Source code for pyscf.md.integrators

#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Matthew Hennefarth <matthew.hennefarth@gmail.com>,
#          Aniruddha Seal <aniruddhaseal2011@gmail.com>

import os
import numpy as np

from pyscf import data
from pyscf import lib
from pyscf.lib import logger
from pyscf.grad.rhf import GradientsBase


[docs] class Frame: '''Basic class to hold information at each time step of a MD simulation Attributes: ekin : float Kinetic energy epot : float Potential energy (electronic energy) etot : float Total energy, sum of the potential and kinetic energy coord : 2D array with shape (natm, 3) Geometry of the system at the current time step veloc : 2D array with shape (natm, 3) Velocities of the system at the current time step time : float Time for which this frame represents ''' def __init__(self, ekin=None, epot=None, coord=None, veloc=None, time=None): self.ekin = ekin self.epot = epot self.etot = self.ekin + self.epot self.coord = coord self.veloc = veloc self.time = time
def _toframe(integrator): '''Convert an _Integrator to a Frame given current saved data. Args: integrator : md.integrator._Integrator object Returns: Frame with all data taken from the integrator. ''' return Frame(ekin=integrator.ekin, epot=integrator.epot, coord=integrator.mol.atom_coords(), veloc=integrator.veloc, time=integrator.time) def _write(dev, mol, vec, atmlst=None): '''Format output of molecular vector quantity. Args: dev : lib.logger.Logger object mol : gto.mol object vec : 2D array with shape (mol.natm, 3) atmlst : array of indices to pull atoms from. Must be smaller than mol.natm. ''' if atmlst is None: atmlst = range(mol.natm) dev.stdout.write(' x y z\n') for k, ia in enumerate(atmlst): dev.stdout.write( '%d %s %15.10f %15.10f %15.10f\n' % (ia, mol.atom_symbol(ia), vec[k, 0], vec[k, 1], vec[k, 2]))
[docs] def kernel(integrator, verbose=logger.NOTE): log = logger.new_logger(integrator, verbose) t0 = (logger.process_clock(), logger.perf_counter()) log.debug('Start BOMD') integrator.mol = integrator.mol.copy() # Begin the iterations to run molecular dynamics t1 = t0 for iteration, frame in enumerate(integrator): log.note('----------- %s final geometry -----------', integrator.__class__.__name__) _write(integrator, integrator.mol, frame.coord) log.note('----------------------------------------------') log.note('------------ %s final velocity -----------', integrator.__class__.__name__) _write(integrator, integrator.mol, frame.veloc) log.note('----------------------------------------------') log.note('Ekin = %17.13f', frame.ekin) log.note('Epot = %17.13f', frame.epot) log.note('Etot = %17.13f', frame.etot) t1 = log.timer('BOMD iteration %d' % iteration, *t1) t0 = log.timer('BOMD', *t0) return integrator
class _Integrator(lib.StreamObject): '''Integrator abstract base class. Should never be directly constructed, but inherited from. Args: method : lib.GradScanner, rhf.GradientsBase instance, or has nuc_grad_method method. Method by which to compute the energy gradients and energies in order to propogate the equations of motion. Realistically, it can be any callable object such that it returns the energy and potential energy gradient when given a mol. Attributes: incore_anyway : bool If true, then it will save every frame in memory. False, no frames are saved. veloc : ndarray Initial velocity for the simulation. Values should be given in atomic units (Bohr/a.u.). Dimensions should be (natm, 3) such as [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] verbose : int Print level steps : int Number of steps to take when the kernel or run function is called. dt : float Time between steps. Given in atomic units. stdout : file object Default is self.scanner.mol.stdout. data_output : file object Stream to write energy and temperature to during the course of the simulation. trajectory_output : file object Stream to write the trajectory to during the course of the simulation. Written in xyz format. frames : ndarray of Frames or None If incore_anyway is true, then this will hold a list of frames corresponding to the simulation trajectory. epot : float Potential energy of the last time step during the simulation. ekin : float Kinetic energy of the last time step during the simulation time : float Time of the last step during the simulation. callback : function(envs_dict) => None Callback function takes one dict as the arugment which is generaged by the builtin function :func:`locals`, so that the callback function can access all local variables in the current environment. ''' def __init__(self, method, **kwargs): if isinstance(method, lib.GradScanner): self.scanner = method elif isinstance(method, GradientsBase): self.scanner = method.as_scanner() elif getattr(method, 'nuc_grad_method', None): self.scanner = method.nuc_grad_method().as_scanner() else: raise NotImplementedError('Nuclear gradients of %s not available' % method) self.mol = self.scanner.mol self.stdout = self.mol.stdout self.incore_anyway = self.mol.incore_anyway self.veloc = None self.verbose = self.mol.verbose self.steps = 1 self.dt = 10 self.frames = None self.epot = None self.ekin = None self.time = 0 self.data_output = None self.trajectory_output = None self.callback = None # Cache the masses into a list, they will be in atomic units self._masses = None self.__dict__.update(kwargs) def kernel(self, veloc=None, steps=None, dump_flags=True, verbose=None): '''Runs the molecular dynamics simulation. Args: veloc : ndarray Initial velocity for the simulation. Values should be given in atomic units (Bohr/a.u.). Dimensions should be (natm, 3) such as [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] steps : int Number of steps to take when the kernel or run function is called. dump_flags : bool Print flags to output. verbose : int Print level Returns: _Integrator with final epot, ekin, temp, mol, and veloc of the simulation. ''' if veloc is not None: self.veloc = veloc if steps is not None: self.steps = steps if verbose is None: verbose = self.verbose # Default velocities are 0 if none specified if self.veloc is None: self.veloc = np.full((self.mol.natm, 3), 0.0) # Store the masses into a cached variable, # so we don't have to keep looking them up self._masses = np.array([ data.elements.COMMON_ISOTOPE_MASSES[m] * data.nist.AMU2AU for m in self.mol.atom_charges()]) # avoid opening data_output file twice if type(self.data_output) is str: if self.verbose > logger.QUIET: if os.path.isfile(self.data_output): print('overwrite data output file: %s' % self.data_output) else: print('data output file: %s' % self.data_output) if self.data_output == '/dev/null': self.data_output = open(os.devnull, 'w') else: self.data_output = open(self.data_output, 'w') self.data_output.write( 'time Epot Ekin ' 'Etot T\n' ) # avoid opening trajectory_output file twice if type(self.trajectory_output) is str: if self.verbose > logger.QUIET: if os.path.isfile(self.trajectory_output): print('overwrite energy output file: %s' % self.trajectory_output) else: print('trajectory output file: %s' % self.trajectory_output) if self.trajectory_output == '/dev/null': self.trajectory_output = open(os.devnull, 'w') else: self.trajectory_output = open(self.trajectory_output, 'w') log = logger.new_logger(self, verbose) self.check_sanity() if dump_flags and self.verbose > logger.NOTE: self.dump_input() return kernel(self, verbose=log) def dump_input(self, verbose=None): log = logger.new_logger(self, verbose) log.info('') log.info('******** BOMD flags ********') log.info('dt = %f', self.dt) log.info('Iterations = %d', self.steps) log.info(' Initial Velocity ') log.info(' vx vy vz') for i, (e, v) in enumerate(zip(self.mol.elements, self.veloc)): log.info('%d %s %.8E %.8E %.8E', i, e, *v) def check_sanity(self): assert self.time >= 0 assert self.dt > 0 assert self.steps > 0 assert self.veloc is not None assert self.veloc.shape == (self.mol.natm, 3) assert self.scanner is not None return self def compute_kinetic_energy(self): '''Compute the kinetic energy of the current frame.''' # TODO, can make this cleaner by removing an explicit zip and # try to leverage numpy vectors energy = 0 for v, m in zip(self.veloc, self._masses): energy += 0.5 * m * np.linalg.norm(v) ** 2 return energy def temperature(self): '''Returns the temperature of the system''' # checked against ORCA for linear and non-linear molecules dof = 3 * len(self.mol.atom_coords()) # Temp = 2/(3*k*N_f) * KE # = 2/(3*k*N_f)*\sum_i (1/2 m_i v_i^2) return ((2 * self.ekin) / ( dof * data.nist.BOLTZMANN / data.nist.HARTREE2J)) def __iter__(self): self._step = 0 self._log = logger.new_logger(self, self.verbose) return self def __next__(self): if self._step < self.steps: if self._log.verbose >= lib.logger.NOTE: self._log.note('\nBOMD Time %.2f', self.time) current_frame = self._next() if self.incore_anyway: self.frames.append(current_frame) if self.data_output is not None: self._write_data() if self.trajectory_output is not None: self._write_coord() if callable(self.callback): mol = self.mol scanner = self.scanner self.callback(locals()) self._step += 1 self.time += self.dt return current_frame else: raise StopIteration def _next(self): '''Determines the next step in the molecular dynamics simulation. Integrates to the next time step. Must be implemented in derived classes. Returns: 'Frame' which contains the new geometry, velocity, time step, and energy. ''' raise NotImplementedError('Method Not Implemented') def _write_data(self): '''Writes out the potential, kinetic, and total energy, temperature to the self.data_output stream. ''' output = '%8.2f %.12E %.12E %.12E %3.4f' % (self.time, self.epot, self.ekin, self.ekin + self.epot, self.temperature()) # We follow OM of writing all the states at the end of the line if getattr(self.scanner.base, 'e_states', None) is not None: if len(self.scanner.base.e_states) > 1: for e in self.scanner.base.e_states: output += ' %.12E' % e self.data_output.write(output + '\n') # If we don't flush, there is a possibility of losing data self.data_output.flush() def _write_coord(self): '''Writes out the current geometry to the self.trajectory_output stream in xyz format. ''' self.trajectory_output.write('%s\nMD Time %.2f\n' % (self.mol.natm, self.time)) self.trajectory_output.write(self.mol.tostring(format='raw') + '\n') # If we don't flush, there is a possibility of losing data self.trajectory_output.flush()
[docs] class VelocityVerlet(_Integrator): '''Velocity Verlet algorithm Args: method : lib.GradScanner or rhf.GradientsBase instance, or has nuc_grad_method method. Method by which to compute the energy gradients and energies in order to propagate the equations of motion. Realistically, it can be any callable object such that it returns the energy and potential energy gradient when given a mol. Attributes: accel : ndarray Current acceleration for the simulation. Values are given in atomic units (Bohr/a.u.^2). Dimensions is (natm, 3) such as [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] ''' def __init__(self, method, **kwargs): super().__init__(method, **kwargs) self.accel = None def _next(self): '''Computes the next frame of the simulation and sets all internal variables to this new frame. First computes the new geometry, then the next acceleration, and finally the velocity, all according to the Velocity Verlet algorithm. Returns: The next frame of the simulation. ''' # If no acceleration, compute that first, and then go # onto the next step if self.accel is None: next_epot, next_accel = self._compute_accel() else: self.mol.set_geom_(self._next_geometry(), unit='B') self.mol.build() next_epot, next_accel = self._compute_accel() self.veloc = self._next_velocity(next_accel) self.epot = next_epot self.ekin = self.compute_kinetic_energy() self.accel = next_accel return _toframe(self) def _compute_accel(self): '''Given the current geometry, computes the acceleration for each atom.''' e_tot, grad = self.scanner(self.mol) if not self.scanner.converged: raise RuntimeError('Gradients did not converge!') a = -1 * grad / self._masses.reshape(-1, 1) return e_tot, a def _next_geometry(self): '''Computes the next geometry using the Velocity Verlet algorithm. The necessary equations of motion for the position is r(t_i+1) = r(t_i) + /delta t * v(t_i) + 0.5(/delta t)^2 a(t_i) ''' return self.mol.atom_coords() + self.dt * self.veloc + \ 0.5 * (self.dt ** 2) * self.accel def _next_velocity(self, next_accel): '''Compute the next velocity using the Velocity Verlet algorithm. The necessary equations of motion for the velocity is v(t_i+1) = v(t_i) + 0.5(a(t_i+1) + a(t_i))''' return self.veloc + 0.5 * self.dt * (self.accel + next_accel)
[docs] class NVTBerendson(_Integrator): '''Berendsen (constant N, V, T) molecular dynamics Args: method : lib.GradScanner or rhf.GradientsMixin instance, or has nuc_grad_method method. Method by which to compute the energy gradients and energies in order to propagate the equations of motion. Realistically, it can be any callable object such that it returns the energy and potential energy gradient when given a mol. T : float Target temperature for the NVT Ensemble. Given in K. taut : float Time constant for Berendsen temperature coupling. Given in atomic units. Attributes: accel : ndarray Current acceleration for the simulation. Values are given in atomic units (Bohr/a.u.^2). Dimensions is (natm, 3) such as [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]] ''' def __init__(self, method, T, taut, **kwargs): self.T = T self.taut = taut self.accel = None super().__init__(method, **kwargs) def _next(self): '''Computes the next frame of the simulation and sets all internal variables to this new frame. First computes the new geometry, then the next acceleration, and finally the velocity, all according to the Velocity Verlet algorithm. Returns: The next frame of the simulation. ''' # If no acceleration, compute that first, and then go # onto the next step if self.accel is None: next_epot, next_accel = self._compute_accel() else: self._scale_velocities() self.mol.set_geom_(self._next_geometry(), unit='B') self.mol.build() next_epot, next_accel = self._compute_accel() self.veloc = self._next_velocity(next_accel) self.epot = next_epot self.ekin = self.compute_kinetic_energy() self.accel = next_accel return _toframe(self) def _compute_accel(self): '''Given the current geometry, computes the acceleration for each atom.''' e_tot, grad = self.scanner(self.mol) if not self.scanner.converged: raise RuntimeError('Gradients did not converge!') a = -1 * grad / self._masses.reshape(-1, 1) return e_tot, a def _scale_velocities(self): '''NVT Berendsen velocity scaling v_rescale(t) = v(t) * (1 + ((T_target/T - 1) * (/delta t / taut)))^(0.5) ''' tautscl = self.dt / self.taut scl_temp = np.sqrt(1.0 + (self.T / self.temperature() - 1.0) * tautscl) # Limit the velocity scaling to reasonable values # (taken from ase md/nvtberendson.py) if scl_temp > 1.1: scl_temp = 1.1 if scl_temp < 0.9: scl_temp = 0.9 self.veloc = self.veloc * scl_temp return def _next_geometry(self): '''Computes the next geometry using the Velocity Verlet algorithm. The necessary equations of motion for the position is r(t_i+1) = r(t_i) + /delta t * v(t_i) + 0.5(/delta t)^2 a(t_i) ''' return self.mol.atom_coords() + self.dt * self.veloc + \ 0.5 * (self.dt ** 2) * self.accel def _next_velocity(self, next_accel): '''Compute the next velocity using the Velocity Verlet algorithm. The necessary equations of motion for the velocity is v(t_i+1) = v(t_i) + /delta t * 0.5(a(t_i+1) + a(t_i))''' return self.veloc + 0.5 * self.dt * (self.accel + next_accel)