Source code for pyscf.mcscf.umc1step

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
UCASSCF (CASSCF without spin-degeneracy between alpha and beta orbitals)
1-step optimization algorithm
'''

import sys

from functools import reduce
import numpy
import pyscf.gto
import pyscf.scf
from pyscf.lib import logger
from pyscf.mcscf import ucasci
from pyscf.mcscf.mc1step import expmat, rotate_orb_cc, max_stepsize_scheduler, as_scanner
from pyscf.mcscf import umc_ao2mo
from pyscf.mcscf import chkfile
from pyscf import __config__

#FIXME:  when the number of core orbitals are different for alpha and beta,
# the convergence are very unstable and slow

# gradients, hessian operator and hessian diagonal
[docs] def gen_g_hop(casscf, mo, u, casdm1s, casdm2s, eris): ncas = casscf.ncas ncore = casscf.ncore nocc = (ncas + ncore[0], ncas + ncore[1]) nmo = casscf.mo_coeff[0].shape[1] dm1 = numpy.zeros((2,nmo,nmo)) idx = numpy.arange(ncore[0]) dm1[0,idx,idx] = 1 idx = numpy.arange(ncore[1]) dm1[1,idx,idx] = 1 dm1[0,ncore[0]:nocc[0],ncore[0]:nocc[0]] = casdm1s[0] dm1[1,ncore[1]:nocc[1],ncore[1]:nocc[1]] = casdm1s[1] # part2, part3 vhf_c = eris.vhf_c vhf_ca = ((vhf_c[0] + numpy.einsum('uvpq,uv->pq', eris.aapp, casdm1s[0]) - numpy.einsum('upqv,uv->pq', eris.appa, casdm1s[0]) + numpy.einsum('uvpq,uv->pq', eris.AApp, casdm1s[1])), (vhf_c[1] + numpy.einsum('uvpq,uv->pq', eris.aaPP, casdm1s[0]) + numpy.einsum('uvpq,uv->pq', eris.AAPP, casdm1s[1]) - numpy.einsum('upqv,uv->pq', eris.APPA, casdm1s[1])),) ################# gradient ################# hdm2 = [(numpy.einsum('tuvw,vwpq->tupq', casdm2s[0], eris.aapp) + numpy.einsum('tuvw,vwpq->tupq', casdm2s[1], eris.AApp)), (numpy.einsum('vwtu,vwpq->tupq', casdm2s[1], eris.aaPP) + numpy.einsum('tuvw,vwpq->tupq', casdm2s[2], eris.AAPP))] hcore = casscf.get_hcore() h1e_mo = (reduce(numpy.dot, (mo[0].T, hcore[0], mo[0])), reduce(numpy.dot, (mo[1].T, hcore[1], mo[1]))) g = [numpy.dot(h1e_mo[0], dm1[0]), numpy.dot(h1e_mo[1], dm1[1])] def gpart(m): g[m][:,:ncore[m]] += vhf_ca[m][:,:ncore[m]] g[m][:,ncore[m]:nocc[m]] += \ numpy.einsum('vuuq->qv', hdm2[m][:,:,ncore[m]:nocc[m]]) \ + numpy.dot(vhf_c[m][:,ncore[m]:nocc[m]], casdm1s[m]) gpart(0) gpart(1) def gorb_update(u, fcivec): r0 = casscf.pack_uniq_var(u) return g_orb + h_op(r0) ############## hessian, diagonal ########### # part1 tmp = casdm2s[0].transpose(1,2,0,3) + casdm2s[0].transpose(0,2,1,3) hdm2apap = numpy.einsum('uvtw,tpqw->upvq', tmp, eris.appa) hdm2apap += hdm2[0].transpose(0,2,1,3) hdm2[0] = hdm2apap tmp = casdm2s[1].transpose(1,2,0,3) + casdm2s[1].transpose(0,2,1,3) # (jp|RK) *[e(jq,SK) + e(jq,LS)] => qSpR hdm2apAP = numpy.einsum('uvtw,tpqw->upvq', tmp, eris.apPA) # (JP|rk) *[e(sk,JQ) + e(ls,JQ)] => QsPr #hdm2APap = hdm2apAP.transpose(2,3,0,1) tmp = casdm2s[2].transpose(1,2,0,3) + casdm2s[2].transpose(0,2,1,3) hdm2APAP = numpy.einsum('uvtw,tpqw->upvq', tmp, eris.APPA) hdm2APAP += hdm2[1].transpose(0,2,1,3) hdm2[1] = hdm2APAP # part7 # h_diag[0] ~ alpha-alpha h_diag = [numpy.einsum('ii,jj->ij', h1e_mo[0], dm1[0]) - h1e_mo[0] * dm1[0], numpy.einsum('ii,jj->ij', h1e_mo[1], dm1[1]) - h1e_mo[1] * dm1[1]] h_diag[0] = h_diag[0] + h_diag[0].T h_diag[1] = h_diag[1] + h_diag[1].T # part8 idx = numpy.arange(nmo) g_diag = g[0].diagonal() h_diag[0] -= g_diag + g_diag.reshape(-1,1) h_diag[0][idx,idx] += g_diag * 2 g_diag = g[1].diagonal() h_diag[1] -= g_diag + g_diag.reshape(-1,1) h_diag[1][idx,idx] += g_diag * 2 # part2, part3 def fpart2(m): v_diag = vhf_ca[m].diagonal() # (pr|kl) * e(sq,lk) h_diag[m][:,:ncore[m]] += v_diag.reshape(-1,1) h_diag[m][:ncore[m]] += v_diag idx = numpy.arange(ncore[m]) # (V_{qr} delta_{ps} + V_{ps} delta_{qr}) delta_{pr} delta_{sq} h_diag[m][idx,idx] -= v_diag[:ncore[m]] * 2 fpart2(0) fpart2(1) def fpart3(m): # V_{pr} e_{sq} tmp = numpy.einsum('ii,jj->ij', vhf_c[m], casdm1s[m]) h_diag[m][:,ncore[m]:nocc[m]] += tmp h_diag[m][ncore[m]:nocc[m],:] += tmp.T tmp = -vhf_c[m][ncore[m]:nocc[m],ncore[m]:nocc[m]] * casdm1s[m] h_diag[m][ncore[m]:nocc[m],ncore[m]:nocc[m]] += tmp + tmp.T fpart3(0) fpart3(1) # part4 def fpart4(jkcpp, m): # (qp|rs)-(pr|sq) rp in core tmp = -numpy.einsum('cpp->cp', jkcpp) # (qp|sr) - (qr|sp) rp in core => 0 h_diag[m][:ncore[m],:] += tmp h_diag[m][:,:ncore[m]] += tmp.T h_diag[m][:ncore[m],:ncore[m]] -= tmp[:,:ncore[m]] * 2 fpart4(eris.jkcpp, 0) fpart4(eris.jkcPP, 1) # part5 and part6 diag #+(qr|kp) e_s^k p in core, sk in active #+(qr|sl) e_l^p s in core, pl in active #-(qj|sr) e_j^p s in core, jp in active #-(qp|kr) e_s^k p in core, sk in active #+(qj|rs) e_j^p s in core, jp in active #+(qp|rl) e_l^s p in core, ls in active #-(qs|rl) e_l^p s in core, lp in active #-(qj|rp) e_j^s p in core, js in active def fpart5(jkcpp, m): jkcaa = jkcpp[:,ncore[m]:nocc[m],ncore[m]:nocc[m]] tmp = -2 * numpy.einsum('jik,ik->ji', jkcaa, casdm1s[m]) h_diag[m][:ncore[m],ncore[m]:nocc[m]] -= tmp h_diag[m][ncore[m]:nocc[m],:ncore[m]] -= tmp.T fpart5(eris.jkcpp, 0) fpart5(eris.jkcPP, 1) def fpart1(m): v_diag = numpy.einsum('ijij->ij', hdm2[m]) h_diag[m][ncore[m]:nocc[m],:] += v_diag h_diag[m][:,ncore[m]:nocc[m]] += v_diag.T fpart1(0) fpart1(1) g_orb = casscf.pack_uniq_var((g[0]-g[0].T, g[1]-g[1].T)) h_diag = casscf.pack_uniq_var(h_diag) def h_op(x): x1a, x1b = casscf.unpack_uniq_var(x) xa_cu = x1a[:ncore[0],ncore[0]:] xa_av = x1a[ncore[0]:nocc[0],nocc[0]:] xa_ac = x1a[ncore[0]:nocc[0],:ncore[0]] xb_cu = x1b[:ncore[1],ncore[1]:] xb_av = x1b[ncore[1]:nocc[1],nocc[1]:] xb_ac = x1b[ncore[1]:nocc[1],:ncore[1]] # part7 x2a = reduce(numpy.dot, (h1e_mo[0], x1a, dm1[0])) x2b = reduce(numpy.dot, (h1e_mo[1], x1b, dm1[1])) # part8, the hessian gives #x2a -= numpy.dot(g[0], x1a) #x2b -= numpy.dot(g[1], x1b) # it may ruin the hermitian of hessian unless g == g.T. So symmetrize it # x_{pq} -= g_{pr} \delta_{qs} x_{rs} * .5 # x_{rs} -= g_{rp} \delta_{sq} x_{pq} * .5 x2a -= numpy.dot(g[0].T, x1a) x2b -= numpy.dot(g[1].T, x1b) # part2 x2a[:ncore[0]] += numpy.dot(xa_cu, vhf_ca[0][ncore[0]:]) x2b[:ncore[1]] += numpy.dot(xb_cu, vhf_ca[1][ncore[1]:]) # part3 def fpart3(m, x2, x_av, x_ac): x2[ncore[m]:nocc[m]] += reduce(numpy.dot, (casdm1s[m], x_av, vhf_c[m][nocc[m]:])) \ + reduce(numpy.dot, (casdm1s[m], x_ac, vhf_c[m][:ncore[m]])) fpart3(0, x2a, xa_av, xa_ac) fpart3(1, x2b, xb_av, xb_ac) # part1 x2a[ncore[0]:nocc[0]] += numpy.einsum('upvr,vr->up', hdm2apap, x1a[ncore[0]:nocc[0]]) x2a[ncore[0]:nocc[0]] += numpy.einsum('upvr,vr->up', hdm2apAP, x1b[ncore[1]:nocc[1]]) x2b[ncore[1]:nocc[1]] += numpy.einsum('vrup,vr->up', hdm2apAP, x1a[ncore[0]:nocc[0]]) x2b[ncore[1]:nocc[1]] += numpy.einsum('upvr,vr->up', hdm2APAP, x1b[ncore[1]:nocc[1]]) # part4, part5, part6 if ncore[0] > 0 or ncore[1] > 0: va, vc = casscf.update_jk_in_ah(mo, (x1a,x1b), casdm1s, eris) x2a[ncore[0]:nocc[0]] += va[0] x2b[ncore[1]:nocc[1]] += va[1] x2a[:ncore[0],ncore[0]:] += vc[0] x2b[:ncore[1],ncore[1]:] += vc[1] x2a = x2a - x2a.T x2b = x2b - x2b.T return casscf.pack_uniq_var((x2a,x2b)) return g_orb, gorb_update, h_op, h_diag
[docs] def kernel(casscf, mo_coeff, tol=1e-7, conv_tol_grad=None, ci0=None, callback=None, verbose=None, dump_chk=True): if verbose is None: verbose = casscf.verbose log = logger.Logger(casscf.stdout, verbose) cput0 = (logger.process_clock(), logger.perf_counter()) log.debug('Start 1-step CASSCF') mo = mo_coeff nmo = mo[0].shape[1] #TODO: lazy evaluate eris, to leave enough memory for FCI solver eris = casscf.ao2mo(mo) e_tot, e_cas, fcivec = casscf.casci(mo, ci0, eris, log, locals()) if casscf.ncas == nmo and not casscf.internal_rotation: return True, e_tot, e_cas, fcivec, mo if conv_tol_grad is None: conv_tol_grad = numpy.sqrt(tol) logger.info(casscf, 'Set conv_tol_grad to %g', conv_tol_grad) conv_tol_ddm = conv_tol_grad * 3 conv = False totmicro = totinner = 0 norm_gorb = norm_gci = 0 de, elast = e_tot, e_tot r0 = None t1m = log.timer('Initializing 1-step CASSCF', *cput0) casdm1, casdm2 = casscf.fcisolver.make_rdm12s(fcivec, casscf.ncas, casscf.nelecas) norm_ddm = 1e2 casdm1_last = casdm1 t3m = t2m = log.timer('CAS DM', *t1m) imacro = 0 while not conv and imacro < casscf.max_cycle_macro: imacro += 1 max_cycle_micro = casscf.micro_cycle_scheduler(locals()) max_stepsize = casscf.max_stepsize_scheduler(locals()) imicro = 0 rota = casscf.rotate_orb_cc(mo, lambda:fcivec, lambda:casdm1, lambda:casdm2, eris, r0, conv_tol_grad*.3, max_stepsize, log) for u, g_orb, njk, r0 in rota: imicro += 1 norm_gorb = numpy.linalg.norm(g_orb) if imicro == 1: norm_gorb0 = norm_gorb norm_t = numpy.linalg.norm(u-numpy.eye(nmo)) if imicro >= max_cycle_micro: log.debug('micro %d |u-1|=%5.3g |g[o]|=%5.3g ', imicro, norm_t, norm_gorb) break casdm1, casdm2, gci, fcivec = casscf.update_casdm(mo, u, fcivec, e_cas, eris) norm_ddm = (numpy.linalg.norm(casdm1[0] - casdm1_last[0]) + numpy.linalg.norm(casdm1[1] - casdm1_last[1])) t3m = log.timer('update CAS DM', *t3m) if isinstance(gci, numpy.ndarray): norm_gci = numpy.linalg.norm(gci) log.debug('micro %d |u-1|=%5.3g |g[o]|=%5.3g |g[c]|=%5.3g |ddm|=%5.3g', imicro, norm_t, norm_gorb, norm_gci, norm_ddm) else: norm_gci = None log.debug('micro %d |u-1|=%5.3g |g[o]|=%5.3g |g[c]|=%s |ddm|=%5.3g', imicro, norm_t, norm_gorb, norm_gci, norm_ddm) if callable(callback): callback(locals()) t3m = log.timer('micro iter %d'%imicro, *t3m) if (norm_t < 1e-4 or (norm_gorb < conv_tol_grad*.5 and norm_ddm < conv_tol_ddm*.4)): break rota.close() rota = None totmicro += imicro totinner += njk eris = None mo = casscf.rotate_mo(mo, u, log) eris = casscf.ao2mo(mo) t2m = log.timer('update eri', *t3m) e_tot, e_cas, fcivec = casscf.casci(mo, fcivec, eris, log, locals()) casdm1, casdm2 = casscf.fcisolver.make_rdm12s(fcivec, casscf.ncas, casscf.nelecas) norm_ddm = (numpy.linalg.norm(casdm1[0] - casdm1_last[0]) + numpy.linalg.norm(casdm1[1] - casdm1_last[1])) casdm1_last = casdm1 log.timer('CASCI solver', *t2m) t2m = t1m = log.timer('macro iter %d'%imacro, *t1m) de, elast = e_tot - elast, e_tot if (abs(de) < tol and (norm_gorb0 < conv_tol_grad and norm_ddm < conv_tol_ddm)): conv = True if dump_chk: casscf.dump_chk(locals()) if callable(callback): callback(locals()) if conv: log.info('1-step CASSCF converged in %d macro (%d JK %d micro) steps', imacro+1, totinner, totmicro) else: log.info('1-step CASSCF not converged, %d macro (%d JK %d micro) steps', imacro+1, totinner, totmicro) log.timer('1-step CASSCF', *cput0) return conv, e_tot, e_cas, fcivec, mo
[docs] class UCASSCF(ucasci.UCASBase): max_stepsize = getattr(__config__, 'mcscf_umc1step_UCASSCF_max_stepsize', .02) max_cycle_macro = getattr(__config__, 'mcscf_umc1step_UCASSCF_max_cycle_macro', 50) max_cycle_micro = getattr(__config__, 'mcscf_umc1step_UCASSCF_max_cycle_micro', 4) conv_tol = getattr(__config__, 'mcscf_umc1step_UCASSCF_conv_tol', 1e-7) conv_tol_grad = getattr(__config__, 'mcscf_umc1step_UCASSCF_conv_tol_grad', None) # for augmented hessian ah_level_shift = getattr(__config__, 'mcscf_umc1step_UCASSCF_ah_level_shift', 1e-8) ah_conv_tol = getattr(__config__, 'mcscf_umc1step_UCASSCF_ah_conv_tol', 1e-12) ah_max_cycle = getattr(__config__, 'mcscf_umc1step_UCASSCF_ah_max_cycle', 30) ah_lindep = getattr(__config__, 'mcscf_umc1step_UCASSCF_ah_lindep', 1e-14) ah_start_tol = getattr(__config__, 'mcscf_umc1step_UCASSCF_ah_start_tol', 2.5) ah_start_cycle = getattr(__config__, 'mcscf_umc1step_UCASSCF_ah_start_cycle', 3) ah_grad_trust_region = getattr(__config__, 'mcscf_umc1step_UCASSCF_ah_grad_trust_region', 3.0) internal_rotation = getattr(__config__, 'mcscf_umc1step_UCASSCF_internal_rotation', False) ci_response_space = getattr(__config__, 'mcscf_umc1step_UCASSCF_ci_response_space', 4) with_dep4 = getattr(__config__, 'mcscf_umc1step_UCASSCF_with_dep4', False) chk_ci = getattr(__config__, 'mcscf_umc1step_UCASSCF_chk_ci', False) kf_interval = getattr(__config__, 'mcscf_umc1step_UCASSCF_kf_interval', 4) kf_trust_region = getattr(__config__, 'mcscf_umc1step_UCASSCF_kf_trust_region', 3.0) natorb = getattr(__config__, 'mcscf_umc1step_UCASSCF_natorb', False) #canonicalization = getattr(__config__, 'mcscf_umc1step_UCASSCF_canonicalization', True) #sorting_mo_energy = getattr(__config__, 'mcscf_umc1step_UCASSCF_sorting_mo_energy', False) callback = None _keys = { 'max_stepsize', 'max_cycle_macro', 'max_cycle_micro', 'conv_tol', 'conv_tol_grad', 'ah_level_shift', 'ah_conv_tol', 'ah_max_cycle', 'ah_lindep', 'ah_start_tol', 'ah_start_cycle', 'ah_grad_trust_region', 'internal_rotation', 'ci_response_space', 'with_dep4', 'chk_ci', 'kf_interval', 'kf_trust_region', 'natorb', 'callback', 'canonicalization', 'sorting_mo_energy', } def __init__(self, mf_or_mol, ncas=0, nelecas=0, ncore=None, frozen=None): ucasci.UCASBase.__init__(self, mf_or_mol, ncas, nelecas, ncore) self.frozen = frozen self.chkfile = self._scf.chkfile self.fcisolver.max_cycle = getattr(__config__, 'mcscf_umc1step_UCASSCF_fcisolver_max_cycle', 50) self.fcisolver.conv_tol = getattr(__config__, 'mcscf_umc1step_UCASSCF_fcisolver_conv_tol', 1e-8) ################################################## # don't modify the following attributes, they are not input options self.e_tot = None self.e_cas = None self.ci = None self.mo_coeff = self._scf.mo_coeff self.converged = False self._max_stepsize = None
[docs] def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info('') log.info('******** UHF-CASSCF flags ********') nmo = self.mo_coeff[0].shape[1] ncore = self.ncore ncas = self.ncas nvir_alpha = nmo - ncore[0] - ncas nvir_beta = nmo - ncore[1] - ncas log.info('CAS (%de+%de, %do), ncore = [%d+%d], nvir = [%d+%d]', self.nelecas[0], self.nelecas[1], ncas, ncore[0], ncore[1], nvir_alpha, nvir_beta) if ncore[0] != ncore[1]: log.warn('converge might be slow since num alpha core %d != num beta core %d', ncore[0], ncore[1]) if self.frozen is not None: log.info('frozen orbitals %s', str(self.frozen)) log.info('max. macro cycles = %d', self.max_cycle_macro) log.info('max. micro cycles = %d', self.max_cycle_micro) log.info('conv_tol = %g', self.conv_tol) log.info('conv_tol_grad = %s', self.conv_tol_grad) log.info('max. orb step = %g', self.max_stepsize) log.info('augmented hessian max_cycle = %d', self.ah_max_cycle) log.info('augmented hessian conv_tol = %g', self.ah_conv_tol) log.info('augmented hessian linear dependence = %g', self.ah_lindep) log.info('augmented hessian level shift = %g', self.ah_level_shift) log.info('augmented hessian start_tol = %g', self.ah_start_tol) log.info('augmented hessian start_cycle = %d', self.ah_start_cycle) log.info('augmented hessian grad_trust_region = %g', self.ah_grad_trust_region) log.info('kf_trust_region = %g', self.kf_trust_region) log.info('kf_interval = %d', self.kf_interval) log.info('ci_response_space = %d', self.ci_response_space) #log.info('diis = %s', self.diis) log.info('chkfile = %s', self.chkfile) #log.info('natorb = %s', self.natorb) log.info('max_memory %d MB (current use %d MB)', self.max_memory, pyscf.lib.current_memory()[0]) log.info('internal_rotation = %s', self.internal_rotation) try: self.fcisolver.dump_flags(self.verbose) except AttributeError: pass
[docs] def kernel(self, mo_coeff=None, ci0=None, callback=None, _kern=kernel): if mo_coeff is None: mo_coeff = self.mo_coeff else: self.mo_coeff = mo_coeff if callback is None: callback = self.callback self.check_sanity() self.dump_flags() self.converged, self.e_tot, self.e_cas, self.ci, self.mo_coeff = \ _kern(self, mo_coeff, tol=self.conv_tol, conv_tol_grad=self.conv_tol_grad, ci0=ci0, callback=callback, verbose=self.verbose) logger.note(self, 'UCASSCF energy = %.15g', self.e_tot) #if self.verbose >= logger.INFO: # self.analyze(mo_coeff, self.ci, verbose=self.verbose) self._finalize() return self.e_tot, self.e_cas, self.ci, self.mo_coeff
[docs] def mc1step(self, mo_coeff=None, ci0=None, callback=None): return self.kernel(mo_coeff, ci0, callback)
[docs] def mc2step(self, mo_coeff=None, ci0=None, callback=None): from pyscf.mcscf import umc2step return self.kernel(mo_coeff, ci0, callback, umc2step.kernel)
get_h2eff = ucasci.UCASCI.get_h2eff
[docs] def casci(self, mo_coeff, ci0=None, eris=None, verbose=None, envs=None): log = logger.new_logger(self, verbose) fcasci = _fake_h_for_fast_casci(self, mo_coeff, eris) e_tot, e_cas, fcivec = ucasci.kernel(fcasci, mo_coeff, ci0, log, envs=envs) if envs is not None and log.verbose >= logger.INFO: log.debug('CAS space CI energy = %.15g', e_cas) if 'imicro' in envs: # Within CASSCF iteration log.info('macro iter %d (%d JK %d micro), ' 'UCASSCF E = %.15g dE = %.8g', envs['imacro'], envs['njk'], envs['imicro'], e_tot, e_tot-envs['elast']) if 'norm_gci' in envs and envs['norm_gci'] is not None: log.info(' |grad[o]|=%5.3g ' '|grad[c]|=%5.3g |ddm|=%5.3g', envs['norm_gorb0'], envs['norm_gci'], envs['norm_ddm']) else: log.info(' |grad[o]|=%5.3g |ddm|=%5.3g', envs['norm_gorb0'], envs['norm_ddm']) else: # Initialization step log.info('UCASCI E = %.15g', e_tot) return e_tot, e_cas, fcivec
[docs] def uniq_var_indices(self, nmo, ncore, ncas, frozen): nocc = ncore + ncas mask = numpy.zeros((nmo,nmo),dtype=bool) mask[ncore:nocc,:ncore] = True mask[nocc:,:nocc] = True if self.internal_rotation: raise NotImplementedError('internal_rotation') if frozen is not None: if isinstance(frozen, (int, numpy.integer)): mask[:frozen] = mask[:,:frozen] = False else: mask[frozen] = mask[:,frozen] = False return mask
[docs] def pack_uniq_var(self, mat): nmo = self.mo_coeff[0].shape[1] ncore = self.ncore ncas = self.ncas idxa = self.uniq_var_indices(nmo, ncore[0], ncas, self.frozen) idxb = self.uniq_var_indices(nmo, ncore[1], ncas, self.frozen) return numpy.hstack((mat[0][idxa], mat[1][idxb]))
# to anti symmetric matrix
[docs] def unpack_uniq_var(self, v): nmo = self.mo_coeff[0].shape[1] ncore = self.ncore ncas = self.ncas idx = numpy.empty((2,nmo,nmo), dtype=bool) idx[0] = self.uniq_var_indices(nmo, ncore[0], ncas, self.frozen) idx[1] = self.uniq_var_indices(nmo, ncore[1], ncas, self.frozen) mat = numpy.zeros((2,nmo,nmo)) mat[idx] = v mat[0] = mat[0] - mat[0].T mat[1] = mat[1] - mat[1].T return mat
[docs] def update_rotate_matrix(self, dx, u0=1): if isinstance(u0, int) and u0 == 1: u0 = (1,1) dr = self.unpack_uniq_var(dx) ua = numpy.dot(u0[0], expmat(dr[0])) ub = numpy.dot(u0[1], expmat(dr[1])) return (ua, ub)
[docs] def gen_g_hop(self, *args): return gen_g_hop(self, *args)
rotate_orb_cc = rotate_orb_cc
[docs] def ao2mo(self, mo_coeff=None): if mo_coeff is None: mo_coeff = self.mo_coeff # nmo = mo[0].shape[1] # ncore = self.ncore # ncas = self.ncas # nocc = (ncas + ncore[0], ncas + ncore[1]) # eriaa = pyscf.ao2mo.incore.full(self._scf._eri, mo[0]) # eriab = pyscf.ao2mo.incore.general(self._scf._eri, (mo[0],mo[0],mo[1],mo[1])) # eribb = pyscf.ao2mo.incore.full(self._scf._eri, mo[1]) # eriaa = pyscf.ao2mo.restore(1, eriaa, nmo) # eriab = pyscf.ao2mo.restore(1, eriab, nmo) # eribb = pyscf.ao2mo.restore(1, eribb, nmo) # eris = lambda:None # eris.jkcpp = numpy.einsum('iipq->ipq', eriaa[:ncore[0],:ncore[0],:,:]) \ # - numpy.einsum('ipqi->ipq', eriaa[:ncore[0],:,:,:ncore[0]]) # eris.jkcPP = numpy.einsum('iipq->ipq', eribb[:ncore[1],:ncore[1],:,:]) \ # - numpy.einsum('ipqi->ipq', eribb[:ncore[1],:,:,:ncore[1]]) # eris.jC_pp = numpy.einsum('pqii->pq', eriab[:,:,:ncore[1],:ncore[1]]) # eris.jc_PP = numpy.einsum('iipq->pq', eriab[:ncore[0],:ncore[0],:,:]) # eris.aapp = numpy.copy(eriaa[ncore[0]:nocc[0],ncore[0]:nocc[0],:,:]) # eris.aaPP = numpy.copy(eriab[ncore[0]:nocc[0],ncore[0]:nocc[0],:,:]) # eris.AApp = numpy.copy(eriab[:,:,ncore[1]:nocc[1],ncore[1]:nocc[1]].transpose(2,3,0,1)) # eris.AAPP = numpy.copy(eribb[ncore[1]:nocc[1],ncore[1]:nocc[1],:,:]) # eris.appa = numpy.copy(eriaa[ncore[0]:nocc[0],:,:,ncore[0]:nocc[0]]) # eris.apPA = numpy.copy(eriab[ncore[0]:nocc[0],:,:,ncore[1]:nocc[1]]) # eris.APPA = numpy.copy(eribb[ncore[1]:nocc[1],:,:,ncore[1]:nocc[1]]) # # eris.cvCV = numpy.copy(eriab[:ncore[0],ncore[0]:,:ncore[1],ncore[1]:]) # eris.Icvcv = eriaa[:ncore[0],ncore[0]:,:ncore[0],ncore[0]:] * 2\ # - eriaa[:ncore[0],:ncore[0],ncore[0]:,ncore[0]:].transpose(0,3,1,2) \ # - eriaa[:ncore[0],ncore[0]:,:ncore[0],ncore[0]:].transpose(0,3,2,1) # eris.ICVCV = eribb[:ncore[1],ncore[1]:,:ncore[1],ncore[1]:] * 2\ # - eribb[:ncore[1],:ncore[1],ncore[1]:,ncore[1]:].transpose(0,3,1,2) \ # - eribb[:ncore[1],ncore[1]:,:ncore[1],ncore[1]:].transpose(0,3,2,1) # # eris.Iapcv = eriaa[ncore[0]:nocc[0],:,:ncore[0],ncore[0]:] * 2 \ # - eriaa[:,ncore[0]:,:ncore[0],ncore[0]:nocc[0]].transpose(3,0,2,1) \ # - eriaa[:,:ncore[0],ncore[0]:,ncore[0]:nocc[0]].transpose(3,0,1,2) # eris.IAPCV = eribb[ncore[1]:nocc[1],:,:ncore[1],ncore[1]:] * 2 \ # - eribb[:,ncore[1]:,:ncore[1],ncore[1]:nocc[1]].transpose(3,0,2,1) \ # - eribb[:,:ncore[1],ncore[1]:,ncore[1]:nocc[1]].transpose(3,0,1,2) # eris.apCV = numpy.copy(eriab[ncore[0]:nocc[0],:,:ncore[1],ncore[1]:]) # eris.APcv = numpy.copy(eriab[:ncore[0],ncore[0]:,ncore[1]:nocc[1],:].transpose(2,3,0,1)) # return eris return umc_ao2mo._ERIS(self, mo_coeff)
[docs] def update_jk_in_ah(self, mo, r, casdm1s, eris): ncas = self.ncas ncore = self.ncore nocc = (ncas + ncore[0], ncas + ncore[1]) ra, rb = r vhf3ca = numpy.einsum('srqp,sr->qp', eris.Icvcv, ra[:ncore[0],ncore[0]:]) vhf3ca += numpy.einsum('qpsr,sr->qp', eris.cvCV, rb[:ncore[1],ncore[1]:]) * 2 vhf3cb = numpy.einsum('srqp,sr->qp', eris.ICVCV, rb[:ncore[1],ncore[1]:]) vhf3cb += numpy.einsum('srqp,sr->qp', eris.cvCV, ra[:ncore[0],ncore[0]:]) * 2 vhf3aa = numpy.einsum('kpsr,sr->kp', eris.Iapcv, ra[:ncore[0],ncore[0]:]) vhf3aa += numpy.einsum('kpsr,sr->kp', eris.apCV, rb[:ncore[1],ncore[1]:]) * 2 vhf3ab = numpy.einsum('kpsr,sr->kp', eris.IAPCV, rb[:ncore[1],ncore[1]:]) vhf3ab += numpy.einsum('kpsr,sr->kp', eris.APcv, ra[:ncore[0],ncore[0]:]) * 2 dm4 = (numpy.dot(casdm1s[0], ra[ncore[0]:nocc[0]]), numpy.dot(casdm1s[1], rb[ncore[1]:nocc[1]])) vhf4a = numpy.einsum('krqp,kr->qp', eris.Iapcv, dm4[0]) vhf4a += numpy.einsum('krqp,kr->qp', eris.APcv, dm4[1]) * 2 vhf4b = numpy.einsum('krqp,kr->qp', eris.IAPCV, dm4[1]) vhf4b += numpy.einsum('krqp,kr->qp', eris.apCV, dm4[0]) * 2 va = (numpy.dot(casdm1s[0], vhf3aa), numpy.dot(casdm1s[1], vhf3ab)) vc = (vhf3ca + vhf4a, vhf3cb + vhf4b) return va, vc
[docs] def update_casdm(self, mo, u, fcivec, e_cas, eris): ecore, h1cas, h2cas = self.approx_cas_integral(mo, u, eris) ci1, g = self.solve_approx_ci(h1cas, h2cas, fcivec, ecore, e_cas) casdm1, casdm2 = self.fcisolver.make_rdm12s(ci1, self.ncas, self.nelecas) return casdm1, casdm2, g, ci1
[docs] def approx_cas_integral(self, mo, u, eris): ncas = self.ncas ncore = self.ncore nocc = (ncas + ncore[0], ncas + ncore[1]) nmo = mo[0].shape[1] rmat = u - numpy.eye(nmo) mocas = (mo[0][:,ncore[0]:nocc[0]], mo[1][:,ncore[1]:nocc[1]]) hcore = self.get_hcore() h1effa = reduce(numpy.dot, (rmat[0][:,:nocc[0]].T, mo[0].T, hcore[0], mo[0][:,:nocc[0]])) h1effb = reduce(numpy.dot, (rmat[1][:,:nocc[1]].T, mo[1].T, hcore[1], mo[1][:,:nocc[1]])) h1effa = h1effa + h1effa.T h1effb = h1effb + h1effb.T aapc = eris.aapp[:,:,:,:ncore[0]] aaPC = eris.aaPP[:,:,:,:ncore[1]] AApc = eris.AApp[:,:,:,:ncore[0]] AAPC = eris.AAPP[:,:,:,:ncore[1]] apca = eris.appa[:,:,:ncore[0],:] APCA = eris.APPA[:,:,:ncore[1],:] jka = numpy.einsum('iup->up', eris.jkcpp[:,:nocc[0]]) + eris.jC_pp[:nocc[0]] v1a = (numpy.einsum('up,pv->uv', jka[ncore[0]:], rmat[0][:,ncore[0]:nocc[0]]) + numpy.einsum('uvpi,pi->uv', aapc-apca.transpose(0,3,1,2), rmat[0][:,:ncore[0]]) + numpy.einsum('uvpi,pi->uv', aaPC, rmat[1][:,:ncore[1]])) jkb = numpy.einsum('iup->up', eris.jkcPP[:,:nocc[1]]) + eris.jc_PP[:nocc[1]] v1b = (numpy.einsum('up,pv->uv', jkb[ncore[1]:], rmat[1][:,ncore[1]:nocc[1]]) + numpy.einsum('uvpi,pi->uv', AApc, rmat[0][:,:ncore[0]]) + numpy.einsum('uvpi,pi->uv', AAPC-APCA.transpose(0,3,1,2), rmat[1][:,:ncore[1]])) h1casa = (h1effa[ncore[0]:,ncore[0]:] + (v1a + v1a.T) + reduce(numpy.dot, (mocas[0].T, hcore[0], mocas[0])) + eris.vhf_c[0][ncore[0]:nocc[0],ncore[0]:nocc[0]]) h1casb = (h1effb[ncore[1]:,ncore[1]:] + (v1b + v1b.T) + reduce(numpy.dot, (mocas[1].T, hcore[1], mocas[1])) + eris.vhf_c[1][ncore[1]:nocc[1],ncore[1]:nocc[1]]) h1cas = (h1casa, h1casb) aaap = eris.aapp[:,:,ncore[0]:nocc[0],:] aaAP = eris.aaPP[:,:,ncore[1]:nocc[1],:] AAap = eris.AApp[:,:,ncore[1]:nocc[1],:] AAAP = eris.AAPP[:,:,ncore[1]:nocc[1],:] aaaa = numpy.einsum('tuvp,pw->tuvw', aaap, rmat[0][:,ncore[0]:nocc[0]]) aaaa = aaaa + aaaa.transpose(0,1,3,2) aaaa = aaaa + aaaa.transpose(2,3,0,1) aaaa += aaap[:,:,:,ncore[0]:nocc[0]] AAAA = numpy.einsum('tuvp,pw->tuvw', AAAP, rmat[1][:,ncore[1]:nocc[1]]) AAAA = AAAA + AAAA.transpose(0,1,3,2) AAAA = AAAA + AAAA.transpose(2,3,0,1) AAAA += AAAP[:,:,:,ncore[1]:nocc[1]] tmp = (numpy.einsum('vwtp,pu->tuvw', AAap, rmat[0][:,ncore[0]:nocc[0]]), numpy.einsum('tuvp,pw->tuvw', aaAP, rmat[1][:,ncore[1]:nocc[1]])) aaAA = (tmp[0] + tmp[0].transpose(1,0,2,3) + tmp[1] + tmp[1].transpose(0,1,3,2)) aaAA += aaAP[:,:,:,ncore[1]:nocc[1]] # pure core response ecore = (h1effa[:ncore[0]].trace() + h1effb[:ncore[1]].trace() + numpy.einsum('jp,pj->', jka[:ncore[0]], rmat[0][:,:ncore[0]])*2 + numpy.einsum('jp,pj->', jkb[:ncore[1]], rmat[1][:,:ncore[1]])*2) return ecore, h1cas, (aaaa, aaAA, AAAA)
[docs] def solve_approx_ci(self, h1, h2, ci0, ecore, e_cas): ''' Solve CI eigenvalue/response problem approximately ''' ncas = self.ncas nelecas = self.nelecas if getattr(self.fcisolver, 'approx_kernel', None): ci1 = self.fcisolver.approx_kernel(h1, h2, ncas, nelecas, ci0=ci0)[1] return ci1, None h2eff = self.fcisolver.absorb_h1e(h1, h2, ncas, nelecas, .5) hc = self.fcisolver.contract_2e(h2eff, ci0, ncas, nelecas).ravel() g = hc - (e_cas-ecore) * ci0.ravel() if self.ci_response_space > 6: logger.debug(self, 'CI step by full response') # full response e, ci1 = self.fcisolver.kernel(h1, h2, ncas, nelecas, ci0=ci0, max_memory=self.max_memory) else: nd = self.ci_response_space xs = [ci0.ravel()] ax = [hc] heff = numpy.empty((nd,nd)) seff = numpy.empty((nd,nd)) heff[0,0] = numpy.dot(xs[0], ax[0]) seff[0,0] = 1 for i in range(1, nd): dx = ax[i-1] - xs[i-1] * e_cas if numpy.linalg.norm(dx) < 1e-3: break xs.append(dx) ax.append(self.fcisolver.contract_2e(h2eff, xs[i], ncas, nelecas).ravel()) for j in range(i+1): heff[i,j] = heff[j,i] = numpy.dot(xs[i], ax[j]) seff[i,j] = seff[j,i] = numpy.dot(xs[i], xs[j]) nd = len(xs) e, v = pyscf.lib.safe_eigh(heff[:nd,:nd], seff[:nd,:nd])[:2] ci1 = 0 for i in range(nd): ci1 += xs[i] * v[i,0] return ci1, g
[docs] def dump_chk(self, envs): if not self.chkfile: return self if self.chk_ci: civec = envs['fcivec'] else: civec = None ncore = self.ncore ncas = self.ncas nocca = ncore[0] + ncas noccb = ncore[1] + ncas if 'mo' in envs: mo_coeff = envs['mo'] else: mo_coeff = envs['mo'] mo_occ = numpy.zeros((2,envs['mo'][0].shape[1])) mo_occ[0,:ncore[0]] = 1 mo_occ[1,:ncore[1]] = 1 if self.natorb: occa, ucas = self._eig(-envs['casdm1'][0], ncore[0], nocca) occb, ucas = self._eig(-envs['casdm1'][1], ncore[1], noccb) mo_occ[0,ncore[0]:nocca] = -occa mo_occ[1,ncore[1]:noccb] = -occb else: mo_occ[0,ncore[0]:nocca] = envs['casdm1'][0].diagonal() mo_occ[1,ncore[1]:noccb] = envs['casdm1'][1].diagonal() mo_energy = 'None' chkfile.dump_mcscf(self, self.chkfile, 'mcscf', envs['e_tot'], mo_coeff, ncore, ncas, mo_occ, mo_energy, envs['e_cas'], civec, envs['casdm1'], overwrite_mol=False) return self
[docs] def rotate_mo(self, mo, u, log=None): '''Rotate orbitals with the given unitary matrix''' mo_a = numpy.dot(mo[0], u[0]) mo_b = numpy.dot(mo[1], u[1]) if log is not None and log.verbose >= logger.DEBUG: ncore = self.ncore[0] ncas = self.ncas nocc = ncore + ncas s = reduce(numpy.dot, (mo_a[:,ncore:nocc].T, self._scf.get_ovlp(), self.mo_coeff[0][:,ncore:nocc])) log.debug('Alpha active space overlap to initial guess, SVD = %s', numpy.linalg.svd(s)[1]) log.debug('Alpha active space overlap to last step, SVD = %s', numpy.linalg.svd(u[0][ncore:nocc,ncore:nocc])[1]) return mo_a, mo_b
[docs] def micro_cycle_scheduler(self, envs): #log_norm_ddm = numpy.log(envs['norm_ddm']) #return max(self.max_cycle_micro, int(self.max_cycle_micro-1-log_norm_ddm)) return self.max_cycle_micro
max_stepsize_scheduler=max_stepsize_scheduler as_scanner=as_scanner @property def max_orb_stepsize(self): # pragma: no cover return self.max_stepsize @max_orb_stepsize.setter def max_orb_stepsize(self, x): # pragma: no cover sys.stderr.write('WARN: Attribute "max_orb_stepsize" was replaced by "max_stepsize"\n') self.max_stepsize = x
[docs] def reset(self, mol=None): ucasci.UCASBase.reset(self, mol=mol) self._max_stepsize = None
CASSCF = UCASSCF # to avoid calculating AO integrals def _fake_h_for_fast_casci(casscf, mo, eris): mc = casscf.view(ucasci.UCASCI) mc.mo_coeff = mo if eris is None: return mc # vhf for core density matrix s = mc._scf.get_ovlp() mo_inv = (numpy.dot(mo[0].T, s), numpy.dot(mo[1].T, s)) vjk =(numpy.einsum('ipq->pq', eris.jkcpp) + eris.jC_pp, numpy.einsum('ipq->pq', eris.jkcPP) + eris.jc_PP) vhf =(reduce(numpy.dot, (mo_inv[0].T, vjk[0], mo_inv[0])), reduce(numpy.dot, (mo_inv[1].T, vjk[1], mo_inv[1]))) mc.get_veff = lambda *args: vhf ncas = casscf.ncas ncore = casscf.ncore nocc = (ncas + ncore[0], ncas + ncore[1]) eri_cas = (eris.aapp[:,:,ncore[0]:nocc[0],ncore[0]:nocc[0]].copy(), eris.aaPP[:,:,ncore[1]:nocc[1],ncore[1]:nocc[1]].copy(), eris.AAPP[:,:,ncore[1]:nocc[1],ncore[1]:nocc[1]].copy()) mc.get_h2eff = lambda *args: eri_cas return mc if __name__ == '__main__': from pyscf import gto from pyscf import scf from pyscf.mcscf import addons mol = gto.Mole() mol.verbose = 0 mol.output = None#"out_h2o" mol.atom = [ ['H', ( 1.,-1. , 0. )], ['H', ( 0.,-1. ,-1. )], ['H', ( 1.,-0.5 ,-1. )], ['H', ( 0.,-0.5 ,-1. )], ['H', ( 0.,-0.5 ,-0. )], ['H', ( 0.,-0. ,-1. )], ['H', ( 1.,-0.5 , 0. )], ['H', ( 0., 1. , 1. )], ] mol.basis = {'H': 'sto-3g'} mol.charge = 1 mol.spin = 1 mol.build() m = scf.UHF(mol) ehf = m.scf() mc = UCASSCF(m, 4, (2,1)) #mo = m.mo_coeff mo = addons.sort_mo(mc, m.mo_coeff, [(3,4,5,6),(3,4,6,7)], 1) emc = kernel(mc, mo, verbose=4)[1] print(ehf, emc, emc-ehf) print(emc - -2.9782774463926618) mol.atom = [ ['O', ( 0., 0. , 0. )], ['H', ( 0., -0.757, 0.587)], ['H', ( 0., 0.757 , 0.587)],] mol.basis = {'H': 'cc-pvdz', 'O': 'cc-pvdz',} mol.symmetry = 1 mol.charge = 1 mol.spin = 1 mol.build() m = scf.UHF(mol) ehf = m.scf() mc = UCASSCF(m, 4, (2,1)) mc.verbose = 4 emc = mc.mc1step()[0] print(ehf, emc, emc-ehf) print(emc - -75.5644202701263, emc - -75.573930418500652, emc - -75.574137883405612, emc - -75.648547447838951) mc = UCASSCF(m, 4, (2,1)) mc.verbose = 4 mo = mc.sort_mo((3,4,6,7)) emc = mc.mc1step(mo)[0] print(ehf, emc, emc-ehf) print(emc - -75.5644202701263, emc - -75.573930418500652, emc - -75.574137883405612, emc - -75.648547447838951)