Source code for pyscf.pbc.adc.kadc_rhf

# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Samragni Banerjee <samragnibanerjee4@gmail.com>
#         Alexander Sokolov <alexander.y.sokolov@gmail.com>
#

import time
import numpy as np
import pyscf.ao2mo as ao2mo
import pyscf.adc
import pyscf.adc.radc
from pyscf.adc import radc_ao2mo
import itertools

from itertools import product
from pyscf import lib
from pyscf.pbc import scf
from pyscf.pbc import df
from pyscf.pbc import mp
from pyscf.lib import logger
from pyscf.pbc.adc import kadc_rhf_amplitudes
from pyscf.pbc.adc import kadc_ao2mo
from pyscf.pbc.adc import dfadc
from pyscf import __config__
from pyscf.pbc.mp.kmp2 import (get_nocc, get_nmo, padding_k_idx,_padding_k_idx,
                               padded_mo_coeff, get_frozen_mask, _add_padding)
from pyscf.pbc.cc.kccsd_rhf import _get_epq
from pyscf.pbc.cc.kccsd_t_rhf import _get_epqr
from pyscf.pbc.lib import kpts_helper
from pyscf.lib.parameters import LOOSE_ZERO_TOL, LARGE_DENOM  # noqa

import h5py
import tempfile

# Note : All interals are in Chemist's notation except for vvvv
#        Eg.of momentum conservation :
#        Chemist's  oovv(ijab) : ki - kj + ka - kb
#        Amplitudes t2(ijab)  : ki + kj - ka - kba

[docs] def kernel(adc, nroots=1, guess=None, eris=None, kptlist=None, verbose=None): adc.method = adc.method.lower() if adc.method not in ("adc(2)", "adc(2)-x","adc(3)"): raise NotImplementedError(adc.method) cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.Logger(adc.stdout, adc.verbose) if adc.verbose >= logger.WARN: adc.check_sanity() adc.dump_flags() if eris is None: eris = adc.transform_integrals() size = adc.vector_size() nroots = min(nroots,size) nkpts = adc.nkpts nmo = adc.nmo if kptlist is None: kptlist = range(nkpts) dtype = np.result_type(adc.t2[0]) evals = np.zeros((len(kptlist),nroots), np.float64) evecs = np.zeros((len(kptlist),nroots,size), dtype) conv = np.zeros((len(kptlist),nroots), np.bool_) P = np.zeros((len(kptlist),nroots), np.float64) X = np.zeros((len(kptlist),nmo,nroots), dtype) imds = adc.get_imds(eris) for k, kshift in enumerate(kptlist): matvec, diag = adc.gen_matvec(kshift, imds, eris) guess = adc.get_init_guess(nroots, diag, ascending=True) conv_k,evals_k, evecs_k = lib.linalg_helper.davidson_nosym1( lambda xs : [matvec(x) for x in xs], guess, diag, nroots=nroots, verbose=log, tol=adc.conv_tol, max_cycle=adc.max_cycle, max_space=adc.max_space, tol_residual=adc.tol_residual) evals_k = evals_k.real evals[k] = evals_k evecs[k] = evecs_k conv[k] = conv_k.real U = np.array(evecs[k]).T.copy() if adc.compute_properties: spec_fac,spec_amp = adc.get_properties(kshift,U,nroots) P[k] = spec_fac X[k] = spec_amp nfalse = np.shape(conv)[0] - np.sum(conv) msg = ("\n*************************************************************" "\n ADC calculation summary" "\n*************************************************************") logger.info(adc, msg) if nfalse >= 1: logger.warn(adc, "Davidson iterations for %s root(s) not converged\n", nfalse) for k, kshift in enumerate(kptlist): for n in range(nroots): print_string = ('%s k-point %d | root %d | Energy (Eh) = %14.10f | Energy (eV) = %12.8f ' % (adc.method, kshift, n, evals[k][n], evals[k][n]*27.2114)) if adc.compute_properties: print_string += ("| Spec factors = %10.8f " % P[k][n]) print_string += ("| conv = %s" % conv[k][n].real) logger.info(adc, print_string) log.timer('ADC', *cput0) return evals, evecs, P, X
[docs] class RADC(pyscf.adc.radc.RADC): _keys = { 'tol_residual','conv_tol', 'e_corr', 'method', 'mo_coeff', 'mol', 'mo_energy', 'incore_complete', 'scf_energy', 'e_tot', 't1', 'frozen', 'chkfile', 'max_space', 't2', 'mo_occ', 'max_cycle','kpts', 'khelper', 'exxdiv', 'cell', 'nkop_chk', 'kop_npick', 'chnk_size', 'keep_exxdiv', } def __init__(self, mf, frozen=None, mo_coeff=None, mo_occ=None): from pyscf.pbc.cc.ccsd import _adjust_occ assert (isinstance(mf, scf.khf.KSCF)) if mo_coeff is None: mo_coeff = mf.mo_coeff if mo_occ is None: mo_occ = mf.mo_occ self._scf = mf self.kpts = self._scf.kpts self.exxdiv = self._scf.exxdiv self.verbose = mf.verbose self.max_memory = mf.max_memory self.method = "adc(2)" self.method_type = "ip" self.max_space = getattr(__config__, 'adc_kadc_RADC_max_space', 12) self.max_cycle = getattr(__config__, 'adc_kadc_RADC_max_cycle', 50) self.conv_tol = getattr(__config__, 'adc_kadc_RADC_conv_tol', 1e-7) self.tol_residual = getattr(__config__, 'adc_kadc_RADC_tol_res', 1e-4) self.scf_energy = mf.e_tot self.khelper = kpts_helper.KptsHelper(mf.cell, mf.kpts) self.cell = self._scf.cell self.mo_coeff = mo_coeff self.mo_occ = mo_occ self.frozen = frozen self.compute_properties = True self.approx_trans_moments = True self._nocc = None self._nmo = None self._nvir = None self.nkop_chk = False self.kop_npick = False self.t1 = None self.t2 = None self.e_corr = None self.chnk_size = None self.imds = lambda:None self.keep_exxdiv = False self.mo_energy = mf.mo_energy transform_integrals = kadc_ao2mo.transform_integrals_incore compute_amplitudes = kadc_rhf_amplitudes.compute_amplitudes compute_energy = kadc_rhf_amplitudes.compute_energy compute_amplitudes_energy = kadc_rhf_amplitudes.compute_amplitudes_energy get_chnk_size = kadc_ao2mo.calculate_chunk_size @property def nkpts(self): return len(self.kpts) @property def nocc(self): return self.get_nocc() @property def nmo(self): return self.get_nmo() get_nocc = get_nocc get_nmo = get_nmo
[docs] def kernel_gs(self): assert(self.mo_coeff is not None) assert(self.mo_occ is not None) self.method = self.method.lower() if self.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(self.method) if self.verbose >= logger.WARN: self.check_sanity() self.dump_flags_gs() nmo = self.nmo nocc = self.nocc nvir = nmo - nocc nkpts = self.nkpts mem_incore = nkpts ** 3 * (nocc + nvir) ** 4 mem_incore *= 4 mem_incore *= 16 /1e6 mem_now = lib.current_memory()[0] if isinstance(self._scf.with_df, df.GDF): self.chnk_size = self.get_chnk_size() self.with_df = self._scf.with_df def df_transform(): return kadc_ao2mo.transform_integrals_df(self) self.transform_integrals = df_transform elif (mem_incore+mem_now >= self.max_memory and not self.incore_complete): def outcore_transform(): return kadc_ao2mo.transform_integrals_outcore(self) self.transform_integrals = outcore_transform eris = self.transform_integrals() self.e_corr,self.t1,self.t2 = kadc_rhf_amplitudes.compute_amplitudes_energy( self, eris=eris, verbose=self.verbose) print ("MPn:",self.e_corr) self._finalize() return self.e_corr, self.t1,self.t2
[docs] def kernel(self, nroots=1, guess=None, eris=None, kptlist=None): assert(self.mo_coeff is not None) assert(self.mo_occ is not None) self.method = self.method.lower() if self.method not in ("adc(2)", "adc(2)-x", "adc(3)"): raise NotImplementedError(self.method) if self.verbose >= logger.WARN: self.check_sanity() self.dump_flags_gs() nmo = self.nmo nocc = self.nocc nvir = nmo - nocc nkpts = self.nkpts mem_incore = nkpts ** 3 * (nocc + nvir) ** 4 mem_incore *= 4 mem_incore *= 16 /1e6 mem_now = lib.current_memory()[0] if isinstance(self._scf.with_df, df.GDF): self.chnk_size = self.get_chnk_size() self.with_df = self._scf.with_df def df_transform(): return kadc_ao2mo.transform_integrals_df(self) self.transform_integrals = df_transform elif (mem_incore+mem_now >= self.max_memory and not self.incore_complete): def outcore_transform(): return kadc_ao2mo.transform_integrals_outcore(self) self.transform_integrals = outcore_transform eris = self.transform_integrals() self.e_corr, self.t1, self.t2 = kadc_rhf_amplitudes.compute_amplitudes_energy( self, eris=eris, verbose=self.verbose) print ("MPn:",self.e_corr) self._finalize() self.method_type = self.method_type.lower() if(self.method_type == "ea"): e_exc, v_exc, spec_fac, x, adc_es = self.ea_adc( nroots=nroots, guess=guess, eris=eris, kptlist=kptlist) elif(self.method_type == "ip"): e_exc, v_exc, spec_fac, x, adc_es = self.ip_adc( nroots=nroots, guess=guess, eris=eris, kptlist=kptlist) else: raise NotImplementedError(self.method_type) self._adc_es = adc_es return e_exc, v_exc, spec_fac, x
[docs] def ip_adc(self, nroots=1, guess=None, eris=None, kptlist=None): from pyscf.pbc.adc import kadc_rhf_ip adc_es = kadc_rhf_ip.RADCIP(self) e_exc, v_exc, spec_fac, x = adc_es.kernel(nroots, guess, eris, kptlist) return e_exc, v_exc, spec_fac, x, adc_es
[docs] def ea_adc(self, nroots=1, guess=None, eris=None, kptlist=None): from pyscf.pbc.adc import kadc_rhf_ea adc_es = kadc_rhf_ea.RADCEA(self) e_exc, v_exc, spec_fac, x = adc_es.kernel(nroots, guess, eris, kptlist) return e_exc, v_exc, spec_fac, x, adc_es
[docs] def density_fit(self, auxbasis=None, with_df=None): if with_df is None: self.with_df = df.DF(self._scf.mol) self.with_df.max_memory = self.max_memory self.with_df.stdout = self.stdout self.with_df.verbose = self.verbose if auxbasis is None: self.with_df.auxbasis = self._scf.with_df.auxbasis else: self.with_df.auxbasis = auxbasis else: self.with_df = with_df return self