Source code for pyscf.pbc.df.aft_ao2mo

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Integral transformation with analytic Fourier transformation
'''

import numpy
from pyscf import lib
from pyscf import ao2mo
from pyscf.ao2mo import _ao2mo
from pyscf.ao2mo.incore import iden_coeffs, _conc_mos
from pyscf.pbc.df.df_jk import zdotNC
from pyscf.pbc.df.fft_ao2mo import _format_kpts, _iskconserv
from pyscf.pbc.df.df_ao2mo import _mo_as_complex, _dtrans, _ztrans
from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
from pyscf.pbc.lib import kpts_helper
from pyscf.pbc.lib.kpts_helper import is_zero, gamma_point, unique
from pyscf import __config__


[docs] def get_eri(mydf, kpts=None, compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)): cell = mydf.cell nao = cell.nao_nr() kptijkl = _format_kpts(kpts) if not _iskconserv(cell, kptijkl): lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in ' 'the given k-points %s', kptijkl) return numpy.zeros((nao,nao,nao,nao)) kpti, kptj, kptk, kptl = kptijkl q = kptj - kpti mesh = mydf.mesh coulG = mydf.weighted_coulG(q, False, mesh) nao_pair = nao * (nao+1) // 2 max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8) #################### # gamma point, the integral is real and with s4 symmetry if gamma_point(kptijkl): eriR = numpy.zeros((nao_pair,nao_pair)) for pqkR, pqkI, p0, p1 \ in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory, aosym='s2'): lib.ddot(pqkR*coulG[p0:p1], pqkR.T, 1, eriR, 1) lib.ddot(pqkI*coulG[p0:p1], pqkI.T, 1, eriR, 1) pqkR = pqkI = None if not compact: eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1) return eriR #################### # (kpt) i == j == k == l != 0 # (kpt) i == l && j == k && i != j && j != k => # # complex integrals, N^4 elements elif is_zero(kpti-kptl) and is_zero(kptj-kptk): eriR = numpy.zeros((nao**2,nao**2)) eriI = numpy.zeros((nao**2,nao**2)) for pqkR, pqkI, p0, p1 \ in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory): # rho_pq(G+k_pq) * conj(rho_rs(G-k_rs)) zdotNC(pqkR*coulG[p0:p1], pqkI*coulG[p0:p1], pqkR.T, pqkI.T, 1, eriR, eriI, 1) pqkR = pqkI = None pqkR = pqkI = coulG = None # transpose(0,1,3,2) because # j == k && i == l => # (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl) => (M|kl) # rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1))) eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1)) return eri.reshape(nao**2,-1) #################### # aosym = s1, complex integrals # # If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave # vector symmetry. k is a fraction of reciprocal basis, 0 < k/b < 1, by definition. # So kptl/b - kptk/b must be -1 < k/b < 1. => kptl == kptk # else: eriR = numpy.zeros((nao**2,nao**2)) eriI = numpy.zeros((nao**2,nao**2)) # # (pq|rs) = \sum_G 4\pi rho_pq rho_rs / |G+k_{pq}|^2 # rho_pq = 1/N \sum_{Tp,Tq} \int exp(-i(G+k_{pq})*r) p(r-Tp) q(r-Tq) dr # = \sum_{Tq} exp(i k_q*Tq) \int exp(-i(G+k_{pq})*r) p(r) q(r-Tq) dr # Note the k-point wrap-around for rho_rs, which leads to G+k_{pq} in FT # rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr # = \sum_{Ts} exp(i k_s*Ts) \int exp( i(G+k_{pq})*r) r(r) s(r-Ts) dr # rho_pq can be directly evaluated by AFT (function pw_loop) # rho_pq = pw_loop(k_q, G+k_{pq}) # Assuming r(r) and s(r) are real functions, rho_rs is evaluated # rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr # = conj(\sum_{Ts} exp(-i k_s*Ts) \int exp(-i(G+k_{pq})*r) r(r) s(r-Ts) dr) # = conj( pw_loop(-k_s, G+k_{pq}) ) # # TODO: For complex AO function r(r) and s(r), pw_loop function needs to be # extended to include Gv vector in the arguments for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \ lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5), mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)): pqkR *= coulG[p0:p1] pqkI *= coulG[p0:p1] zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1) pqkR = pqkI = rskR = rskI = None return (eriR+eriI*1j)
[docs] def general(mydf, mo_coeffs, kpts=None, compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)): warn_pbc2d_eri(mydf) cell = mydf.cell kptijkl = _format_kpts(kpts) kpti, kptj, kptk, kptl = kptijkl if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2: mo_coeffs = (mo_coeffs,) * 4 if not _iskconserv(cell, kptijkl): lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in ' 'the given k-points %s', kptijkl) return numpy.zeros([mo.shape[1] for mo in mo_coeffs]) q = kptj - kpti mesh = mydf.mesh coulG = mydf.weighted_coulG(q, False, mesh) all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs) max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5) #################### # gamma point, the integral is real and with s4 symmetry if gamma_point(kptijkl) and all_real: ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact) klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact) eri_mo = numpy.zeros((nij_pair,nkl_pair)) sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and iden_coeffs(mo_coeffs[1], mo_coeffs[3])) ijR = ijI = klR = klI = buf = None for pqkR, pqkI, p0, p1 \ in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory, aosym='s2'): buf = lib.transpose(pqkR, out=buf) ijR, klR = _dtrans(buf, ijR, ijmosym, moij, ijslice, buf, klR, klmosym, mokl, klslice, sym) lib.ddot(ijR.T, klR*coulG[p0:p1,None], 1, eri_mo, 1) buf = lib.transpose(pqkI, out=buf) ijI, klI = _dtrans(buf, ijI, ijmosym, moij, ijslice, buf, klI, klmosym, mokl, klslice, sym) lib.ddot(ijI.T, klI*coulG[p0:p1,None], 1, eri_mo, 1) pqkR = pqkI = None return eri_mo #################### # (kpt) i == j == k == l != 0 # (kpt) i == l && j == k && i != j && j != k => # elif is_zero(kpti-kptl) and is_zero(kptj-kptk): mo_coeffs = _mo_as_complex(mo_coeffs) nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:] nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:] eri_mo = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex128) sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and iden_coeffs(mo_coeffs[1], mo_coeffs[2])) zij = zlk = buf = None for pqkR, pqkI, p0, p1 \ in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory): buf = lib.transpose(pqkR+pqkI*1j, out=buf) zij, zlk = _ztrans(buf, zij, moij, ijslice, buf, zlk, molk, lkslice, sym) lib.dot(zij.T, zlk.conj()*coulG[p0:p1,None], 1, eri_mo, 1) pqkR = pqkI = None nmok = mo_coeffs[2].shape[1] nmol = mo_coeffs[3].shape[1] eri_mo = lib.transpose(eri_mo.reshape(-1,nmol,nmok), axes=(0,2,1)) return eri_mo.reshape(nij_pair,nlk_pair) #################### # aosym = s1, complex integrals # # If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave # vector symmetry. k is a fraction of reciprocal basis, 0 < k/b < 1, by definition. # So kptl/b - kptk/b must be -1 < k/b < 1. => kptl == kptk # else: mo_coeffs = _mo_as_complex(mo_coeffs) nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:] nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:] eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex128) tao = [] ao_loc = None zij = zkl = buf = None for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \ lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5), mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)): buf = lib.transpose(pqkR+pqkI*1j, out=buf) zij = _ao2mo.r_e2(buf, moij, ijslice, tao, ao_loc, out=zij) buf = lib.transpose(rskR-rskI*1j, out=buf) zkl = _ao2mo.r_e2(buf, mokl, klslice, tao, ao_loc, out=zkl) zij *= coulG[p0:p1,None] lib.dot(zij.T, zkl, 1, eri_mo, 1) pqkR = pqkI = rskR = rskI = None return eri_mo
[docs] def get_ao_pairs_G(mydf, kpts=numpy.zeros((2,3)), q=None, shls_slice=None, compact=getattr(__config__, 'pbc_df_ao_pairs_compact', False)): '''Calculate forward Fourier tranform (G|ij) of all AO pairs. Returns: ao_pairs_G : 2D complex array For gamma point, the shape is (ngrids, nao*(nao+1)/2); otherwise the shape is (ngrids, nao*nao) ''' if kpts is None: kpts = numpy.zeros((2,3)) cell = mydf.cell kpts = numpy.asarray(kpts) q = kpts[1] - kpts[0] coords = cell.gen_uniform_grids(mydf.mesh) ngrids = len(coords) max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5) if shls_slice is None: shls_slice = (0, cell.nbas, 0, cell.nbas) ish0, ish1, jsh0, jsh1 = shls_slice ao_loc = cell.ao_loc_nr() i0 = ao_loc[ish0] i1 = ao_loc[ish1] j0 = ao_loc[jsh0] j1 = ao_loc[jsh1] compact = compact and (i0 == j0) and (i1 == j1) if compact and gamma_point(kpts): # gamma point aosym = 's2' else: aosym = 's1' ao_pairs_G = numpy.empty((ngrids,(i1-i0)*(j1-j0)), dtype=numpy.complex128) for pqkR, pqkI, p0, p1 \ in mydf.pw_loop(mydf.mesh, kpts, q, shls_slice, max_memory=max_memory, aosym=aosym): ao_pairs_G[p0:p1] = pqkR.T + pqkI.T * 1j return ao_pairs_G
[docs] def get_mo_pairs_G(mydf, mo_coeffs, kpts=numpy.zeros((2,3)), q=None, compact=getattr(__config__, 'pbc_df_mo_pairs_compact', False)): '''Calculate forward fourier transform (G|ij) of all MO pairs. Args: mo_coeff: length-2 list of (nao,nmo) ndarrays The two sets of MO coefficients to use in calculating the product |ij). Returns: mo_pairs_G : (ngrids, nmoi*nmoj) ndarray The FFT of the real-space MO pairs. ''' if kpts is None: kpts = numpy.zeros((2,3)) cell = mydf.cell kpts = numpy.asarray(kpts) q = kpts[1] - kpts[0] coords = cell.gen_uniform_grids(mydf.mesh) nmoi = mo_coeffs[0].shape[1] nmoj = mo_coeffs[1].shape[1] ngrids = len(coords) max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5) mo_pairs_G = numpy.empty((ngrids,nmoi,nmoj), dtype=numpy.complex128) nao = cell.nao for pqkR, pqkI, p0, p1 \ in mydf.pw_loop(mydf.mesh, kpts, q, max_memory=max_memory, aosym='s2'): pqk = lib.unpack_tril(pqkR + pqkI*1j, axis=0).reshape(nao,nao,-1) mo_pairs_G[p0:p1] = lib.einsum('pqk,pi,qj->kij', pqk, *mo_coeffs[:2]) return mo_pairs_G.reshape(ngrids,nmoi*nmoj)
[docs] def ao2mo_7d(mydf, mo_coeff_kpts, kpts=None, factor=1, out=None): cell = mydf.cell if kpts is None: kpts = mydf.kpts nkpts = len(kpts) if isinstance(mo_coeff_kpts, numpy.ndarray) and mo_coeff_kpts.ndim == 3: mo_coeff_kpts = [mo_coeff_kpts] * 4 else: mo_coeff_kpts = list(mo_coeff_kpts) # Shape of the orbitals can be different on different k-points. The # orbital coefficients must be formatted (padded by zeros) so that the # shape of the orbital coefficients are the same on all k-points. This can # be achieved by calling pbc.mp.kmp2.padded_mo_coeff function nmoi, nmoj, nmok, nmol = [x.shape[2] for x in mo_coeff_kpts] eri_shape = (nkpts, nkpts, nkpts, nmoi, nmoj, nmok, nmol) if gamma_point(kpts): dtype = numpy.result_type(*mo_coeff_kpts) else: dtype = numpy.complex128 if out is None: out = numpy.empty(eri_shape, dtype=dtype) else: assert (out.shape == eri_shape) kptij_lst = numpy.array([(ki, kj) for ki in kpts for kj in kpts]) kptis_lst = kptij_lst[:,0] kptjs_lst = kptij_lst[:,1] kpt_ji = kptjs_lst - kptis_lst uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) ngrids = numpy.prod(mydf.mesh) nao = cell.nao max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]-nao**4*16/1e6) * .5 # To hold intermediates fswap = lib.H5TmpFile() tao = [] ao_loc = None kconserv = kpts_helper.get_kconserv(cell, kpts) for uniq_id, kpt in enumerate(uniq_kpts): q = uniq_kpts[uniq_id] adapted_ji_idx = numpy.where(uniq_inverse == uniq_id)[0] kptjs = kptjs_lst[adapted_ji_idx] coulG = mydf.weighted_coulG(q, False, mydf.mesh) coulG *= factor moij_list = [] ijslice_list = [] for ji, ji_idx in enumerate(adapted_ji_idx): ki = ji_idx // nkpts kj = ji_idx % nkpts moij, ijslice = _conc_mos(mo_coeff_kpts[0][ki], mo_coeff_kpts[1][kj])[2:] moij_list.append(moij) ijslice_list.append(ijslice) fswap.create_dataset('zij/'+str(ji), (ngrids,nmoi*nmoj), 'D') for aoaoks, p0, p1 in mydf.ft_loop(mydf.mesh, q, kptjs, max_memory=max_memory): for ji, aoao in enumerate(aoaoks): ki = adapted_ji_idx[ji] // nkpts kj = adapted_ji_idx[ji] % nkpts buf = aoao.transpose(1,2,0).reshape(nao**2,p1-p0) zij = _ao2mo.r_e2(lib.transpose(buf), moij_list[ji], ijslice_list[ji], tao, ao_loc) zij *= coulG[p0:p1,None] fswap['zij/'+str(ji)][p0:p1] = zij buf = zij = None mokl_list = [] klslice_list = [] for kk in range(nkpts): kl = kconserv[ki, kj, kk] mokl, klslice = _conc_mos(mo_coeff_kpts[2][kk], mo_coeff_kpts[3][kl])[2:] mokl_list.append(mokl) klslice_list.append(klslice) fswap.create_dataset('zkl/'+str(kk), (ngrids,nmok*nmol), 'D') ki = adapted_ji_idx[0] // nkpts kj = adapted_ji_idx[0] % nkpts kptls = kpts[kconserv[ki, kj, :]] for aoaoks, p0, p1 in mydf.ft_loop(mydf.mesh, q, -kptls, max_memory=max_memory): for kk, aoao in enumerate(aoaoks): buf = aoao.conj().transpose(1,2,0).reshape(nao**2,p1-p0) zkl = _ao2mo.r_e2(lib.transpose(buf), mokl_list[kk], klslice_list[kk], tao, ao_loc) fswap['zkl/'+str(kk)][p0:p1] = zkl buf = zkl = None for ji, ji_idx in enumerate(adapted_ji_idx): ki = ji_idx // nkpts kj = ji_idx % nkpts for kk in range(nkpts): zij = numpy.asarray(fswap['zij/'+str(ji)]) zkl = numpy.asarray(fswap['zkl/'+str(kk)]) tmp = lib.dot(zij.T, zkl) if dtype == numpy.double: tmp = tmp.real out[ki,kj,kk] = tmp.reshape(eri_shape[3:]) del (fswap['zij']) del (fswap['zkl']) return out
if __name__ == '__main__': from pyscf.pbc import gto as pgto from pyscf.pbc.df import AFTDF L = 5. n = 11 cell = pgto.Cell() cell.a = numpy.diag([L,L,L]) cell.mesh = numpy.array([n,n,n]) cell.atom = '''He 3. 2. 3. He 1. 1. 1.''' #cell.basis = {'He': [[0, (1.0, 1.0)]]} #cell.basis = '631g' #cell.basis = {'He': [[0, (2.4, 1)], [1, (1.1, 1)]]} cell.basis = 'ccpvdz' cell.verbose = 0 cell.build(0,0) nao = cell.nao_nr() numpy.random.seed(1) kpts = numpy.random.random((4,3)) kpts[3] = -numpy.einsum('ij->j', kpts[:3]) with_df = AFTDF(cell, kpts) with_df.mesh = [n] * 3 mo =(numpy.random.random((nao,nao)) + numpy.random.random((nao,nao))*1j) eri = with_df.get_eri(kpts).reshape((nao,)*4) eri0 = numpy.einsum('pjkl,pi->ijkl', eri , mo.conj()) eri0 = numpy.einsum('ipkl,pj->ijkl', eri0, mo ) eri0 = numpy.einsum('ijpl,pk->ijkl', eri0, mo.conj()) eri0 = numpy.einsum('ijkp,pl->ijkl', eri0, mo ) eri1 = with_df.ao2mo(mo, kpts) print(abs(eri1-eri0).sum())