#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
'''Density expansion on plane waves'''
import contextlib
import numpy as np
from pyscf import lib
from pyscf import gto
from pyscf.lib import logger
from pyscf.pbc import tools
from pyscf.pbc.gto import pseudo, error_for_ke_cutoff
from pyscf.pbc import gto as pbcgto
from pyscf.pbc.gto.pseudo import pp_int
from pyscf.pbc.lib.kpts_helper import is_zero, gamma_point
from pyscf.pbc.df import ft_ao
from pyscf.pbc.df import aft_jk
from pyscf.pbc.df import aft_ao2mo
from pyscf.pbc.df.incore import Int3cBuilder
from pyscf.pbc.tools import k2gamma
from pyscf.pbc.tools import pbc as pbctools
from pyscf import __config__
KE_SCALING = getattr(__config__, 'pbc_df_aft_ke_cutoff_scaling', 0.75)
RCUT_THRESHOLD = getattr(__config__, 'pbc_scf_rsjk_rcut_threshold', 2.0)
[docs]
def estimate_eta_min(cell, cutoff=None):
'''Given rcut the boundary of repeated images of the cell, estimates the
minimal exponent of the smooth compensated gaussian model charge, requiring
that at boundary, density ~ 4pi rmax^2 exp(-eta/2*rmax^2) < cutoff
'''
from pyscf.pbc.df.gdf_builder import estimate_eta_min
logger.warn(cell, 'Function deprecated. '
'Call pbc.df.gdf_builder.estimate_eta_min instead.')
return estimate_eta_min(cell, cutoff)
estimate_eta = estimate_eta_min
[docs]
def estimate_eta_for_ke_cutoff(cell, ke_cutoff, precision=None):
'''Given ke_cutoff, the upper bound of eta to produce the required
precision in AFTDF Coulomb integrals.
'''
from pyscf.pbc.df.gdf_builder import estimate_eta_for_ke_cutoff
logger.warn(cell, 'Function deprecated. '
'Call pbc.df.gdf_builder.estimate_eta_for_ke_cutoff instead.')
return estimate_eta_for_ke_cutoff(cell, ke_cutoff, precision)
[docs]
def estimate_ke_cutoff_for_eta(cell, eta, precision=None):
'''Given eta, the lower bound of ke_cutoff to produce the required
precision in AFTDF Coulomb integrals.
'''
from pyscf.pbc.df.gdf_builder import estimate_ke_cutoff_for_eta
logger.warn(cell, 'Function deprecated. '
'Call pbc.df.gdf_builder.estimate_ke_cutoff_for_eta instead.')
return estimate_ke_cutoff_for_eta(cell, eta, precision)
[docs]
def estimate_omega_min(cell, cutoff=None):
'''Given cell.rcut the boundary of repeated images of the cell, estimates
the minimal omega for the attenuated Coulomb interactions, requiring that at
boundary the Coulomb potential of a point charge < cutoff
'''
from pyscf.pbc.df.rsdf_builder import estimate_omega_min
logger.warn(cell, 'Function deprecated. '
'Call pbc.df.rsdf_builder.estimate_omega_min instead.')
return estimate_omega_min(cell, cutoff)
estimate_omega = estimate_omega_min
[docs]
def estimate_ke_cutoff_for_omega(cell, omega, precision=None):
'''Energy cutoff for AFTDF to converge attenuated Coulomb in moment space
'''
from pyscf.pbc.df.rsdf_builder import estimate_ke_cutoff_for_omega
logger.warn(cell, 'Function deprecated. '
'Call pbc.df.rsdf_builder.estimate_ke_cutoff_for_omega instead.')
return estimate_ke_cutoff_for_omega(cell, omega, precision)
[docs]
def estimate_omega_for_ke_cutoff(cell, ke_cutoff, precision=None):
'''The minimal omega in attenuated Coulombl given energy cutoff
'''
from pyscf.pbc.df.rsdf_builder import estimate_omega_for_ke_cutoff
logger.warn(cell, 'Function deprecated. '
'Call pbc.df.rsdf_builder.estimate_omega_for_ke_cutoff instead.')
return estimate_omega_for_ke_cutoff(cell, ke_cutoff, precision)
def _get_pp_loc_part1(mydf, kpts=None, with_pseudo=True):
kpts, is_single_kpt = _check_kpts(mydf, kpts)
log = logger.Logger(mydf.stdout, mydf.verbose)
t0 = t1 = (logger.process_clock(), logger.perf_counter())
cell = mydf.cell
mesh = np.asarray(mydf.mesh)
nkpts = len(kpts)
nao = cell.nao_nr()
nao_pair = nao * (nao+1) // 2
kpt_allow = np.zeros(3)
if cell.dimension > 0:
ke_guess = estimate_ke_cutoff(cell, cell.precision)
mesh_guess = cell.cutoff_to_mesh(ke_guess)
if np.any(mesh < mesh_guess*KE_SCALING):
logger.warn(mydf, 'mesh %s is not enough for AFTDF.get_nuc function '
'to get integral accuracy %g.\nRecommended mesh is %s.',
mesh, cell.precision, mesh_guess)
log.debug1('aft.get_pp_loc_part1 mesh = %s', mesh)
Gv, Gvbase, kws = cell.get_Gv_weights(mesh)
if with_pseudo:
vpplocG = pp_int.get_gth_vlocG_part1(cell, Gv)
vpplocG = -np.einsum('ij,ij->j', cell.get_SI(Gv), vpplocG)
else:
fakenuc = _fake_nuc(cell, with_pseudo=with_pseudo)
aoaux = ft_ao.ft_ao(fakenuc, Gv)
charges = cell.atom_charges()
coulG = pbctools.get_coulG(cell, kpt_allow, mesh=mesh, Gv=Gv)
vpplocG = np.einsum('i,xi,x->x', -charges, aoaux, coulG)
vpplocG *= kws
vGR = vpplocG.real
vGI = vpplocG.imag
vjR = np.zeros((nkpts, nao_pair))
vjI = np.zeros((nkpts, nao_pair))
max_memory = max(2000, mydf.max_memory-lib.current_memory()[0])
for Gpq, p0, p1 in mydf.ft_loop(mesh, kpt_allow, kpts, aosym='s2',
max_memory=max_memory, return_complex=False):
# shape of Gpq (nkpts, nGv, nao_pair)
for k, (GpqR, GpqI) in enumerate(zip(*Gpq)):
# rho_ij(G) nuc(-G) / G^2
# = [Re(rho_ij(G)) + Im(rho_ij(G))*1j] [Re(nuc(G)) - Im(nuc(G))*1j] / G^2
vjR[k] += np.einsum('k,kx->x', vGR[p0:p1], GpqR)
vjR[k] += np.einsum('k,kx->x', vGI[p0:p1], GpqI)
if not is_zero(kpts[k]):
vjI[k] += np.einsum('k,kx->x', vGR[p0:p1], GpqI)
vjI[k] -= np.einsum('k,kx->x', vGI[p0:p1], GpqR)
t1 = log.timer_debug1('contracting Vnuc [%s:%s]'%(p0, p1), *t1)
log.timer_debug1('contracting Vnuc', *t0)
vj_kpts = []
for k, kpt in enumerate(kpts):
if is_zero(kpt):
vj_kpts.append(lib.unpack_tril(vjR[k]))
else:
vj_kpts.append(lib.unpack_tril(vjR[k]+vjI[k]*1j))
if is_single_kpt:
vj_kpts = vj_kpts[0]
return np.asarray(vj_kpts)
def _check_kpts(mydf, kpts):
'''Check if the argument kpts is a single k-point'''
if kpts is None:
kpts = np.asarray(mydf.kpts)
# mydf.kpts is initialized to np.zeros((1,3)). Here is only a guess
# based on the value of mydf.kpts.
is_single_kpt = kpts.ndim == 1 or is_zero(kpts)
else:
kpts = np.asarray(kpts)
is_single_kpt = kpts.ndim == 1
kpts = kpts.reshape(-1,3)
return kpts, is_single_kpt
def _int_nuc_vloc(mydf, nuccell, kpts, intor='int3c2e', aosym='s2', comp=1):
'''Vnuc - Vloc'''
raise DeprecationWarning
[docs]
def get_pp(mydf, kpts=None):
'''Get the periodic pseudotential nuc-el AO matrix, with G=0 removed.
Kwargs:
mesh: custom mesh grids. By default mesh is determined by the
function _guess_eta from module pbc.df.gdf_builder.
'''
t0 = (logger.process_clock(), logger.perf_counter())
kpts, is_single_kpt = _check_kpts(mydf, kpts)
cell = mydf.cell
vpp = _get_pp_loc_part1(mydf, kpts, with_pseudo=True)
t1 = logger.timer_debug1(mydf, 'get_pp_loc_part1', *t0)
pp2builder = _IntPPBuilder(cell, kpts)
vpp += pp2builder.get_pp_loc_part2()
t1 = logger.timer_debug1(mydf, 'get_pp_loc_part2', *t1)
vpp += pp_int.get_pp_nl(cell, kpts)
t1 = logger.timer_debug1(mydf, 'get_pp_nl', *t1)
if is_single_kpt:
vpp = vpp[0]
logger.timer(mydf, 'get_pp', *t0)
return vpp
[docs]
def get_nuc(mydf, kpts=None):
'''Get the periodic nuc-el AO matrix, with G=0 removed.
Kwargs:
function _guess_eta from module pbc.df.gdf_builder.
'''
t0 = (logger.process_clock(), logger.perf_counter())
nuc = _get_pp_loc_part1(mydf, kpts, with_pseudo=False)
logger.timer(mydf, 'get_nuc', *t0)
return nuc
[docs]
def weighted_coulG(mydf, kpt=np.zeros(3), exx=False, mesh=None, omega=None):
'''Weighted regular Coulomb kernel, applying cell.omega by default'''
cell = mydf.cell
if mesh is None:
mesh = mydf.mesh
if omega is None:
omega = cell.omega
Gv, Gvbase, kws = cell.get_Gv_weights(mesh)
coulG = tools.get_coulG(cell, kpt, exx, mydf, mesh, Gv, omega=omega)
coulG *= kws
return coulG
def _fake_nuc(cell, with_pseudo=True):
'''A fake cell with steep gaussians to mimic nuclear density
'''
fakenuc = cell.copy(deep=False)
fakenuc._atm = cell._atm.copy()
fakenuc._atm[:,gto.PTR_COORD] = np.arange(gto.PTR_ENV_START,
gto.PTR_ENV_START+cell.natm*3,3)
_bas = []
_env = [0]*gto.PTR_ENV_START + [cell.atom_coords().ravel()]
ptr = gto.PTR_ENV_START + cell.natm * 3
half_sph_norm = .5/np.sqrt(np.pi)
for ia in range(cell.natm):
symb = cell.atom_symbol(ia)
if with_pseudo and symb in cell._pseudo:
pp = cell._pseudo[symb]
rloc, nexp, cexp = pp[1:3+1]
eta = .5 / rloc**2
else:
eta = 1e16
norm = half_sph_norm/gto.gaussian_int(2, eta)
_env.extend([eta, norm])
_bas.append([ia, 0, 1, 1, 0, ptr, ptr+1, 0])
ptr += 2
fakenuc._bas = np.asarray(_bas, dtype=np.int32)
fakenuc._env = np.asarray(np.hstack(_env), dtype=np.double)
fakenuc.rcut = 0.1
return fakenuc
def _estimate_ke_cutoff(alpha, l, c, precision, omega=0):
'''Energy cutoff estimation for 4-center Coulomb repulsion integrals'''
norm_ang = ((2*l+1)/(4*np.pi))**2
fac = 8*np.pi**5 * c**4*norm_ang / (2*alpha)**(4*l+2) / precision
Ecut = 20.
if omega <= 0:
Ecut = np.log(fac * (Ecut*.5)**(2*l-.5) + 1.) * 2*alpha
Ecut = np.log(fac * (Ecut*.5)**(2*l-.5) + 1.) * 2*alpha
else:
theta = 1./(1./(2*alpha) + 1./(2*omega**2))
Ecut = np.log(fac * (Ecut*.5)**(2*l-.5) + 1.) * theta
Ecut = np.log(fac * (Ecut*.5)**(2*l-.5) + 1.) * theta
return Ecut
[docs]
def estimate_ke_cutoff(cell, precision=None):
'''Energy cutoff estimation for 4-center Coulomb repulsion integrals'''
if cell.nbas == 0:
return 0.
if precision is None:
precision = cell.precision
exps, cs = pbcgto.cell._extract_pgto_params(cell, 'max')
ls = cell._bas[:,gto.ANG_OF]
cs = gto.gto_norm(ls, exps)
Ecut = _estimate_ke_cutoff(exps, ls, cs, precision)
return Ecut.max()
class _IntPPBuilder(Int3cBuilder):
'''3-center integral builder for pp loc part2 only
'''
def __init__(self, cell, kpts=np.zeros((1,3))):
# cache ovlp_mask which are reused for different types of intor
self._supmol = None
self._ovlp_mask = None
self._cell0_ovlp_mask = None
Int3cBuilder.__init__(self, cell, None, kpts)
def get_ovlp_mask(self, cutoff, supmol=None, cintopt=None):
if self._ovlp_mask is None or supmol is not self._supmol:
self._ovlp_mask, self._cell0_ovlp_mask = \
Int3cBuilder.get_ovlp_mask(self, cutoff, supmol, cintopt)
self._supmol = supmol
return self._ovlp_mask, self._cell0_ovlp_mask
def build(self):
pass
def get_pp_loc_part2(self):
log = logger.new_logger(self)
cell = self.cell
kpts = self.kpts
nkpts = len(kpts)
self.bvk_kmesh = kmesh = k2gamma.kpts_to_kmesh(cell, kpts)
log.debug('kmesh for bvk-cell = %s', kmesh)
self.rs_cell = rs_cell = ft_ao._RangeSeparatedCell.from_cell(
cell, self.ke_cutoff, RCUT_THRESHOLD, verbose=log)
intors = ('int3c2e', 'int3c1e', 'int3c1e_r2_origk',
'int3c1e_r4_origk', 'int3c1e_r6_origk')
fake_cells = {}
for cn in range(1, 5):
fake_cell = pp_int.fake_cell_vloc(cell, cn)
if fake_cell.nbas > 0:
fake_cells[cn] = fake_cell
if not fake_cells:
if any(cell.atom_symbol(ia) in cell._pseudo for ia in range(cell.natm)):
pass
else:
lib.logger.warn(cell, 'cell.pseudo was specified but its elements %s '
'were not found in the system.', cell._pseudo.keys())
vpploc = [0] * nkpts
return vpploc
rcut = self._estimate_rcut_3c1e(rs_cell, fake_cells)
supmol = ft_ao.ExtendedMole.from_cell(rs_cell, kmesh, rcut.max(), log)
self.supmol = supmol.strip_basis(rcut+1.)
log.debug('sup-mol nbas = %d cGTO = %d pGTO = %d',
supmol.nbas, supmol.nao, supmol.npgto_nr())
bufR = 0
bufI = 0
for cn, fake_cell in fake_cells.items():
int3c = self.gen_int3c_kernel(
intors[cn], 's2', comp=1, j_only=True, auxcell=fake_cell)
vR, vI = int3c()
bufR += np.einsum('...i->...', vR)
if vI is not None:
bufI += np.einsum('...i->...', vI)
buf = (bufR + bufI * 1j).reshape(nkpts,-1)
vpploc = []
for k, kpt in enumerate(kpts):
v = lib.unpack_tril(buf[k])
if is_zero(kpt): # gamma_point:
v = v.real
vpploc.append(v)
return vpploc
def _estimate_rcut_3c1e(self, cell, fake_cells):
'''Estimate rcut for pp-loc part2 based on 3-center overlap integrals.
'''
precision = cell.precision
exps = np.array([e.min() for e in cell.bas_exps()])
if exps.size == 0:
return np.zeros(1)
ls = cell._bas[:,gto.ANG_OF]
cs = gto.gto_norm(ls, exps)
ai_idx = exps.argmin()
ai = exps[ai_idx]
li = cell._bas[ai_idx,gto.ANG_OF]
ci = cs[ai_idx]
r0 = cell.rcut # initial guess
rcut = []
for lk, fake_cell in fake_cells.items():
nuc_exps = np.hstack(fake_cell.bas_exps())
ak_idx = nuc_exps.argmin()
ak = nuc_exps[ak_idx]
ck = abs(fake_cell._env[fake_cell._bas[ak_idx,gto.PTR_COEFF]])
aij = ai + exps
ajk = exps + ak
aijk = aij + ak
aijk1 = aijk**-.5
theta = 1./(1./aij + 1./ak)
norm_ang = ((2*li+1)*(2*ls+1))**.5/(4*np.pi)
c1 = ci * cs * ck * norm_ang
sfac = aij*exps/(aij*exps + ai*theta)
rfac = ak / (aij * ajk)
fl = 2
fac = 2**(li+1)*np.pi**2.5 * aijk1**3 * c1 / theta * fl / precision
r0 = (np.log(fac * r0 * (rfac*exps*r0+aijk1)**li *
(rfac*ai*r0+aijk1)**ls + 1.) / (sfac*theta))**.5
r0 = (np.log(fac * r0 * (rfac*exps*r0+aijk1)**li *
(rfac*ai*r0+aijk1)**ls + 1.) / (sfac*theta))**.5
rcut.append(r0)
return np.max(rcut, axis=0)
[docs]
class AFTDFMixin:
weighted_coulG = weighted_coulG
_int_nuc_vloc = _int_nuc_vloc
[docs]
def pw_loop(self, mesh=None, kpti_kptj=None, q=None, shls_slice=None,
max_memory=2000, aosym='s1', blksize=None,
intor='GTO_ft_ovlp', comp=1, bvk_kmesh=None):
'''
Fourier transform iterator for AO pair
'''
cell = self.cell
if mesh is None:
mesh = self.mesh
if kpti_kptj is None:
kpti = kptj = np.zeros(3)
else:
kpti, kptj = kpti_kptj
if q is None:
q = kptj - kpti
ao_loc = cell.ao_loc_nr()
Gv, Gvbase, kws = cell.get_Gv_weights(mesh)
gxyz = lib.cartesian_prod([np.arange(len(x)) for x in Gvbase])
ngrids = gxyz.shape[0]
if shls_slice is None:
shls_slice = (0, cell.nbas, 0, cell.nbas)
if aosym == 's2':
assert (shls_slice[2] == 0)
i0 = ao_loc[shls_slice[0]]
i1 = ao_loc[shls_slice[1]]
nij = i1*(i1+1)//2 - i0*(i0+1)//2
else:
ni = ao_loc[shls_slice[1]] - ao_loc[shls_slice[0]]
nj = ao_loc[shls_slice[3]] - ao_loc[shls_slice[2]]
nij = ni*nj
if blksize is None:
blksize = min(max(64, int(max_memory*1e6*.75/(nij*16*comp))), 16384)
sublk = int(blksize//4)
else:
sublk = blksize
buf = np.empty(nij*blksize*comp, dtype=np.complex128)
pqkRbuf = np.empty(nij*sublk*comp)
pqkIbuf = np.empty(nij*sublk*comp)
if bvk_kmesh is None:
bvk_kmesh = k2gamma.kpts_to_kmesh(cell, [kpti, kptj])
rcut = ft_ao.estimate_rcut(cell)
supmol = ft_ao.ExtendedMole.from_cell(cell, bvk_kmesh, rcut.max())
supmol = supmol.strip_basis(rcut)
ft_kern = supmol.gen_ft_kernel(aosym, intor=intor, comp=comp)
for p0, p1 in self.prange(0, ngrids, blksize):
aoaoR, aoaoI = ft_kern(Gv[p0:p1], gxyz[p0:p1], Gvbase, q,
kptj.reshape(1, 3), shls_slice, out=buf)
aoaoR = aoaoR.reshape(comp,p1-p0,nij)
aoaoI = aoaoI.reshape(comp,p1-p0,nij)
for i0, i1 in lib.prange(0, p1-p0, sublk):
nG = i1 - i0
if comp == 1:
pqkR = np.ndarray((nij,nG), buffer=pqkRbuf)
pqkI = np.ndarray((nij,nG), buffer=pqkIbuf)
pqkR[:] = aoaoR[0,i0:i1].T
pqkI[:] = aoaoI[0,i0:i1].T
else:
pqkR = np.ndarray((comp,nij,nG), buffer=pqkRbuf)
pqkI = np.ndarray((comp,nij,nG), buffer=pqkIbuf)
pqkR[:] = aoaoR[:,i0:i1].transpose(0,2,1)
pqkI[:] = aoaoI[:,i0:i1].transpose(0,2,1)
yield (pqkR, pqkI, p0+i0, p0+i1)
[docs]
def ft_loop(self, mesh=None, q=np.zeros(3), kpts=None, shls_slice=None,
max_memory=4000, aosym='s1', intor='GTO_ft_ovlp', comp=1,
bvk_kmesh=None, return_complex=True):
'''
Fourier transform iterator for all kpti which satisfy
2pi*N = (kpts - kpti - q)*a, N = -1, 0, 1
'''
cell = self.cell
if mesh is None:
mesh = self.mesh
if kpts is None:
assert (is_zero(q))
kpts = self.kpts
kpts = np.asarray(kpts)
nkpts = len(kpts)
ao_loc = cell.ao_loc_nr()
Gv, Gvbase, kws = cell.get_Gv_weights(mesh)
gxyz = lib.cartesian_prod([np.arange(len(x)) for x in Gvbase])
ngrids = gxyz.shape[0]
if shls_slice is None:
shls_slice = (0, cell.nbas, 0, cell.nbas)
if aosym == 's2':
assert (shls_slice[2] == 0)
i0 = ao_loc[shls_slice[0]]
i1 = ao_loc[shls_slice[1]]
nij = i1*(i1+1)//2 - i0*(i0+1)//2
else:
ni = ao_loc[shls_slice[1]] - ao_loc[shls_slice[0]]
nj = ao_loc[shls_slice[3]] - ao_loc[shls_slice[2]]
nij = ni*nj
if bvk_kmesh is None:
bvk_kmesh = k2gamma.kpts_to_kmesh(cell, kpts)
#TODO:
# ke_cutoff = pbctools.mesh_to_cutoff(cell.lattice_vectors(), mesh)
# rs_cell = ft_ao._RangeSeparatedCell.from_cell(cell, ke_cutoff, ft_ao.RCUT_THRESHOLD)
rcut = ft_ao.estimate_rcut(cell)
supmol = ft_ao.ExtendedMole.from_cell(cell, bvk_kmesh, rcut.max())
supmol = supmol.strip_basis(rcut)
ft_kern = supmol.gen_ft_kernel(aosym, intor=intor, comp=comp,
return_complex=return_complex)
blksize = max(16, int(max_memory*.9e6/(nij*nkpts*16*comp)))
blksize = min(blksize, ngrids, 16384)
buf = np.empty(nkpts*nij*blksize*comp, dtype=np.complex128)
for p0, p1 in self.prange(0, ngrids, blksize):
dat = ft_kern(Gv[p0:p1], gxyz[p0:p1], Gvbase, q, kpts, shls_slice, out=buf)
yield dat, p0, p1
[docs]
@contextlib.contextmanager
def range_coulomb(self, omega):
'''Creates a temporary density fitting object for RSH-DF integrals.
In this context, only LR or SR integrals for mol and auxmol are computed.
'''
key = '%.6f' % omega
if key in self._rsh_df:
rsh_df = self._rsh_df[key]
else:
rsh_df = self._rsh_df[key] = self.copy().reset()
if hasattr(self, '_dataname'):
rsh_df._dataname = f'{self._dataname}-lr/{key}'
logger.info(self, 'Create RSH-DF object %s for omega=%s', rsh_df, omega)
cell = self.cell
auxcell = getattr(self, 'auxcell', None)
cell_omega = cell.omega
cell.omega = omega
auxcell_omega = None
if auxcell is not None:
auxcell_omega = auxcell.omega
auxcell.omega = omega
assert rsh_df.cell.omega == omega
if getattr(rsh_df, 'auxcell', None) is not None:
assert rsh_df.auxcell.omega == omega
try:
yield rsh_df
finally:
cell.omega = cell_omega
if auxcell_omega is not None:
auxcell.omega = auxcell_omega
[docs]
class AFTDF(lib.StreamObject, AFTDFMixin):
'''Density expansion on plane waves
'''
_keys = {
'cell', 'mesh', 'kpts', 'time_reversal_symmetry', 'blockdim',
}
def __init__(self, cell, kpts=np.zeros((1,3))):
self.cell = cell
self.stdout = cell.stdout
self.verbose = cell.verbose
self.max_memory = cell.max_memory
self.mesh = cell.mesh
self.kpts = kpts
self.time_reversal_symmetry = True
# to mimic molecular DF object
self.blockdim = getattr(__config__, 'pbc_df_df_DF_blockdim', 240)
# The following attributes are not input options.
self._rsh_df = {} # Range separated Coulomb DF objects
[docs]
def dump_flags(self, verbose=None):
logger.info(self, '\n')
logger.info(self, '******** %s ********', self.__class__)
logger.info(self, 'mesh = %s (%d PWs)', self.mesh, np.prod(self.mesh))
logger.info(self, 'len(kpts) = %d', len(self.kpts))
logger.debug1(self, ' kpts = %s', self.kpts)
return self
[docs]
def reset(self, cell=None):
if cell is not None:
self.cell = cell
self._rsh_df = {}
return self
[docs]
def check_sanity(self):
lib.StreamObject.check_sanity(self)
cell = self.cell
if not cell.has_ecp():
logger.warn(self, 'AFTDF integrals are found in all-electron '
'calculation. It often causes huge error.\n'
'Recommended methods are DF or MDF. In SCF calculation, '
'they can be initialized as\n'
' mf = mf.density_fit()\nor\n'
' mf = mf.mix_density_fit()')
if cell.dimension > 0:
if cell.ke_cutoff is None:
ke_cutoff = tools.mesh_to_cutoff(cell.lattice_vectors(), self.mesh)
ke_cutoff = ke_cutoff[:cell.dimension].min()
else:
ke_cutoff = np.min(cell.ke_cutoff)
ke_guess = estimate_ke_cutoff(cell, cell.precision)
mesh_guess = cell.cutoff_to_mesh(ke_guess)
if ke_cutoff < ke_guess * KE_SCALING:
logger.warn(self, 'ke_cutoff/mesh (%g / %s) is not enough for AFTDF '
'to get integral accuracy %g.\nCoulomb integral error '
'is ~ %.2g Eh.\nRecommended ke_cutoff/mesh are %g / %s.',
ke_cutoff, self.mesh, cell.precision,
error_for_ke_cutoff(cell, ke_cutoff), ke_guess, mesh_guess)
else:
mesh_guess = np.copy(self.mesh)
if cell.dimension < 3:
err = np.exp(-0.436392335*min(self.mesh[cell.dimension:]) - 2.99944305)
err *= cell.nelectron
meshz = pbcgto.cell._mesh_inf_vaccum(cell)
mesh_guess[cell.dimension:] = int(meshz)
if err > cell.precision*10:
logger.warn(self, 'mesh %s of AFTDF may not be enough to get '
'integral accuracy %g for %dD PBC system.\n'
'Coulomb integral error is ~ %.2g Eh.\n'
'Recommended mesh is %s.',
self.mesh, cell.precision, cell.dimension, err, mesh_guess)
if any(x/meshz > 1.1 for x in cell.mesh[cell.dimension:]):
meshz = pbcgto.cell._mesh_inf_vaccum(cell)
logger.warn(self, 'setting mesh %s of AFTDF too high in non-periodic direction '
'(=%s) can result in an unnecessarily slow calculation.\n'
'For coulomb integral error of ~ %.2g Eh in %dD PBC, \n'
'a recommended mesh for non-periodic direction is %s.',
self.mesh, self.mesh[cell.dimension:], cell.precision,
cell.dimension, mesh_guess[cell.dimension:])
return self
[docs]
def build(self):
return self.check_sanity()
get_nuc = get_nuc
get_pp = get_pp
# Note: Special exxdiv by default should not be used for an arbitrary
# input density matrix. When the df object was used with the molecular
# post-HF code, get_jk was often called with an incomplete DM (e.g. the
# core DM in CASCI). An SCF level exxdiv treatment is inadequate for
# post-HF methods.
[docs]
def get_jk(self, dm, hermi=1, kpts=None, kpts_band=None,
with_j=True, with_k=True, omega=None, exxdiv=None):
if omega is not None: # J/K for RSH functionals
with self.range_coulomb(omega) as rsh_df:
return rsh_df.get_jk(dm, hermi, kpts, kpts_band, with_j, with_k,
omega=None, exxdiv=exxdiv)
kpts, is_single_kpt = _check_kpts(self, kpts)
if is_single_kpt:
return aft_jk.get_jk(self, dm, hermi, kpts[0], kpts_band, with_j,
with_k, exxdiv)
vj = vk = None
if with_k:
vk = aft_jk.get_k_kpts(self, dm, hermi, kpts, kpts_band, exxdiv)
if with_j:
vj = aft_jk.get_j_kpts(self, dm, hermi, kpts, kpts_band)
return vj, vk
get_eri = get_ao_eri = aft_ao2mo.get_eri
ao2mo = get_mo_eri = aft_ao2mo.general
ao2mo_7d = aft_ao2mo.ao2mo_7d
get_ao_pairs_G = get_ao_pairs = aft_ao2mo.get_ao_pairs_G
get_mo_pairs_G = get_mo_pairs = aft_ao2mo.get_mo_pairs_G
[docs]
def update_mf(self, mf):
mf = mf.copy()
mf.with_df = self
return mf
[docs]
def prange(self, start, stop, step):
'''This is a hook for MPI parallelization. DO NOT use it out of the
scope of AFTDF/GDF/MDF.
'''
return lib.prange(start, stop, step)
################################################################################
# With this function to mimic the molecular DF.loop function, the pbc gamma
# point DF object can be used in the molecular code
[docs]
def loop(self, blksize=None):
cell = self.cell
if cell.dimension == 2 and cell.low_dim_ft_type != 'inf_vacuum':
raise RuntimeError('ERIs of PBC-2D systems are not positive '
'definite. Current API only supports postive '
'definite ERIs.')
if blksize is None:
blksize = self.blockdim
# coulG of 1D and 2D has negative elements.
coulG = self.weighted_coulG()
Lpq = None
for pqkR, pqkI, p0, p1 in self.pw_loop(aosym='s2', blksize=blksize):
vG = np.sqrt(coulG[p0:p1])
pqkR *= vG
pqkI *= vG
Lpq = lib.transpose(pqkR, out=Lpq)
yield Lpq
Lpq = lib.transpose(pqkI, out=Lpq)
yield Lpq
[docs]
def get_naoaux(self):
mesh = np.asarray(self.mesh)
ngrids = np.prod(mesh)
return ngrids * 2
def _sub_df_jk_(dfobj, dm, hermi=1, kpts=None, kpts_band=None,
with_j=True, with_k=True, omega=None, exxdiv=None):
with dfobj.range_coulomb(omega) as rsh_df:
return rsh_df.get_jk(dm, hermi, kpts, kpts_band, with_j, with_k,
omega=None, exxdiv=exxdiv)