frozen = frozen # DF-GW must use density fitting integrals if getattr(mf, 'with_df', None): self.with_df = mf.with_df else: self.with_df = df.DF(mf.mol) self.with_df.auxbasis = df.make_auxbasis(mf.mol, mp2fit=True) ################################################## # don't modify the following attributes, they are not input options self._nocc = None self._nmo = None # self.mo_energy: GW quasiparticle energy, not scf mo_energy self.mo_energy = None self.mo_coeff = mf.mo_coeff self.mo_occ = mf.mo_occ self.sigma = None
[docs] def dump_flags(self): log = logger.Logger(self.stdout, self.verbose) log.info('') log.info('******** %s ********', self.__class__) log.info('method = %s', self.__class__.__name__) nocca, noccb = self.nocc nmoa, nmob = self.nmo nvira = nmoa - nocca nvirb = nmob - noccb log.info('GW (nocca, noccb) = (%d, %d), (nvira, nvirb) = (%d, %d)', nocca, noccb, nvira, nvirb) if self.frozen is not None: log.info('frozen orbitals %s', str(self.frozen)) logger.info(self, 'use perturbative linearized QP eqn = %s', self.linearized) logger.info(self, 'analytic continuation method = %s', self.ac) return self
@property def nocc(self): return self.get_nocc() @nocc.setter def nocc(self, n): self._nocc = n @property def nmo(self): return self.get_nmo() @nmo.setter def nmo(self, n): self._nmo = n get_nocc = get_nocc get_nmo = get_nmo get_frozen_mask = get_frozen_mask
[docs] def kernel(self, mo_energy=None, mo_coeff=None, Lpq=None, orbs=None, nw=100, vhf_df=False): """ Input: orbs: self-energy orbs nw: grid number vhf_df: whether using density fitting for HF exchange Output: mo_energy: GW quasiparticle energy """ if mo_coeff is None: mo_coeff = _mo_without_core(self, self._scf.mo_coeff) if mo_energy is None: mo_energy = _mo_energy_without_core(self, self._scf.mo_energy) cput0 = (logger.process_clock(), logger.perf_counter()) self.dump_flags() self.converged, self.mo_energy, self.mo_coeff = \ kernel(self, mo_energy, mo_coeff, Lpq=Lpq, orbs=orbs, nw=nw, vhf_df=vhf_df, verbose=self.verbose) logger.warn(self, 'GW QP energies may not be sorted from min to max') logger.timer(self, 'GW', *cput0) return self.mo_energy
[docs] def ao2mo(self, mo_coeff=None): nmoa, nmob = self.nmo nao = self.mo_coeff[0].shape[0] naux = self.with_df.get_naoaux() mem_incore = (nmoa**2*naux + nmob**2*naux + nao**2*naux) * 8/1e6 mem_now = lib.current_memory()[0] moa = numpy.asarray(mo_coeff[0], order='F') mob = numpy.asarray(mo_coeff[1], order='F') ijslicea = (0, nmoa, 0, nmoa) ijsliceb = (0, nmob, 0, nmob) Lpqa = None Lpqb = None if (mem_incore + mem_now < 0.99*self.max_memory) or self.mol.incore_anyway: Lpqa = _ao2mo.nr_e2(self.with_df._cderi, moa, ijslicea, aosym='s2', out=Lpqa) Lpqb = _ao2mo.nr_e2(self.with_df._cderi, mob, ijsliceb, aosym='s2', out=Lpqb) return np.asarray((Lpqa.reshape(naux,nmoa,nmoa),Lpqb.reshape(naux,nmob,nmob))) else: logger.warn(self, 'Memory may not be enough!') raise NotImplementedError
if __name__ == '__main__': from pyscf import gto, dft mol = gto.Mole() mol.verbose = 4 mol.atom = 'O 0 0 0' mol.basis = 'aug-cc-pvdz' mol.spin = 2 mol.build() mf = dft.UKS(mol) mf.xc = 'pbe0' mf.kernel() nocca = (mol.nelectron + mol.spin)//2 noccb = mol.nelectron - nocca nmo = len(mf.mo_energy[0]) nvira = nmo - nocca nvirb = nmo - noccb gw = UGWAC(mf) gw.frozen = 0 gw.linearized = False gw.ac = 'pade' gw.kernel(orbs=range(nocca-3,nocca+3)) assert (abs(gw.mo_energy[0][nocca-1]- -0.521932084529) < 1e-5) assert (abs(gw.mo_energy[0][nocca] -0.167547592784) < 1e-5) assert (abs(gw.mo_energy[1][noccb-1]- -0.464605523684) < 1e-5) assert (abs(gw.mo_energy[1][noccb]- -0.0133557793765) < 1e-5)