#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
'''Density expansion on plane waves'''
import numpy
from pyscf import lib
from pyscf import gto
from pyscf.lib import logger
from pyscf.pbc import tools
from pyscf.pbc import gto as pbcgto
from pyscf.pbc.gto import pseudo, error_for_ke_cutoff, estimate_ke_cutoff
from pyscf.pbc.df import ft_ao
from pyscf.pbc.df import fft_ao2mo
from pyscf.pbc.df import fft_jk
from pyscf.pbc.df import aft
from pyscf.pbc.df.aft import _check_kpts
from pyscf.pbc.lib.kpts import KPoints
from pyscf.pbc.lib.kpts_helper import is_zero
from pyscf import __config__
KE_SCALING = getattr(__config__, 'pbc_df_aft_ke_cutoff_scaling', 0.75)
[docs]
def get_nuc(mydf, kpts=None):
from pyscf.pbc.dft import gen_grid
kpts, is_single_kpt = _check_kpts(mydf, kpts)
cell = mydf.cell
mesh = mydf.mesh
charge = -cell.atom_charges()
Gv = cell.get_Gv(mesh)
SI = cell.get_SI(mesh=mesh)
rhoG = numpy.dot(charge, SI)
coulG = tools.get_coulG(cell, mesh=mesh, Gv=Gv)
vneG = rhoG * coulG
vneR = tools.ifft(vneG, mesh).real
vne = [0] * len(kpts)
for ao_ks_etc, p0, p1 in mydf.aoR_loop(mydf.grids, kpts):
ao_ks = ao_ks_etc[0]
for k, ao in enumerate(ao_ks):
vne[k] += lib.dot(ao.T.conj()*vneR[p0:p1], ao)
ao = ao_ks = None
if is_single_kpt:
vne = vne[0]
return numpy.asarray(vne)
[docs]
def get_pp(mydf, kpts=None):
'''Get the periodic pseudotential nuc-el AO matrix, with G=0 removed.
'''
from pyscf.pbc.dft import gen_grid
kpts, is_single_kpt = _check_kpts(mydf, kpts)
cell = mydf.cell
mesh = mydf.mesh
Gv = cell.get_Gv(mesh)
SI = cell.get_SI(mesh=mesh)
vpplocG = pseudo.get_vlocG(cell, Gv)
vpplocG = -numpy.einsum('ij,ij->j', SI, vpplocG)
ngrids = len(vpplocG)
# vpploc evaluated in real-space
vpplocR = tools.ifft(vpplocG, mesh).real
vpp = [0] * len(kpts)
for ao_ks_etc, p0, p1 in mydf.aoR_loop(mydf.grids, kpts):
ao_ks = ao_ks_etc[0]
for k, ao in enumerate(ao_ks):
vpp[k] += lib.dot(ao.T.conj()*vpplocR[p0:p1], ao)
ao = ao_ks = None
# vppnonloc evaluated in reciprocal space
fakemol = gto.Mole()
fakemol._atm = numpy.zeros((1,gto.ATM_SLOTS), dtype=numpy.int32)
fakemol._bas = numpy.zeros((1,gto.BAS_SLOTS), dtype=numpy.int32)
ptr = gto.PTR_ENV_START
fakemol._env = numpy.zeros(ptr+10)
fakemol._bas[0,gto.NPRIM_OF ] = 1
fakemol._bas[0,gto.NCTR_OF ] = 1
fakemol._bas[0,gto.PTR_EXP ] = ptr+3
fakemol._bas[0,gto.PTR_COEFF] = ptr+4
# buf for SPG_lmi upto l=0..3 and nl=3
buf = numpy.empty((48,ngrids), dtype=numpy.complex128)
def vppnl_by_k(kpt):
Gk = Gv + kpt
G_rad = lib.norm(Gk, axis=1)
aokG = ft_ao.ft_ao(cell, Gv, kpt=kpt) * (1/cell.vol)**.5
vppnl = 0
for ia in range(cell.natm):
symb = cell.atom_symbol(ia)
if symb not in cell._pseudo:
continue
pp = cell._pseudo[symb]
p1 = 0
for l, proj in enumerate(pp[5:]):
rl, nl, hl = proj
if nl > 0:
fakemol._bas[0,gto.ANG_OF] = l
fakemol._env[ptr+3] = .5*rl**2
fakemol._env[ptr+4] = rl**(l+1.5)*numpy.pi**1.25
pYlm_part = fakemol.eval_gto('GTOval', Gk)
p0, p1 = p1, p1+nl*(l*2+1)
# pYlm is real, SI[ia] is complex
pYlm = numpy.ndarray((nl,l*2+1,ngrids), dtype=numpy.complex128, buffer=buf[p0:p1])
for k in range(nl):
qkl = pseudo.pp._qli(G_rad*rl, l, k)
pYlm[k] = pYlm_part.T * qkl
#:SPG_lmi = numpy.einsum('g,nmg->nmg', SI[ia].conj(), pYlm)
#:SPG_lm_aoG = numpy.einsum('nmg,gp->nmp', SPG_lmi, aokG)
#:tmp = numpy.einsum('ij,jmp->imp', hl, SPG_lm_aoG)
#:vppnl += numpy.einsum('imp,imq->pq', SPG_lm_aoG.conj(), tmp)
if p1 > 0:
SPG_lmi = buf[:p1]
SPG_lmi *= SI[ia].conj()
SPG_lm_aoGs = lib.zdot(SPG_lmi, aokG)
p1 = 0
for l, proj in enumerate(pp[5:]):
rl, nl, hl = proj
if nl > 0:
p0, p1 = p1, p1+nl*(l*2+1)
hl = numpy.asarray(hl)
SPG_lm_aoG = SPG_lm_aoGs[p0:p1].reshape(nl,l*2+1,-1)
tmp = numpy.einsum('ij,jmp->imp', hl, SPG_lm_aoG)
vppnl += numpy.einsum('imp,imq->pq', SPG_lm_aoG.conj(), tmp)
return vppnl * (1./cell.vol)
for k, kpt in enumerate(kpts):
vppnl = vppnl_by_k(kpt)
if is_zero(kpt):
vpp[k] = vpp[k].real + vppnl.real
else:
vpp[k] += vppnl
if is_single_kpt:
vpp = vpp[0]
return numpy.asarray(vpp)
[docs]
class FFTDF(lib.StreamObject):
'''Density expansion on plane waves
'''
_keys = {
'cell', 'kpts', 'grids', 'mesh', 'blockdim', 'exxdiv',
}
def __init__(self, cell, kpts=numpy.zeros((1,3))):
from pyscf.pbc.dft import gen_grid
from pyscf.pbc.dft import numint
self.cell = cell
self.stdout = cell.stdout
self.verbose = cell.verbose
self.max_memory = cell.max_memory
if isinstance(kpts, KPoints):
kpts = kpts.kpts
self.kpts = kpts
self.grids = gen_grid.UniformGrids(cell)
# FFT from real space density distributes error to every rho_ij(G) than
# the one with largest Gaussian exponent. Therefore the error for FFT-ERI
# ~ Nele * error[rho(Ecut)] while in AFT the error is ~ error[rho(Ecut)]^2.
# This is a first order error, same to the error estimation for nuclear
# attraction.
self.mesh = cell.mesh
# to mimic molecular DF object
self.blockdim = getattr(__config__, 'pbc_df_df_DF_blockdim', 240)
# The following attributes are not input options.
# self.exxdiv has no effects. It was set in the get_k_kpts function to
# mimic the KRHF/KUHF object in the call to tools.get_coulG.
self.exxdiv = None
self._numint = numint.KNumInt()
self._rsh_df = {} # Range separated Coulomb DF objects
@property
def mesh(self):
return self.grids.mesh
@mesh.setter
def mesh(self, mesh):
self.grids.mesh = mesh
[docs]
def reset(self, cell=None):
if cell is not None:
self.cell = cell
self.grids.reset(cell)
self._rsh_df = {}
return self
[docs]
def dump_flags(self, verbose=None):
logger.info(self, '\n')
logger.info(self, '******** %s ********', self.__class__)
logger.info(self, 'mesh = %s (%d PWs)', self.mesh, numpy.prod(self.mesh))
logger.info(self, 'len(kpts) = %d', len(self.kpts))
logger.debug1(self, ' kpts = %s', self.kpts)
return self
[docs]
def check_sanity(self):
lib.StreamObject.check_sanity(self)
cell = self.cell
if (cell.dimension < 2 or
(cell.dimension == 2 and cell.low_dim_ft_type == 'inf_vacuum')):
raise RuntimeError('FFTDF method does not support 0D/1D low-dimension '
'PBC system. DF, MDF or AFTDF methods should '
'be used.\nSee also examples/pbc/31-low_dimensional_pbc.py')
if not cell.has_ecp():
logger.warn(self, 'FFTDF integrals are found in all-electron '
'calculation. It often causes huge error.\n'
'Recommended methods are DF or MDF. In SCF calculation, '
'they can be initialized as\n'
' mf = mf.density_fit()\nor\n'
' mf = mf.mix_density_fit()')
if cell.ke_cutoff is None:
ke_cutoff = tools.mesh_to_cutoff(cell.lattice_vectors(), self.mesh).min()
else:
ke_cutoff = numpy.min(cell.ke_cutoff)
ke_guess = estimate_ke_cutoff(cell, cell.precision)
if ke_cutoff < ke_guess * KE_SCALING:
mesh_guess = cell.cutoff_to_mesh(ke_guess)
logger.warn(self, 'ke_cutoff/mesh (%g / %s) is not enough for FFTDF '
'to get integral accuracy %g.\nCoulomb integral error '
'is ~ %.2g Eh.\nRecommended ke_cutoff/mesh are %g / %s.',
ke_cutoff, self.mesh, cell.precision,
error_for_ke_cutoff(cell, ke_cutoff), ke_guess, mesh_guess)
return self
[docs]
def build(self):
return self.check_sanity()
[docs]
def aoR_loop(self, grids=None, kpts=None, deriv=0):
if grids is None:
grids = self.grids
cell = self.cell
else:
cell = grids.cell
if grids.non0tab is None:
grids.build(with_non0tab=True)
if kpts is None: kpts = self.kpts
kpts = numpy.asarray(kpts)
if (cell.dimension < 2 or
(cell.dimension == 2 and cell.low_dim_ft_type == 'inf_vacuum')):
raise RuntimeError('FFTDF method does not support low-dimension '
'PBC system. DF, MDF or AFTDF methods should '
'be used.\nSee also examples/pbc/31-low_dimensional_pbc.py')
max_memory = max(2000, self.max_memory-lib.current_memory()[0])
ni = self._numint
nao = cell.nao_nr()
p1 = 0
for ao_k1_etc in ni.block_loop(cell, grids, nao, deriv, kpts,
max_memory=max_memory):
coords = ao_k1_etc[4]
p0, p1 = p1, p1 + coords.shape[0]
yield ao_k1_etc, p0, p1
get_pp = get_pp
get_nuc = get_nuc
[docs]
def get_jk_e1(self, dm, kpts=None, kpts_band=None, exxdiv=None):
kpts = _check_kpts(self, kpts)[0]
vj = fft_jk.get_j_e1_kpts(self, dm, kpts, kpts_band)
vk = fft_jk.get_k_e1_kpts(self, dm, kpts, kpts_band, exxdiv)
return vj, vk
[docs]
def get_j_e1(self, dm, kpts=None, kpts_band=None):
kpts = _check_kpts(self, kpts)[0]
vj = fft_jk.get_j_e1_kpts(self, dm, kpts, kpts_band)
return vj
[docs]
def get_k_e1(self, dm, kpts=None, kpts_band=None, exxdiv=None):
kpts = _check_kpts(self, kpts)[0]
vk = fft_jk.get_k_e1_kpts(self, dm, kpts, kpts_band, exxdiv)
return vk
# Note: Special exxdiv by default should not be used for an arbitrary
# input density matrix. When the df object was used with the molecular
# post-HF code, get_jk was often called with an incomplete DM (e.g. the
# core DM in CASCI). An SCF level exxdiv treatment is inadequate for
# post-HF methods.
[docs]
def get_jk(self, dm, hermi=1, kpts=None, kpts_band=None,
with_j=True, with_k=True, omega=None, exxdiv=None):
if omega is not None: # J/K for RSH functionals
with self.range_coulomb(omega) as rsh_df:
return rsh_df.get_jk(dm, hermi, kpts, kpts_band, with_j, with_k,
omega=None, exxdiv=exxdiv)
kpts, is_single_kpt = _check_kpts(self, kpts)
if is_single_kpt:
vj, vk = fft_jk.get_jk(self, dm, hermi, kpts[0], kpts_band,
with_j, with_k, exxdiv)
else:
vj = vk = None
if with_k:
vk = fft_jk.get_k_kpts(self, dm, hermi, kpts, kpts_band, exxdiv)
if with_j:
vj = fft_jk.get_j_kpts(self, dm, hermi, kpts, kpts_band)
return vj, vk
get_eri = get_ao_eri = fft_ao2mo.get_eri
ao2mo = get_mo_eri = fft_ao2mo.general
ao2mo_7d = fft_ao2mo.ao2mo_7d
get_ao_pairs_G = get_ao_pairs = fft_ao2mo.get_ao_pairs_G
get_mo_pairs_G = get_mo_pairs = fft_ao2mo.get_mo_pairs_G
[docs]
def update_mf(self, mf):
mf = mf.copy()
mf.with_df = self
return mf
################################################################################
# With this function to mimic the molecular DF.loop function, the pbc gamma
# point DF object can be used in the molecular code
[docs]
def loop(self, blksize=None):
if self.cell.dimension < 3:
raise RuntimeError('ERIs of 1D and 2D systems are not positive '
'definite. Current API only supports postive '
'definite ERIs.')
if blksize is None:
blksize = self.blockdim
kpts0 = numpy.zeros((2,3))
coulG = tools.get_coulG(self.cell, numpy.zeros(3), mesh=self.mesh)
ngrids = len(coulG)
ao_pairs_G = self.get_ao_pairs_G(kpts0, compact=True)
ao_pairs_G *= numpy.sqrt(coulG*(self.cell.vol/ngrids**2)).reshape(-1,1)
Lpq = numpy.empty((blksize, ao_pairs_G.shape[1]))
for p0, p1 in lib.prange(0, ngrids, blksize):
Lpq[:p1-p0] = ao_pairs_G[p0:p1].real
yield Lpq[:p1-p0]
Lpq[:p1-p0] = ao_pairs_G[p0:p1].imag
yield Lpq[:p1-p0]
[docs]
def get_naoaux(self):
mesh = numpy.asarray(self.mesh)
ngrids = numpy.prod(mesh)
return ngrids * 2
range_coulomb = aft.AFTDF.range_coulomb
to_gpu = lib.to_gpu