Source code for pyscf.pbc.dft.multigrid.multigrid

#!/usr/bin/env python
# Copyright 2014-2024 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''Multigrid to compute DFT integrals'''

import ctypes
import numpy
import scipy.linalg

from pyscf import __config__
from pyscf import lib
from pyscf.lib import logger
from pyscf.gto import ATOM_OF, ANG_OF, NPRIM_OF, PTR_EXP, PTR_COEFF
from pyscf.dft.numint import libdft, BLKSIZE, MGGA_DENSITY_LAPL
from pyscf.pbc import tools
from pyscf.pbc import gto
from pyscf.pbc.gto import pseudo
from pyscf.pbc.gto.pseudo import pp_int
from pyscf.pbc.dft import numint, gen_grid
from pyscf.pbc.df.df_jk import (
    _format_dms,
    _format_kpts_band,
    _format_jks,
)
from pyscf.pbc.lib.kpts_helper import gamma_point
from pyscf.pbc.df import fft, ft_ao
from pyscf.pbc.dft.multigrid.utils import (
    _take_4d,
    _take_5d,
    _takebak_4d,
    _takebak_5d,
)

#sys.stderr.write('WARN: multigrid is an experimental feature. It is still in '
#                 'testing\nFeatures and APIs may be changed in the future.\n')

EXTRA_PREC = getattr(__config__, 'pbc_gto_eval_gto_extra_precision', 1e-2)
TO_EVEN_GRIDS = getattr(__config__, 'pbc_dft_multigrid_to_even', False)
RMAX_FACTOR_ORTH = getattr(__config__, 'pbc_dft_multigrid_rmax_factor_orth', 1.1)
RMAX_FACTOR_NONORTH = getattr(__config__, 'pbc_dft_multigrid_rmax_factor_nonorth', 0.5)
RMAX_RATIO = getattr(__config__, 'pbc_dft_multigrid_rmax_ratio', 0.7)
R_RATIO_SUBLOOP = getattr(__config__, 'pbc_dft_multigrid_r_ratio_subloop', 0.6)
INIT_MESH_ORTH = getattr(__config__, 'pbc_dft_multigrid_init_mesh_orth', (12,12,12))
INIT_MESH_NONORTH = getattr(__config__, 'pbc_dft_multigrid_init_mesh_nonorth', (32,32,32))
KE_RATIO = getattr(__config__, 'pbc_dft_multigrid_ke_ratio', 1.3)
TASKS_TYPE = getattr(__config__, 'pbc_dft_multigrid_tasks_type', 'ke_cut') # 'rcut'

# RHOG_HIGH_ORDER=True will compute the high order derivatives of electron
# density in real space and FT to reciprocal space.  Set RHOG_HIGH_ORDER=False
# to approximate the density derivatives in reciprocal space (without
# evaluating the high order derivatives in real space).
RHOG_HIGH_ORDER = getattr(__config__, 'pbc_dft_multigrid_rhog_high_order', False)

PTR_EXPDROP = 16
EXPDROP = getattr(__config__, 'pbc_dft_multigrid_expdrop', 1e-12)
IMAG_TOL = 1e-9


[docs] def eval_mat(cell, weights, shls_slice=None, comp=1, hermi=0, xctype='LDA', kpts=None, mesh=None, offset=None, submesh=None): assert (all(cell._bas[:,NPRIM_OF] == 1)) if mesh is None: mesh = cell.mesh vol = cell.vol weight_penalty = numpy.prod(mesh) / vol exp_min = numpy.hstack(cell.bas_exps()).min() theta_ij = exp_min / 2 lattice_sum_fac = max(2*numpy.pi*cell.rcut/(vol*theta_ij), 1) precision = cell.precision / weight_penalty / lattice_sum_fac if xctype != 'LDA': precision *= .1 atm, bas, env = gto.conc_env(cell._atm, cell._bas, cell._env, cell._atm, cell._bas, cell._env) env[PTR_EXPDROP] = min(precision*EXTRA_PREC, EXPDROP) ao_loc = gto.moleintor.make_loc(bas, 'cart') if shls_slice is None: shls_slice = (0, cell.nbas, 0, cell.nbas) i0, i1, j0, j1 = shls_slice j0 += cell.nbas j1 += cell.nbas naoi = ao_loc[i1] - ao_loc[i0] naoj = ao_loc[j1] - ao_loc[j0] Ls = gto.eval_gto.get_lattice_Ls(cell) nimgs = len(Ls) weights = numpy.asarray(weights, order='C') assert (weights.dtype == numpy.double) xctype = xctype.upper() n_mat = None if xctype == 'LDA': if weights.ndim == 1: weights = weights.reshape(-1, numpy.prod(mesh)) else: n_mat = weights.shape[0] elif xctype == 'GGA': if hermi == 1: raise RuntimeError('hermi=1 is not supported for GGA functional') if weights.ndim == 2: weights = weights.reshape(-1, 4, numpy.prod(mesh)) else: n_mat = weights.shape[0] else: raise NotImplementedError a = cell.lattice_vectors() b = numpy.linalg.inv(a.T) if offset is None: offset = (0, 0, 0) if submesh is None: submesh = mesh # log_prec is used to estimate the gto_rcut. Add EXTRA_PREC to count # other possible factors and coefficients in the integral. log_prec = numpy.log(precision * EXTRA_PREC) if abs(a-numpy.diag(a.diagonal())).max() < 1e-12: lattice_type = '_orth' else: lattice_type = '_nonorth' eval_fn = 'NUMINTeval_' + xctype.lower() + lattice_type drv = libdft.NUMINT_fill2c def make_mat(weights): mat = numpy.zeros((nimgs,comp,naoj,naoi)) drv(getattr(libdft, eval_fn), weights.ctypes.data_as(ctypes.c_void_p), mat.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(comp), ctypes.c_int(hermi), (ctypes.c_int*4)(i0, i1, j0, j1), ao_loc.ctypes.data_as(ctypes.c_void_p), ctypes.c_double(log_prec), ctypes.c_int(cell.dimension), ctypes.c_int(nimgs), Ls.ctypes.data_as(ctypes.c_void_p), a.ctypes.data_as(ctypes.c_void_p), b.ctypes.data_as(ctypes.c_void_p), (ctypes.c_int*3)(*offset), (ctypes.c_int*3)(*submesh), (ctypes.c_int*3)(*mesh), atm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(atm)), bas.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(bas)), env.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(env))) return mat out = [] for wv in weights: if cell.dimension == 0: mat = make_mat(wv)[0].transpose(0,2,1) if hermi == 1: for i in range(comp): lib.hermi_triu(mat[i], inplace=True) if comp == 1: mat = mat[0] elif kpts is None or gamma_point(kpts): mat = make_mat(wv).sum(axis=0).transpose(0,2,1) if hermi == 1: for i in range(comp): lib.hermi_triu(mat[i], inplace=True) if comp == 1: mat = mat[0] if getattr(kpts, 'ndim', None) == 2: mat = mat[None,:] else: mat = make_mat(wv) expkL = numpy.exp(1j*kpts.reshape(-1,3).dot(Ls.T)) mat = lib.einsum('kr,rcij->kcij', expkL, mat) if hermi == 1: for i in range(comp): for k in range(len(kpts)): lib.hermi_triu(mat[k,i], inplace=True) mat = mat.transpose(0,1,3,2) if comp == 1: mat = mat[:,0] out.append(mat) if n_mat is None: out = out[0] return out
[docs] def eval_rho(cell, dm, shls_slice=None, hermi=0, xctype='LDA', kpts=None, mesh=None, offset=None, submesh=None, ignore_imag=False, out=None): '''Collocate the *real* density (opt. gradients) on the real-space grid. Kwargs: ignore_image : The output density is assumed to be real if ignore_imag=True. ''' assert (all(cell._bas[:,NPRIM_OF] == 1)) if mesh is None: mesh = cell.mesh vol = cell.vol weight_penalty = numpy.prod(mesh) / vol exp_min = numpy.hstack(cell.bas_exps()).min() theta_ij = exp_min / 2 lattice_sum_fac = max(2*numpy.pi*cell.rcut/(vol*theta_ij), 1) precision = cell.precision / weight_penalty / lattice_sum_fac if xctype != 'LDA': precision *= .1 atm, bas, env = gto.conc_env(cell._atm, cell._bas, cell._env, cell._atm, cell._bas, cell._env) env[PTR_EXPDROP] = min(precision*EXTRA_PREC, EXPDROP) ao_loc = gto.moleintor.make_loc(bas, 'cart') if shls_slice is None: shls_slice = (0, cell.nbas, 0, cell.nbas) i0, i1, j0, j1 = shls_slice if hermi == 1: assert (i0 == j0 and i1 == j1) j0 += cell.nbas j1 += cell.nbas naoi = ao_loc[i1] - ao_loc[i0] naoj = ao_loc[j1] - ao_loc[j0] dm = numpy.asarray(dm, order='C') assert (dm.shape[-2:] == (naoi, naoj)) Ls = gto.eval_gto.get_lattice_Ls(cell) if cell.dimension == 0 or kpts is None or gamma_point(kpts): nkpts, nimgs = 1, Ls.shape[0] dm = dm.reshape(-1,1,naoi,naoj).transpose(0,1,3,2) else: expkL = numpy.exp(1j*kpts.reshape(-1,3).dot(Ls.T)) nkpts, nimgs = expkL.shape dm = dm.reshape(-1,nkpts,naoi,naoj).transpose(0,1,3,2) n_dm = dm.shape[0] a = cell.lattice_vectors() b = numpy.linalg.inv(a.T) if offset is None: offset = (0, 0, 0) if submesh is None: submesh = mesh log_prec = numpy.log(precision * EXTRA_PREC) if abs(a-numpy.diag(a.diagonal())).max() < 1e-12: lattice_type = '_orth' else: lattice_type = '_nonorth' xctype = xctype.upper() if xctype == 'LDA': comp = 1 elif xctype == 'GGA': if hermi == 1: raise RuntimeError('hermi=1 is not supported for GGA functional') comp = 4 else: raise NotImplementedError('meta-GGA') if comp == 1: shape = (numpy.prod(submesh),) else: shape = (comp, numpy.prod(submesh)) eval_fn = 'NUMINTrho_' + xctype.lower() + lattice_type drv = libdft.NUMINT_rho_drv def make_rho_(rho, dm, hermi): drv(getattr(libdft, eval_fn), rho.ctypes.data_as(ctypes.c_void_p), dm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(comp), ctypes.c_int(hermi), (ctypes.c_int*4)(i0, i1, j0, j1), ao_loc.ctypes.data_as(ctypes.c_void_p), ctypes.c_double(log_prec), ctypes.c_int(cell.dimension), ctypes.c_int(nimgs), Ls.ctypes.data_as(ctypes.c_void_p), a.ctypes.data_as(ctypes.c_void_p), b.ctypes.data_as(ctypes.c_void_p), (ctypes.c_int*3)(*offset), (ctypes.c_int*3)(*submesh), (ctypes.c_int*3)(*mesh), atm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(atm)), bas.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(bas)), env.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(env))) return rho rho = [] for i, dm_i in enumerate(dm): if cell.dimension == 0: if ignore_imag: # basis are real. dm.imag can be dropped if ignore_imag dm_i = dm_i.real has_imag = dm_i.dtype == numpy.complex128 if has_imag: dmR = numpy.asarray(dm_i.real, order='C') dmI = numpy.asarray(dm_i.imag, order='C') else: # make a copy because the dm may be overwritten in the # NUMINT_rho_drv inplace dmR = numpy.array(dm_i, order='C', copy=True) elif kpts is None or gamma_point(kpts): if ignore_imag: # basis are real. dm.imag can be dropped if ignore_imag dm_i = dm_i.real has_imag = dm_i.dtype == numpy.complex128 if has_imag: dmR = numpy.repeat(dm_i.real, nimgs, axis=0) dmI = numpy.repeat(dm_i.imag, nimgs, axis=0) else: dmR = numpy.repeat(dm_i, nimgs, axis=0) else: dm_L = lib.dot(expkL.T, dm_i.reshape(nkpts,-1)).reshape(nimgs,naoj,naoi) dmR = numpy.asarray(dm_L.real, order='C') if ignore_imag: has_imag = False else: dmI = numpy.asarray(dm_L.imag, order='C') has_imag = (hermi == 0 and abs(dmI).max() > 1e-8) if (has_imag and xctype == 'LDA' and naoi == naoj and # For hermitian density matrices, the anti-symmetry # character of the imaginary part of the density matrices # can be found by rearranging the repeated images. abs(dm_i - dm_i.conj().transpose(0,2,1)).max() < 1e-8): has_imag = False dm_L = None if has_imag: # complex density cannot be updated inplace directly by # function NUMINT_rho_drv if out is None: rho_i = numpy.empty(shape, numpy.complex128) rho_i.real = make_rho_(numpy.zeros(shape), dmR, 0) rho_i.imag = make_rho_(numpy.zeros(shape), dmI, 0) else: assert out[i].dtype == numpy.complex128 rho_i = out[i].reshape(shape) rho_i.real += make_rho_(numpy.zeros(shape), dmR, 0) rho_i.imag += make_rho_(numpy.zeros(shape), dmI, 0) else: if out is None: # rho_i needs to be initialized to 0 because rho_i is updated # inplace in function NUMINT_rho_drv rho_i = make_rho_(numpy.zeros(shape), dmR, hermi) else: assert out[i].dtype == numpy.double rho_i = out[i].reshape(shape) make_rho_(rho_i, dmR, hermi) dmR = dmI = None rho.append(rho_i) if n_dm == 1: rho = rho[0] return rho
[docs] def get_nuc(mydf, kpts=None): kpts, is_single_kpt = fft._check_kpts(mydf, kpts) cell = mydf.cell mesh = mydf.mesh charge = -cell.atom_charges() Gv = cell.get_Gv(mesh) SI = cell.get_SI(Gv) rhoG = numpy.dot(charge, SI) coulG = tools.get_coulG(cell, mesh=mesh, Gv=Gv) vneG = rhoG * coulG hermi = 1 vne = _get_j_pass2(mydf, vneG, hermi, kpts)[0] if is_single_kpt: vne = vne[0] return numpy.asarray(vne)
[docs] def get_pp(mydf, kpts=None, max_memory=4000): '''Get the periodic pseudotential nuc-el AO matrix, with G=0 removed. ''' from pyscf import gto kpts, is_single_kpt = fft._check_kpts(mydf, kpts) cell = mydf.cell mesh = mydf.mesh Gv = cell.get_Gv(mesh) ngrids = len(Gv) vpplocG = numpy.empty((ngrids,), dtype=numpy.complex128) mem_avail = max(max_memory, mydf.max_memory-lib.current_memory()[0]) blksize = int(mem_avail*1e6/((cell.natm*2)*16)) blksize = min(ngrids, max(21**3, blksize)) for ig0, ig1 in lib.prange(0, ngrids, blksize): vpplocG_batch = pp_int.get_gth_vlocG_part1(cell, Gv[ig0:ig1]) SI = cell.get_SI(Gv[ig0:ig1]) vpplocG[ig0:ig1] = -numpy.einsum('ij,ij->j', SI, vpplocG_batch) hermi = 1 vpp = _get_j_pass2(mydf, vpplocG, hermi, kpts)[0] vpp2 = pp_int.get_pp_loc_part2(cell, kpts) for k, kpt in enumerate(kpts): vpp[k] += vpp2[k] # vppnonloc evaluated in reciprocal space fakemol = gto.Mole() fakemol._atm = numpy.zeros((1,gto.ATM_SLOTS), dtype=numpy.int32) fakemol._bas = numpy.zeros((1,gto.BAS_SLOTS), dtype=numpy.int32) ptr = gto.PTR_ENV_START fakemol._env = numpy.zeros(ptr+10) fakemol._bas[0,gto.NPRIM_OF ] = 1 fakemol._bas[0,gto.NCTR_OF ] = 1 fakemol._bas[0,gto.PTR_EXP ] = ptr+3 fakemol._bas[0,gto.PTR_COEFF] = ptr+4 def vppnl_by_k(kpt): SPG_lm_aoGs = [] for ia in range(cell.natm): symb = cell.atom_symbol(ia) if symb not in cell._pseudo: SPG_lm_aoGs.append(None) continue pp = cell._pseudo[symb] p1 = 0 for l, proj in enumerate(pp[5:]): rl, nl, hl = proj if nl > 0: p1 = p1+nl*(l*2+1) SPG_lm_aoGs.append(numpy.zeros((p1, cell.nao), dtype=numpy.complex128)) mem_avail = max(max_memory, mydf.max_memory-lib.current_memory()[0]) blksize = int(mem_avail*1e6/((48+cell.nao+13+3)*16)) blksize = min(ngrids, max(21**3, blksize)) vppnl = 0 for ig0, ig1 in lib.prange(0, ngrids, blksize): ng = ig1 - ig0 # buf for SPG_lmi upto l=0..3 and nl=3 buf = numpy.empty((48,ng), dtype=numpy.complex128) Gk = Gv[ig0:ig1] + kpt G_rad = numpy.linalg.norm(Gk, axis=1) aokG = ft_ao.ft_ao(cell, Gv[ig0:ig1], kpt=kpt) * (ngrids/cell.vol) for ia in range(cell.natm): symb = cell.atom_symbol(ia) if symb not in cell._pseudo: continue pp = cell._pseudo[symb] p1 = 0 for l, proj in enumerate(pp[5:]): rl, nl, hl = proj if nl > 0: fakemol._bas[0,gto.ANG_OF] = l fakemol._env[ptr+3] = .5*rl**2 fakemol._env[ptr+4] = rl**(l+1.5)*numpy.pi**1.25 pYlm_part = fakemol.eval_gto('GTOval', Gk) p0, p1 = p1, p1+nl*(l*2+1) # pYlm is real, SI[ia] is complex pYlm = numpy.ndarray((nl,l*2+1,ng), dtype=numpy.complex128, buffer=buf[p0:p1]) for k in range(nl): qkl = pseudo.pp._qli(G_rad*rl, l, k) pYlm[k] = pYlm_part.T * qkl #:SPG_lmi = numpy.einsum('g,nmg->nmg', SI[ia].conj(), pYlm) #:SPG_lm_aoG = numpy.einsum('nmg,gp->nmp', SPG_lmi, aokG) #:tmp = numpy.einsum('ij,jmp->imp', hl, SPG_lm_aoG) #:vppnl += numpy.einsum('imp,imq->pq', SPG_lm_aoG.conj(), tmp) if p1 > 0: SPG_lmi = buf[:p1] SPG_lmi *= cell.get_SI(Gv[ig0:ig1], atmlst=[ia,]).conj() SPG_lm_aoGs[ia] += lib.zdot(SPG_lmi, aokG) buf = None for ia in range(cell.natm): symb = cell.atom_symbol(ia) if symb not in cell._pseudo: continue pp = cell._pseudo[symb] p1 = 0 for l, proj in enumerate(pp[5:]): rl, nl, hl = proj if nl > 0: p0, p1 = p1, p1+nl*(l*2+1) hl = numpy.asarray(hl) SPG_lm_aoG = SPG_lm_aoGs[ia][p0:p1].reshape(nl,l*2+1,-1) tmp = numpy.einsum('ij,jmp->imp', hl, SPG_lm_aoG) vppnl += numpy.einsum('imp,imq->pq', SPG_lm_aoG.conj(), tmp) SPG_lm_aoGs=None return vppnl * (1./ngrids**2) for k, kpt in enumerate(kpts): vppnl = vppnl_by_k(kpt) if gamma_point(kpt): vpp[k] = vpp[k].real + vppnl.real else: vpp[k] += vppnl if is_single_kpt: vpp = vpp[0] return numpy.asarray(vpp)
[docs] def get_j_kpts(mydf, dm_kpts, hermi=1, kpts=numpy.zeros((1,3)), kpts_band=None): '''Get the Coulomb (J) AO matrix at sampled k-points. Args: dm_kpts : (nkpts, nao, nao) ndarray or a list of (nkpts,nao,nao) ndarray Density matrix at each k-point. If a list of k-point DMs, eg, UHF alpha and beta DM, the alpha and beta DMs are contracted separately. kpts : (nkpts, 3) ndarray Kwargs: kpts_band : (3,) ndarray or (*,3) ndarray A list of arbitrary "band" k-points at which to evalute the matrix. Returns: vj : (nkpts, nao, nao) ndarray or list of vj if the input dm_kpts is a list of DMs ''' cell = mydf.cell dm_kpts = numpy.asarray(dm_kpts) rhoG = _eval_rhoG(mydf, dm_kpts, hermi, kpts, deriv=0) coulG = tools.get_coulG(cell, mesh=cell.mesh) #:vG = numpy.einsum('ng,g->ng', rhoG[:,0], coulG) vG = rhoG[:,0] vG *= coulG kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band vj_kpts = _get_j_pass2(mydf, vG, hermi, kpts_band) return _format_jks(vj_kpts, dm_kpts, input_band, kpts)
def _eval_rhoG(mydf, dm_kpts, hermi=1, kpts=numpy.zeros((1,3)), deriv=0, rhog_high_order=RHOG_HIGH_ORDER): log = logger.Logger(mydf.stdout, mydf.verbose) cell = mydf.cell dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] tasks = getattr(mydf, 'tasks', None) if tasks is None: mydf.tasks = tasks = multi_grids_tasks(cell, mydf.mesh, log) log.debug('Multigrid ntasks %s', len(tasks)) assert (deriv < 2) #hermi = hermi and abs(dms - dms.transpose(0,1,3,2).conj()).max() < 1e-9 gga_high_order = False if deriv == 0: xctype = 'LDA' rhodim = 1 elif deriv == 1: if rhog_high_order: xctype = 'GGA' rhodim = 4 else: # approximate high order derivatives in reciprocal space gga_high_order = True xctype = 'LDA' rhodim = 1 deriv = 0 #if hermi != 1 and not gamma_point(kpts): # raise NotImplementedError elif deriv == 2: # meta-GGA raise NotImplementedError ignore_imag = (hermi == 1) nx, ny, nz = mydf.mesh rhoG = numpy.zeros((nset*rhodim,nx,ny,nz), dtype=numpy.complex128) for grids_dense, grids_sparse in tasks: h_cell = grids_dense.cell mesh = tuple(grids_dense.mesh) ngrids = numpy.prod(mesh) log.debug('mesh %s rcut %g', mesh, h_cell.rcut) if grids_sparse is None: # The first pass handles all diffused functions using the regular # matrix multiplication code. rho = numpy.zeros((nset,rhodim,ngrids), dtype=numpy.complex128) idx_h = grids_dense.ao_idx dms_hh = numpy.asarray(dms[:,:,idx_h[:,None],idx_h], order='C') for ao_h_etc, p0, p1 in mydf.aoR_loop(grids_dense, kpts, deriv): ao_h, mask = ao_h_etc[0], ao_h_etc[2] for k in range(nkpts): for i in range(nset): if xctype == 'LDA': ao_dm = lib.dot(ao_h[k], dms_hh[i,k]) rho_sub = numpy.einsum('xi,xi->x', ao_dm, ao_h[k].conj()) else: rho_sub = numint.eval_rho(h_cell, ao_h[k], dms_hh[i,k], mask, xctype, hermi) rho[i,:,p0:p1] += rho_sub ao_h = ao_h_etc = ao_dm = None if ignore_imag: rho = rho.real else: idx_h = grids_dense.ao_idx idx_l = grids_sparse.ao_idx idx_t = numpy.append(idx_h, idx_l) dms_ht = numpy.asarray(dms[:,:,idx_h[:,None],idx_t], order='C') dms_lh = numpy.asarray(dms[:,:,idx_l[:,None],idx_h], order='C') t_cell = h_cell + grids_sparse.cell nshells_h = _pgto_shells(h_cell) nshells_t = _pgto_shells(t_cell) t_cell, t_coeff = t_cell.to_uncontracted_cartesian_basis() if deriv == 0: h_coeff = scipy.linalg.block_diag(*t_coeff[:h_cell.nbas]) l_coeff = scipy.linalg.block_diag(*t_coeff[h_cell.nbas:]) t_coeff = scipy.linalg.block_diag(*t_coeff) if hermi == 1: naol, naoh = dms_lh.shape[2:] dms_ht[:,:,:,naoh:] += dms_lh.transpose(0,1,3,2) pgto_dms = lib.einsum('nkij,pi,qj->nkpq', dms_ht, h_coeff, t_coeff) shls_slice = (0, nshells_h, 0, nshells_t) #:rho = eval_rho(t_cell, pgto_dms, shls_slice, 0, 'LDA', kpts, #: offset=None, submesh=None, ignore_imag=True) rho = _eval_rho_bra(t_cell, pgto_dms, shls_slice, 0, 'LDA', kpts, grids_dense, True, log) else: pgto_dms = lib.einsum('nkij,pi,qj->nkpq', dms_ht, h_coeff, t_coeff) shls_slice = (0, nshells_h, 0, nshells_t) #:rho = eval_rho(t_cell, pgto_dms, shls_slice, 0, 'LDA', kpts, #: offset=None, submesh=None) rho = _eval_rho_bra(t_cell, pgto_dms, shls_slice, 0, 'LDA', kpts, grids_dense, ignore_imag, log) pgto_dms = lib.einsum('nkij,pi,qj->nkpq', dms_lh, l_coeff, h_coeff) shls_slice = (nshells_h, nshells_t, 0, nshells_h) #:rho += eval_rho(t_cell, pgto_dms, shls_slice, 0, 'LDA', kpts, #: offset=None, submesh=None) rho += _eval_rho_ket(t_cell, pgto_dms, shls_slice, 0, 'LDA', kpts, grids_dense, ignore_imag, log) elif deriv == 1: h_coeff = scipy.linalg.block_diag(*t_coeff[:h_cell.nbas]) l_coeff = scipy.linalg.block_diag(*t_coeff[h_cell.nbas:]) t_coeff = scipy.linalg.block_diag(*t_coeff) pgto_dms = lib.einsum('nkij,pi,qj->nkpq', dms_ht, h_coeff, t_coeff) shls_slice = (0, nshells_h, 0, nshells_t) #:rho = eval_rho(t_cell, pgto_dms, shls_slice, 0, 'GGA', kpts, #: ignore_imag=ignore_imag) rho = _eval_rho_bra(t_cell, pgto_dms, shls_slice, 0, 'GGA', kpts, grids_dense, ignore_imag, log) pgto_dms = lib.einsum('nkij,pi,qj->nkpq', dms_lh, l_coeff, h_coeff) shls_slice = (nshells_h, nshells_t, 0, nshells_h) #:rho += eval_rho(t_cell, pgto_dms, shls_slice, 0, 'GGA', kpts, #: ignore_imag=ignore_imag) rho += _eval_rho_ket(t_cell, pgto_dms, shls_slice, 0, 'GGA', kpts, grids_dense, ignore_imag, log) if hermi == 1: # \nabla \chi_i DM(i,j) \chi_j was computed above. # *2 for \chi_i DM(i,j) \nabla \chi_j rho[:,1:4] *= 2 else: raise NotImplementedError weight = 1./nkpts * cell.vol/ngrids rho_freq = tools.fft(rho.reshape(nset*rhodim, -1), mesh) rho_freq *= weight gx = numpy.fft.fftfreq(mesh[0], 1./mesh[0]).astype(numpy.int32) gy = numpy.fft.fftfreq(mesh[1], 1./mesh[1]).astype(numpy.int32) gz = numpy.fft.fftfreq(mesh[2], 1./mesh[2]).astype(numpy.int32) #:rhoG[:,gx[:,None,None],gy[:,None],gz] += rho_freq.reshape((-1,)+mesh) _takebak_4d(rhoG, rho_freq.reshape((-1,) + mesh), (None, gx, gy, gz)) rhoG = rhoG.reshape(nset,rhodim,-1) if gga_high_order: Gv = cell.get_Gv(mydf.mesh) rhoG1 = numpy.einsum('np,px->nxp', 1j*rhoG[:,0], Gv) rhoG = numpy.concatenate([rhoG, rhoG1], axis=1) return rhoG def _eval_rho_bra(cell, dms, shls_slice, hermi, xctype, kpts, grids, ignore_imag, log): a = cell.lattice_vectors() rmax = a.max() mesh = numpy.asarray(grids.mesh) rcut = grids.cell.rcut nset = dms.shape[0] if xctype == 'LDA': rhodim = 1 else: rhodim = 4 if rcut > rmax * R_RATIO_SUBLOOP: rho = eval_rho(cell, dms, shls_slice, hermi, xctype, kpts, mesh, ignore_imag=ignore_imag) return numpy.reshape(rho, (nset, rhodim, numpy.prod(mesh))) if hermi == 1 or ignore_imag: rho = numpy.zeros((nset, rhodim) + tuple(mesh)) else: rho = numpy.zeros((nset, rhodim) + tuple(mesh), dtype=numpy.complex128) b = numpy.linalg.inv(a.T) ish0, ish1, jsh0, jsh1 = shls_slice nshells_j = jsh1 - jsh0 pcell = cell.copy(deep=False) rest_dms = [] rest_bas = [] i1 = 0 for atm_id in set(cell._bas[ish0:ish1,ATOM_OF]): atm_bas_idx = numpy.where(cell._bas[ish0:ish1,ATOM_OF] == atm_id)[0] _bas_i = cell._bas[atm_bas_idx] l = _bas_i[:,ANG_OF] i0, i1 = i1, i1 + sum((l+1)*(l+2)//2) sub_dms = dms[:,:,i0:i1] atom_position = cell.atom_coord(atm_id) frac_edge0 = b.dot(atom_position - rcut) frac_edge1 = b.dot(atom_position + rcut) if (numpy.all(0 < frac_edge0) and numpy.all(frac_edge1 < 1)): pcell._bas = numpy.vstack((_bas_i, cell._bas[jsh0:jsh1])) nshells_i = len(atm_bas_idx) sub_slice = (0, nshells_i, nshells_i, nshells_i+nshells_j) offset = (frac_edge0 * mesh).astype(int) mesh1 = numpy.ceil(frac_edge1 * mesh).astype(int) submesh = mesh1 - offset log.debug1('atm %d rcut %f offset %s submesh %s', atm_id, rcut, offset, submesh) rho1 = eval_rho(pcell, sub_dms, sub_slice, hermi, xctype, kpts, mesh, offset, submesh, ignore_imag=ignore_imag) #:rho[:,:,offset[0]:mesh1[0],offset[1]:mesh1[1],offset[2]:mesh1[2]] += \ #: numpy.reshape(rho1, (nset, rhodim) + tuple(submesh)) gx = numpy.arange(offset[0], mesh1[0], dtype=numpy.int32) gy = numpy.arange(offset[1], mesh1[1], dtype=numpy.int32) gz = numpy.arange(offset[2], mesh1[2], dtype=numpy.int32) _takebak_5d(rho, numpy.reshape(rho1, (nset,rhodim)+tuple(submesh)), (None, None, gx, gy, gz)) else: log.debug1('atm %d rcut %f over 2 images', atm_id, rcut) #:rho1 = eval_rho(pcell, sub_dms, sub_slice, hermi, xctype, kpts, #: mesh, ignore_imag=ignore_imag) #:rho += numpy.reshape(rho1, rho.shape) # or #:eval_rho(pcell, sub_dms, sub_slice, hermi, xctype, kpts, #: mesh, ignore_imag=ignore_imag, out=rho) rest_bas.append(_bas_i) rest_dms.append(sub_dms) if rest_bas: pcell._bas = numpy.vstack(rest_bas + [cell._bas[jsh0:jsh1]]) nshells_i = sum(len(x) for x in rest_bas) sub_slice = (0, nshells_i, nshells_i, nshells_i+nshells_j) sub_dms = numpy.concatenate(rest_dms, axis=2) # Update rho inplace eval_rho(pcell, sub_dms, sub_slice, hermi, xctype, kpts, mesh, ignore_imag=ignore_imag, out=rho) return rho.reshape((nset, rhodim, numpy.prod(mesh))) def _eval_rho_ket(cell, dms, shls_slice, hermi, xctype, kpts, grids, ignore_imag, log): a = cell.lattice_vectors() rmax = a.max() mesh = numpy.asarray(grids.mesh) rcut = grids.cell.rcut nset = dms.shape[0] if xctype == 'LDA': rhodim = 1 else: rhodim = 4 if rcut > rmax * R_RATIO_SUBLOOP: rho = eval_rho(cell, dms, shls_slice, hermi, xctype, kpts, mesh, ignore_imag=ignore_imag) return numpy.reshape(rho, (nset, rhodim, numpy.prod(mesh))) if hermi == 1 or ignore_imag: rho = numpy.zeros((nset, rhodim) + tuple(mesh)) else: rho = numpy.zeros((nset, rhodim) + tuple(mesh), dtype=numpy.complex128) b = numpy.linalg.inv(a.T) ish0, ish1, jsh0, jsh1 = shls_slice nshells_i = ish1 - ish0 pcell = cell.copy(deep=False) rest_dms = [] rest_bas = [] j1 = 0 for atm_id in set(cell._bas[jsh0:jsh1,ATOM_OF]): atm_bas_idx = numpy.where(cell._bas[jsh0:jsh1,ATOM_OF] == atm_id)[0] _bas_j = cell._bas[atm_bas_idx] l = _bas_j[:,ANG_OF] j0, j1 = j1, j1 + sum((l+1)*(l+2)//2) sub_dms = dms[:,:,:,j0:j1] atom_position = cell.atom_coord(atm_id) frac_edge0 = b.dot(atom_position - rcut) frac_edge1 = b.dot(atom_position + rcut) if (numpy.all(0 < frac_edge0) and numpy.all(frac_edge1 < 1)): pcell._bas = numpy.vstack((cell._bas[ish0:ish1], _bas_j)) nshells_j = len(atm_bas_idx) sub_slice = (0, nshells_i, nshells_i, nshells_i+nshells_j) offset = (frac_edge0 * mesh).astype(int) mesh1 = numpy.ceil(frac_edge1 * mesh).astype(int) submesh = mesh1 - offset log.debug1('atm %d rcut %f offset %s submesh %s', atm_id, rcut, offset, submesh) rho1 = eval_rho(pcell, sub_dms, sub_slice, hermi, xctype, kpts, mesh, offset, submesh, ignore_imag=ignore_imag) #:rho[:,:,offset[0]:mesh1[0],offset[1]:mesh1[1],offset[2]:mesh1[2]] += \ #: numpy.reshape(rho1, (nset, rhodim) + tuple(submesh)) gx = numpy.arange(offset[0], mesh1[0], dtype=numpy.int32) gy = numpy.arange(offset[1], mesh1[1], dtype=numpy.int32) gz = numpy.arange(offset[2], mesh1[2], dtype=numpy.int32) _takebak_5d(rho, numpy.reshape(rho1, (nset,rhodim)+tuple(submesh)), (None, None, gx, gy, gz)) else: log.debug1('atm %d rcut %f over 2 images', atm_id, rcut) #:rho1 = eval_rho(pcell, sub_dms, sub_slice, hermi, xctype, kpts, #: mesh, ignore_imag=ignore_imag) #:rho += numpy.reshape(rho1, rho.shape) #:eval_rho(pcell, sub_dms, sub_slice, hermi, xctype, kpts, #: mesh, ignore_imag=ignore_imag, out=rho) rest_bas.append(_bas_j) rest_dms.append(sub_dms) if rest_bas: pcell._bas = numpy.vstack([cell._bas[ish0:ish1]] + rest_bas) nshells_j = sum(len(x) for x in rest_bas) sub_slice = (0, nshells_i, nshells_i, nshells_i+nshells_j) sub_dms = numpy.concatenate(rest_dms, axis=3) # Update rho inplace eval_rho(pcell, sub_dms, sub_slice, hermi, xctype, kpts, mesh, ignore_imag=ignore_imag, out=rho) return rho.reshape((nset, rhodim, numpy.prod(mesh))) def _get_j_pass2(mydf, vG, hermi=1, kpts=numpy.zeros((1,3)), verbose=None): log = logger.new_logger(mydf, verbose) cell = mydf.cell nkpts = len(kpts) nao = cell.nao_nr() nx, ny, nz = mydf.mesh vG = vG.reshape(-1,nx,ny,nz) nset = vG.shape[0] tasks = getattr(mydf, 'tasks', None) if tasks is None: mydf.tasks = tasks = multi_grids_tasks(cell, mydf.mesh, log) log.debug('Multigrid ntasks %s', len(tasks)) at_gamma_point = gamma_point(kpts) if at_gamma_point: vj_kpts = numpy.zeros((nset,nkpts,nao,nao)) else: vj_kpts = numpy.zeros((nset,nkpts,nao,nao), dtype=numpy.complex128) for grids_dense, grids_sparse in tasks: mesh = grids_dense.mesh ngrids = numpy.prod(mesh) log.debug('mesh %s', mesh) gx = numpy.fft.fftfreq(mesh[0], 1./mesh[0]).astype(numpy.int32) gy = numpy.fft.fftfreq(mesh[1], 1./mesh[1]).astype(numpy.int32) gz = numpy.fft.fftfreq(mesh[2], 1./mesh[2]).astype(numpy.int32) #:sub_vG = vG[:,gx[:,None,None],gy[:,None],gz].reshape(nset,ngrids) sub_vG = _take_4d(vG, (None, gx, gy, gz)).reshape(nset,ngrids) v_rs = tools.ifft(sub_vG, mesh).reshape(nset,ngrids) vR = numpy.asarray(v_rs.real, order='C') vI = numpy.asarray(v_rs.imag, order='C') ignore_vG_imag = hermi == 1 or abs(vI.sum()) < IMAG_TOL if ignore_vG_imag: v_rs = vR elif vj_kpts.dtype == numpy.double: # ensure result complex array if tddft amplitudes are complex while # at gamma point vj_kpts = vj_kpts.astype(numpy.complex128) idx_h = grids_dense.ao_idx if grids_sparse is None: for ao_h_etc, p0, p1 in mydf.aoR_loop(grids_dense, kpts): ao_h = ao_h_etc[0] for k in range(nkpts): for i in range(nset): aow = numint._scale_ao(ao_h[k], v_rs[i,p0:p1]) vj_sub = lib.dot(ao_h[k].conj().T, aow) vj_kpts[i,k,idx_h[:,None],idx_h] += vj_sub ao_h = ao_h_etc = None else: idx_h = grids_dense.ao_idx idx_l = grids_sparse.ao_idx # idx_t = numpy.append(idx_h, idx_l) naoh = len(idx_h) h_cell = grids_dense.cell l_cell = grids_sparse.cell t_cell = h_cell + l_cell t_cell, coeff = t_cell.to_uncontracted_cartesian_basis() nshells_h = _pgto_shells(h_cell) nshells_t = _pgto_shells(t_cell) h_coeff = scipy.linalg.block_diag(*coeff[:h_cell.nbas]) t_coeff = scipy.linalg.block_diag(*coeff) shls_slice = (0, nshells_h, 0, nshells_t) vp = eval_mat(t_cell, vR, shls_slice, 1, 0, 'LDA', kpts) # Imaginary part may contribute if not ignore_vG_imag: vpI = eval_mat(t_cell, vI, shls_slice, 1, 0, 'LDA', kpts) vp = numpy.asarray(vp) + numpy.asarray(vpI) * 1j vpI = None vp = lib.einsum('nkpq,pi,qj->nkij', vp, h_coeff, t_coeff) vj_kpts[:,:,idx_h[:,None],idx_h] += vp[:,:,:,:naoh] vj_kpts[:,:,idx_h[:,None],idx_l] += vp[:,:,:,naoh:] if hermi == 1: vj_kpts[:,:,idx_l[:,None],idx_h] += \ vp[:,:,:,naoh:].transpose(0,1,3,2).conj() else: l_coeff = scipy.linalg.block_diag(*coeff[h_cell.nbas:]) shls_slice = (nshells_h, nshells_t, 0, nshells_h) vp = eval_mat(t_cell, vR, shls_slice, 1, 0, 'LDA', kpts) # Imaginary part may contribute if not ignore_vG_imag: vpI = eval_mat(t_cell, vI, shls_slice, 1, 0, 'LDA', kpts) vp = numpy.asarray(vp) + numpy.asarray(vpI) * 1j vpI = None vp = lib.einsum('nkpq,pi,qj->nkij', vp, l_coeff, h_coeff) vj_kpts[:,:,idx_l[:,None],idx_h] += vp return vj_kpts def _get_gga_pass2(mydf, vG, hermi=1, kpts=numpy.zeros((1,3)), verbose=None): #if hermi != 1: # raise NotImplementedError('_get_gga_pass2 assumes hermi=1') log = logger.new_logger(mydf, verbose) cell = mydf.cell nkpts = len(kpts) nao = cell.nao_nr() nx, ny, nz = mydf.mesh vG = vG.reshape(-1,4,nx,ny,nz) nset = vG.shape[0] at_gamma_point = gamma_point(kpts) if at_gamma_point: veff = numpy.zeros((nset,nkpts,nao,nao)) else: veff = numpy.zeros((nset,nkpts,nao,nao), dtype=numpy.complex128) for grids_dense, grids_sparse in mydf.tasks: mesh = grids_dense.mesh ngrids = numpy.prod(mesh) log.debug('mesh %s', mesh) gx = numpy.fft.fftfreq(mesh[0], 1./mesh[0]).astype(numpy.int32) gy = numpy.fft.fftfreq(mesh[1], 1./mesh[1]).astype(numpy.int32) gz = numpy.fft.fftfreq(mesh[2], 1./mesh[2]).astype(numpy.int32) #:sub_vG = vG[:,:,gx[:,None,None],gy[:,None],gz].reshape(-1,ngrids) sub_vG = _take_5d(vG, (None, None, gx, gy, gz)).reshape(-1,ngrids) v_rs = tools.ifft(sub_vG, mesh).reshape(nset,4,ngrids) vR = numpy.asarray(v_rs.real, order='C') vI = numpy.asarray(v_rs.imag, order='C') ignore_vG_imag = hermi == 1 or abs(vI.sum()) < IMAG_TOL if ignore_vG_imag: v_rs = vR elif veff.dtype == numpy.double: # ensure result complex array if tddft amplitudes are complex while # at gamma point veff = veff.astype(numpy.complex128) if grids_sparse is None: idx_h = grids_dense.ao_idx naoh = len(idx_h) for ao_h_etc, p0, p1 in mydf.aoR_loop(grids_dense, kpts, deriv=1): ao_h = ao_h_etc[0] for k in range(nkpts): for i in range(nset): aow = numint._scale_ao(ao_h[k], v_rs[i]) v = lib.dot(ao_h[k][0].conj().T, aow) veff[i,k,idx_h[:,None],idx_h] += v if hermi == 1: veff[i,k,idx_h[:,None],idx_h] += v.conj().T else: aow = numint._scale_ao(ao_h[k], v_rs[i].conj()) v = lib.dot(aow.conj().T, ao_h[k][0]) veff[i,k,idx_h[:,None],idx_h] += v ao_h = ao_h_etc = None else: idx_h = grids_dense.ao_idx idx_l = grids_sparse.ao_idx # idx_t = numpy.append(idx_h, idx_l) naoh = len(idx_h) h_cell = grids_dense.cell l_cell = grids_sparse.cell t_cell = h_cell + l_cell t_cell, coeff = t_cell.to_uncontracted_cartesian_basis() nshells_h = _pgto_shells(h_cell) nshells_t = _pgto_shells(t_cell) h_coeff = scipy.linalg.block_diag(*coeff[:h_cell.nbas]) l_coeff = scipy.linalg.block_diag(*coeff[h_cell.nbas:]) t_coeff = scipy.linalg.block_diag(*coeff) shls_slice = (0, nshells_h, 0, nshells_t) vpR = eval_mat(t_cell, vR, shls_slice, 1, 0, 'GGA', kpts) vp = vpR = lib.einsum('nkpq,pi,qj->nkij', vpR, h_coeff, t_coeff) if not ignore_vG_imag: vpI = eval_mat(t_cell, vI, shls_slice, 1, 0, 'GGA', kpts) vpI = lib.einsum('nkpq,pi,qj->nkij', vpI, h_coeff, t_coeff) vp = numpy.asarray(vpR) + numpy.asarray(vpI) * 1j veff[:,:,idx_h[:,None],idx_h] += vp[:,:,:,:naoh] veff[:,:,idx_h[:,None],idx_l] += vp[:,:,:,naoh:] if hermi == 1: veff[:,:,idx_h[:,None],idx_h] += vp[:,:,:,:naoh].conj().transpose(0,1,3,2) veff[:,:,idx_l[:,None],idx_h] += vp[:,:,:,naoh:].conj().transpose(0,1,3,2) else: if not ignore_vG_imag: # eval_mat only supports <nabla i|v|j>. Evaluate <i|v|nabla j> # by conj(<nabla j|conj(v)|>) vp = numpy.asarray(vpR) - numpy.asarray(vpI) * 1j veff[:,:,idx_h[:,None],idx_h] += vp[:,:,:,:naoh].conj().transpose(0,1,3,2) veff[:,:,idx_l[:,None],idx_h] += vp[:,:,:,naoh:].conj().transpose(0,1,3,2) shls_slice = (nshells_h, nshells_t, 0, nshells_h) vpR = eval_mat(t_cell, vR, shls_slice, 1, 0, 'GGA', kpts) vp = vpR = lib.einsum('nkpq,pi,qj->nkij', vpR, l_coeff, h_coeff) if not ignore_vG_imag: vpI = eval_mat(t_cell, vI, shls_slice, 1, 0, 'GGA', kpts) vpI = lib.einsum('nkpq,pi,qj->nkij', vpI, l_coeff, h_coeff) vp = numpy.asarray(vpR) + numpy.asarray(vpI) * 1j veff[:,:,idx_l[:,None],idx_h] += vp if hermi == 1: veff[:,:,idx_h[:,None],idx_l] += vp.conj().transpose(0,1,3,2) else: if not ignore_vG_imag: vp = numpy.asarray(vpR) - numpy.asarray(vpI) * 1j veff[:,:,idx_h[:,None],idx_l] += vp.conj().transpose(0,1,3,2) return veff
[docs] def nr_rks(mydf, xc_code, dm_kpts, hermi=1, kpts=None, kpts_band=None, with_j=False, return_j=False, verbose=None): '''Compute the XC energy and RKS XC matrix at sampled k-points. multigrid version of function pbc.dft.numint.nr_rks. Args: dm_kpts : (nkpts, nao, nao) ndarray or a list of (nkpts,nao,nao) ndarray Density matrix at each k-point. kpts : (nkpts, 3) ndarray Kwargs: kpts_band : (3,) ndarray or (*,3) ndarray A list of arbitrary "band" k-points at which to evalute the matrix. Returns: exc : XC energy nelec : number of electrons obtained from the numerical integration veff : (nkpts, nao, nao) ndarray or list of veff if the input dm_kpts is a list of DMs vj : (nkpts, nao, nao) ndarray or list of vj if the input dm_kpts is a list of DMs ''' if kpts is None: kpts = mydf.kpts log = logger.new_logger(mydf, verbose) cell = mydf.cell dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band ni = mydf._numint xctype = ni._xc_type(xc_code) if xctype == 'LDA': deriv = 0 elif xctype == 'GGA': deriv = 1 elif xctype == 'MGGA': deriv = 2 if MGGA_DENSITY_LAPL else 1 raise NotImplementedError rhoG = _eval_rhoG(mydf, dm_kpts, hermi, kpts, deriv) mesh = mydf.mesh ngrids = numpy.prod(mesh) coulG = tools.get_coulG(cell, mesh=mesh) vG = numpy.einsum('ng,g->ng', rhoG[:,0], coulG) ecoul = .5 * numpy.einsum('ng,ng->n', rhoG[:,0].real, vG.real) ecoul+= .5 * numpy.einsum('ng,ng->n', rhoG[:,0].imag, vG.imag) ecoul /= cell.vol log.debug('Multigrid Coulomb energy %s', ecoul) weight = cell.vol / ngrids # *(1./weight) because rhoR is scaled by weight in _eval_rhoG. When # computing rhoR with IFFT, the weight factor is not needed. rhoR = tools.ifft(rhoG.reshape(-1,ngrids), mesh).real * (1./weight) rhoR = rhoR.reshape(nset,-1,ngrids) nelec = rhoR[:,0].sum(axis=1) * weight wv_freq = [] excsum = numpy.zeros(nset) for i in range(nset): if xctype == 'LDA': exc, vxc = ni.eval_xc_eff(xc_code, rhoR[i,0], deriv=1, xctype=xctype)[:2] else: exc, vxc = ni.eval_xc_eff(xc_code, rhoR[i], deriv=1, xctype=xctype)[:2] excsum[i] += (rhoR[i,0]*exc).sum() * weight wv = weight * vxc wv_freq.append(tools.fft(wv, mesh)) wv_freq = numpy.asarray(wv_freq).reshape(nset,-1,*mesh) rhoR = rhoG = None if nset == 1: ecoul = ecoul[0] nelec = nelec[0] excsum = excsum[0] log.debug('Multigrid exc %s nelec %s', excsum, nelec) kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band if xctype == 'LDA': if with_j: wv_freq[:,0] += vG.reshape(nset,*mesh) veff = _get_j_pass2(mydf, wv_freq, hermi, kpts_band, verbose=log) elif xctype == 'GGA': if with_j: wv_freq[:,0] += vG.reshape(nset,*mesh) # *.5 because v+v.T is always called in _get_gga_pass2 wv_freq[:,0] *= .5 veff = _get_gga_pass2(mydf, wv_freq, hermi, kpts_band, verbose=log) veff = _format_jks(veff, dm_kpts, input_band, kpts) if return_j: vj = _get_j_pass2(mydf, vG, hermi, kpts_band, verbose=log) vj = _format_jks(veff, dm_kpts, input_band, kpts) else: vj = None shape = list(dm_kpts.shape) if len(shape) == 3 and shape[0] != kpts_band.shape[0]: shape[0] = kpts_band.shape[0] veff = veff.reshape(shape) veff = lib.tag_array(veff, ecoul=ecoul, exc=excsum, vj=vj, vk=None) return nelec, excsum, veff
# Note nr_uks handles only one set of KUKS density matrices (alpha, beta) in # each call (nr_rks supports multiple sets of KRKS density matrices)
[docs] def nr_uks(mydf, xc_code, dm_kpts, hermi=1, kpts=None, kpts_band=None, with_j=False, return_j=False, verbose=None): '''Compute the XC energy and UKS XC matrix at sampled k-points. multigrid version of function pbc.dft.numint.nr_uks Args: dm_kpts : (nkpts, nao, nao) ndarray or a list of (nkpts,nao,nao) ndarray Density matrix at each k-point. kpts : (nkpts, 3) ndarray Kwargs: kpts_band : (3,) ndarray or (*,3) ndarray A list of arbitrary "band" k-points at which to evalute the matrix. Returns: exc : XC energy nelec : number of electrons obtained from the numerical integration veff : (2, nkpts, nao, nao) ndarray or list of veff if the input dm_kpts is a list of DMs vj : (nkpts, nao, nao) ndarray or list of vj if the input dm_kpts is a list of DMs ''' if kpts is None: kpts = mydf.kpts log = logger.new_logger(mydf, verbose) cell = mydf.cell dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] nset //= 2 # Do not support gks assert nset == 1 kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band ni = mydf._numint xctype = ni._xc_type(xc_code) if xctype == 'LDA': deriv = 0 elif xctype == 'GGA': deriv = 1 elif xctype == 'MGGA': raise NotImplementedError mesh = mydf.mesh ngrids = numpy.prod(mesh) rhoG = _eval_rhoG(mydf, dm_kpts, hermi, kpts, deriv) rhoG = rhoG.reshape(nset,2,-1,ngrids) coulG = tools.get_coulG(cell, mesh=mesh) vG = numpy.einsum('nsg,g->ng', rhoG[:,:,0], coulG) ecoul = .5 * numpy.einsum('nsg,ng->n', rhoG[:,:,0].real, vG.real) ecoul+= .5 * numpy.einsum('nsg,ng->n', rhoG[:,:,0].imag, vG.imag) ecoul /= cell.vol log.debug('Multigrid Coulomb energy %s', ecoul) weight = cell.vol / ngrids # *(1./weight) because rhoR is scaled by weight in _eval_rhoG. When # computing rhoR with IFFT, the weight factor is not needed. rhoR = tools.ifft(rhoG.reshape(-1,ngrids), mesh).real * (1./weight) rhoR = rhoR.reshape(nset,2,-1,ngrids) nelec = numpy.einsum('nsg->n', rhoR[:,:,0]) * weight wv_freq = [] excsum = numpy.zeros(nset) for i in range(nset): exc, vxc = ni.eval_xc_eff(xc_code, rhoR[i], deriv=1, xctype=xctype)[:2] excsum[i] = (rhoR[i,:,0]*exc).sum() * weight log.debug('Multigrid exc %g nelec %s', excsum, nelec[i]) wv = weight * vxc wv_freq.append(tools.fft(wv, mesh)) wv_freq = numpy.asarray(wv_freq).reshape(nset,2,-1,*mesh) rhoR = rhoG = None if with_j: wv_freq[:,:,0] += vG.reshape(*mesh) if xctype == 'LDA': veff = _get_j_pass2(mydf, wv_freq, hermi, kpts_band, verbose=log) elif xctype == 'GGA': # *.5 because v+v.T is always called in _get_gga_pass2 wv_freq[:,0] *= .5 veff = _get_gga_pass2(mydf, wv_freq, hermi, kpts_band, verbose=log) veff = _format_jks(veff, dm_kpts, input_band, kpts) veff = veff.reshape(nset, 2, len(kpts_band), nao, nao) if nset == 1: veff = veff[0] ecoul = ecoul[0] nelec = nelec[0] excsum = excsum[0] if return_j: vj = _get_j_pass2(mydf, vG, hermi, kpts_band, verbose=log) vj = _format_jks(veff, dm_kpts, input_band, kpts) if nset == 1: vj = vj[0] else: vj = None shape = list(dm_kpts.shape) if len(shape) == 4 and shape[1] != kpts_band.shape[0]: shape[1] = kpts_band.shape[0] veff = veff.reshape(shape) veff = lib.tag_array(veff, ecoul=ecoul, exc=excsum, vj=vj, vk=None) return nelec, excsum, veff
[docs] def nr_rks_fxc(mydf, xc_code, dm0, dms, hermi=0, with_j=False, rho0=None, vxc=None, fxc=None, kpts=None, verbose=None): '''multigrid version of function pbc.dft.numint.nr_rks_fxc ''' if kpts is None: kpts = numpy.zeros((1,3)) log = logger.new_logger(mydf, verbose) cell = mydf.cell mesh = mydf.mesh ngrids = numpy.prod(mesh) dm_kpts = lib.asarray(dms, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] ni = mydf._numint xctype = ni._xc_type(xc_code) if xctype == 'LDA': deriv = 0 elif xctype == 'GGA': deriv = 1 elif xctype == 'MGGA': deriv = 2 if MGGA_DENSITY_LAPL else 1 raise NotImplementedError weight = cell.vol / ngrids if rho0 is None: rhoG = _eval_rhoG(mydf, dm0, hermi, kpts, deriv) rho0 = tools.ifft(rhoG.reshape(-1,ngrids), mesh).real * (1./weight) if xctype == 'LDA': rho0 = rho0.reshape(ngrids) if fxc is None: fxc = ni.eval_xc_eff(xc_code, rho0, deriv=2, xctype=xctype)[2] rhoG = _eval_rhoG(mydf, dms, hermi, kpts, deriv) rho1 = tools.ifft(rhoG.reshape(-1,ngrids), mesh) if hermi == 1: rho1 = rho1.real rho1 *= (1./weight) rho1 = rho1.reshape(nset,-1,ngrids) wv = numpy.einsum('nxg,xyg->nyg', rho1, fxc) wv *= weight wv = tools.fft(wv.reshape(-1,ngrids), mesh).reshape(nset,-1,*mesh) if with_j: coulG = tools.get_coulG(cell, mesh=mesh) vG = rhoG[:,0] * coulG vG = vG.reshape(nset, *mesh) wv[:,0] += vG if xctype == 'LDA': veff = _get_j_pass2(mydf, wv, hermi, kpts, verbose=log) elif xctype == 'GGA': # *.5 because v+v.T is always called in _get_gga_pass2 wv[:,0] *= .5 veff = _get_gga_pass2(mydf, wv, hermi, kpts, verbose=log) return veff.reshape(dm_kpts.shape)
[docs] def nr_rks_fxc_st(mydf, xc_code, dm0, dms_alpha, singlet=True, rho0=None, vxc=None, fxc=None, kpts=None, verbose=None): '''multigrid version of function pbc.dft.numint.nr_rks_fxc_st ''' if kpts is None: kpts = numpy.zeros((1,3)) log = logger.new_logger(mydf, verbose) cell = mydf.cell mesh = mydf.mesh ngrids = numpy.prod(mesh) dm_kpts = lib.asarray(dms_alpha, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] ni = mydf._numint xctype = ni._xc_type(xc_code) if xctype == 'LDA': deriv = 0 elif xctype == 'GGA': deriv = 1 elif xctype == 'MGGA': deriv = 2 if MGGA_DENSITY_LAPL else 1 raise NotImplementedError weight = cell.vol / ngrids if rho0 is None: rhoG = _eval_rhoG(mydf, dm0, 1, kpts, deriv) # *.5 to get alpha density rho0 = tools.ifft(rhoG.reshape(-1,ngrids), mesh).real * (.5/weight) if xctype == 'LDA': rho0 = rho0.reshape(ngrids) rho0 = numpy.stack((rho0, rho0)) if gamma_point(kpts): # implies real orbitals and real matrix, thus K_{ia,bj} = K_{ia,jb} # The output matrix v = K*x_{ia} is symmetric hermi = 1 else: hermi = 0 if fxc is None: fxc = ni.eval_xc_eff(xc_code, rho0, deriv=2, xctype=xctype)[2] if singlet: fxc = fxc[0,:,0] + fxc[0,:,1] else: fxc = fxc[0,:,0] - fxc[0,:,1] rhoG = _eval_rhoG(mydf, dms, hermi, kpts, deriv) rho1 = tools.ifft(rhoG.reshape(-1,ngrids), mesh) if hermi == 1: rho1 = rho1.real rho1 *= (1./weight) rho1 = rho1.reshape(nset,-1,ngrids) wv = numpy.einsum('nxg,xyg->nyg', rho1, fxc) wv *= weight wv = tools.fft(wv.reshape(-1,ngrids), mesh).reshape(nset,-1,*mesh) if xctype == 'LDA': veff = _get_j_pass2(mydf, wv, hermi, kpts, verbose=log) elif xctype == 'GGA': # *.5 because v+v.T is always called in _get_gga_pass2 wv[:,0] *= .5 veff = _get_gga_pass2(mydf, wv, hermi, kpts, verbose=log) return veff.reshape(dm_kpts.shape)
[docs] def nr_uks_fxc(mydf, xc_code, dm0, dms, hermi=0, with_j=False, rho0=None, vxc=None, fxc=None, kpts=None, verbose=None): '''multigrid version of function pbc.dft.numint.nr_uks_fxc ''' if kpts is None: kpts = numpy.zeros((1,3)) log = logger.new_logger(mydf, verbose) cell = mydf.cell mesh = mydf.mesh ngrids = numpy.prod(mesh) dm_kpts = lib.asarray(dms, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] nstates = nset // 2 ni = mydf._numint xctype = ni._xc_type(xc_code) if xctype == 'LDA': deriv = 0 elif xctype == 'GGA': deriv = 1 elif xctype == 'MGGA': deriv = 2 if MGGA_DENSITY_LAPL else 1 raise NotImplementedError weight = cell.vol / ngrids if rho0 is None: rhoG = _eval_rhoG(mydf, dm0, hermi, kpts, deriv) rho0 = tools.ifft(rhoG.reshape(-1,ngrids), mesh).real * (1./weight) if xctype == 'LDA': rho0 = rho0.reshape(2,ngrids) else: rho0 = rho0.reshape(2,-1,ngrids) if fxc is None: fxc = ni.eval_xc_eff(xc_code, rho0, deriv=2, xctype=xctype)[2] rhoG = _eval_rhoG(mydf, dms, hermi, kpts, deriv) rho1 = tools.ifft(rhoG.reshape(-1,ngrids), mesh) if hermi == 1: rho1 = rho1.real rho1 *= (1./weight) # rho1 = (rho1a, rho1b); rho1.shape = (2, nstates, nvar, ngrids) rho1 = rho1.reshape(2,nstates,-1,ngrids) wv = numpy.einsum('anxg,axbyg->nbyg', rho1, fxc) wv *= weight wv = tools.fft(wv.reshape(-1,ngrids), mesh).reshape(nset,-1,*mesh) if with_j: coulG = tools.get_coulG(cell, mesh=mesh) vG = (rhoG[0,0] + rhoG[1,0]) * coulG vG = vG.reshape(mesh) wv[:,0] += vG if xctype == 'LDA': veff = _get_j_pass2(mydf, wv, hermi, kpts, verbose=log) elif xctype == 'GGA': # *.5 because v+v.T is always called in _get_gga_pass2 wv[:,0] *= .5 veff = _get_gga_pass2(mydf, wv, hermi, kpts, verbose=log) return veff.reshape(dm_kpts.shape)
[docs] def cache_xc_kernel(mydf, xc_code, mo_coeff, mo_occ, spin=0, kpts=None): raise NotImplementedError
[docs] def cache_xc_kernel1(mydf, xc_code, dm, spin=0, kpts=None): '''Compute the 0th order density, Vxc and fxc. They can be used in TDDFT, DFT hessian module etc. ''' if kpts is None: kpts = numpy.zeros((1,3)) cell = mydf.cell mesh = mydf.mesh ngrids = numpy.prod(mesh) ni = mydf._numint xctype = ni._xc_type(xc_code) if xctype == 'LDA': deriv = 0 comp = 1 elif xctype == 'GGA': deriv = 1 comp = 4 elif xctype == 'MGGA': deriv = 2 if MGGA_DENSITY_LAPL else 1 comp = 6 hermi = 1 weight = cell.vol / ngrids rhoG = _eval_rhoG(mydf, dm, hermi, kpts, deriv) rho = tools.ifft(rhoG.reshape(-1,ngrids), mesh).real * (1./weight) rho = rho.reshape(rhoG.shape) n_dm, comp, ngrids = rho.shape if n_dm == 1 and spin == 1: rho = numpy.repeat(rho, 2, axis=0) rho *= .5 if xctype == 'LDA': assert comp == 1 rho = rho[:,0] else: assert comp > 1 if spin == 0: assert n_dm == 1 rho = rho[0] vxc, fxc = ni.eval_xc_eff(xc_code, rho, deriv=2, xctype=xctype)[1:3] return rho, vxc, fxc
def _gen_rhf_response(mf, dm0, singlet=None, hermi=0): '''multigrid version of function pbc.scf.newton_ah._gen_rhf_response ''' #assert (isinstance(mf, dft.krks.KRKS)) if getattr(mf, 'kpts', None) is not None: kpts = mf.kpts else: kpts = mf.kpt.reshape(1,3) if singlet is None: # for newton solver rho0, vxc, fxc = cache_xc_kernel1(mf.with_df, mf.xc, dm0, 0, kpts) else: rho0, vxc, fxc = cache_xc_kernel1(mf.with_df, mf.xc, dm0, 1, kpts) dm0 = None def vind(dm1): if hermi == 2: return numpy.zeros_like(dm1) if singlet is None: # Without specify singlet, general case v1 = nr_rks_fxc(mf.with_df, mf.xc, dm0, dm1, hermi, True, rho0, vxc, fxc, kpts) elif singlet: v1 = nr_rks_fxc_st(mf.with_df, mf.xc, dm0, dm1, singlet, rho0, vxc, fxc, kpts) else: v1 = nr_rks_fxc_st(mf.with_df, mf.xc, dm0, dm1, singlet, rho0, vxc, fxc, kpts) return v1 return vind def _gen_uhf_response(mf, dm0, with_j=True, hermi=0): '''multigrid version of function pbc.scf.newton_ah._gen_uhf_response ''' #assert (isinstance(mf, dft.kuks.KUKS)) if getattr(mf, 'kpts', None) is not None: kpts = mf.kpts else: kpts = mf.kpt.reshape(1,3) rho0, vxc, fxc = cache_xc_kernel1(mf.with_df, mf.xc, dm0, 1, kpts) dm0 = None def vind(dm1): if hermi == 2: return numpy.zeros_like(dm1) v1 = nr_uks_fxc(mf.with_df, mf.xc, dm0, dm1, hermi, with_j, rho0, vxc, fxc, kpts) return v1 return vind
[docs] def get_rho(mydf, dm, kpts=numpy.zeros((1,3))): '''Density in real space ''' cell = mydf.cell hermi = 1 rhoG = _eval_rhoG(mydf, numpy.asarray(dm), hermi, kpts, deriv=0) mesh = mydf.mesh ngrids = numpy.prod(mesh) weight = cell.vol / ngrids # *(1./weight) because rhoR is scaled by weight in _eval_rhoG. When # computing rhoR with IFFT, the weight factor is not needed. rhoR = tools.ifft(rhoG.reshape(ngrids), mesh).real * (1./weight) return rhoR
[docs] def multi_grids_tasks(cell, fft_mesh=None, verbose=None): if TASKS_TYPE == 'rcut': return multi_grids_tasks_for_rcut(cell, fft_mesh, verbose) else: return multi_grids_tasks_for_ke_cut(cell, fft_mesh, verbose)
[docs] def multi_grids_tasks_for_rcut(cell, fft_mesh=None, verbose=None): log = logger.new_logger(cell, verbose) if fft_mesh is None: fft_mesh = cell.mesh # Split shells based on rcut rcuts_pgto, kecuts_pgto = _primitive_gto_cutoff(cell) ao_loc = cell.ao_loc_nr() def make_cell_dense_exp(shls_dense, r0, r1): cell_dense = cell.copy(deep=False) cell_dense._bas = cell._bas.copy() cell_dense._env = cell._env.copy() rcut_atom = [0] * cell.natm ke_cutoff = 0 for ib in shls_dense: rc = rcuts_pgto[ib] idx = numpy.where((r1 <= rc) & (rc < r0))[0] np1 = len(idx) cs = cell._libcint_ctr_coeff(ib) np, nc = cs.shape if np1 < np: # no pGTO splitting within the shell pexp = cell._bas[ib,PTR_EXP] pcoeff = cell._bas[ib,PTR_COEFF] cs1 = cs[idx] cell_dense._env[pcoeff:pcoeff+cs1.size] = cs1.T.ravel() cell_dense._env[pexp:pexp+np1] = cell.bas_exp(ib)[idx] cell_dense._bas[ib,NPRIM_OF] = np1 ke_cutoff = max(ke_cutoff, kecuts_pgto[ib][idx].max()) ia = cell.bas_atom(ib) rcut_atom[ia] = max(rcut_atom[ia], rc[idx].max()) cell_dense._bas = cell_dense._bas[shls_dense] ao_idx = numpy.hstack([numpy.arange(ao_loc[i], ao_loc[i+1]) for i in shls_dense]) cell_dense.rcut = max(rcut_atom) return cell_dense, ao_idx, ke_cutoff, rcut_atom def make_cell_sparse_exp(shls_sparse, r0, r1): cell_sparse = cell.copy(deep=False) cell_sparse._bas = cell._bas.copy() cell_sparse._env = cell._env.copy() for ib in shls_sparse: idx = numpy.where(r0 <= rcuts_pgto[ib])[0] np1 = len(idx) cs = cell._libcint_ctr_coeff(ib) np, nc = cs.shape if np1 < np: # no pGTO splitting within the shell pexp = cell._bas[ib,PTR_EXP] pcoeff = cell._bas[ib,PTR_COEFF] cs1 = cs[idx] cell_sparse._env[pcoeff:pcoeff+cs1.size] = cs1.T.ravel() cell_sparse._env[pexp:pexp+np1] = cell.bas_exp(ib)[idx] cell_sparse._bas[ib,NPRIM_OF] = np1 cell_sparse._bas = cell_sparse._bas[shls_sparse] ao_idx = numpy.hstack([numpy.arange(ao_loc[i], ao_loc[i+1]) for i in shls_sparse]) return cell_sparse, ao_idx tasks = [] a = cell.lattice_vectors() if abs(a-numpy.diag(a.diagonal())).max() < 1e-12: rmax = a.max() * RMAX_FACTOR_ORTH else: rmax = a.max() * RMAX_FACTOR_NONORTH n_delimeter = int(numpy.log(0.005/rmax) / numpy.log(RMAX_RATIO)) rcut_delimeter = rmax * (RMAX_RATIO ** numpy.arange(n_delimeter)) for r0, r1 in zip(numpy.append(1e9, rcut_delimeter), numpy.append(rcut_delimeter, 0)): # shells which have high exps (small rcut) shls_dense = [ib for ib, rc in enumerate(rcuts_pgto) if numpy.any((r1 <= rc) & (rc < r0))] if len(shls_dense) == 0: continue cell_dense, ao_idx_dense, ke_cutoff, rcut_atom = \ make_cell_dense_exp(shls_dense, r0, r1) mesh = tools.cutoff_to_mesh(a, ke_cutoff) if TO_EVEN_GRIDS: mesh = (mesh+1)//2 * 2 # to the nearest even number if numpy.all(mesh >= fft_mesh): # Including all rest shells shls_dense = [ib for ib, rc in enumerate(rcuts_pgto) if numpy.any(rc < r0)] cell_dense, ao_idx_dense = make_cell_dense_exp(shls_dense, r0, 0)[:2] cell_dense.mesh = mesh = numpy.min([mesh, fft_mesh], axis=0) grids_dense = gen_grid.UniformGrids(cell_dense) grids_dense.ao_idx = ao_idx_dense #grids_dense.rcuts_pgto = [rcuts_pgto[i] for i in shls_dense] # shells which have low exps (big rcut) shls_sparse = [ib for ib, rc in enumerate(rcuts_pgto) if numpy.any(r0 <= rc)] if len(shls_sparse) == 0: cell_sparse = None ao_idx_sparse = [] else: cell_sparse, ao_idx_sparse = make_cell_sparse_exp(shls_sparse, r0, r1) cell_sparse.mesh = mesh if cell_sparse is None: grids_sparse = None else: grids_sparse = gen_grid.UniformGrids(cell_sparse) grids_sparse.ao_idx = ao_idx_sparse log.debug('mesh %s nao dense/sparse %d %d rcut %g', mesh, len(ao_idx_dense), len(ao_idx_sparse), cell_dense.rcut) tasks.append([grids_dense, grids_sparse]) if numpy.all(mesh >= fft_mesh): break return tasks
[docs] def multi_grids_tasks_for_ke_cut(cell, fft_mesh=None, verbose=None): log = logger.new_logger(cell, verbose) if fft_mesh is None: fft_mesh = cell.mesh # Split shells based on rcut rcuts_pgto, kecuts_pgto = _primitive_gto_cutoff(cell) ao_loc = cell.ao_loc_nr() # cell that needs dense integration grids def make_cell_dense_exp(shls_dense, ke0, ke1): cell_dense = cell.copy(deep=False) cell_dense._bas = cell._bas.copy() cell_dense._env = cell._env.copy() rcut_atom = [0] * cell.natm ke_cutoff = 0 for ib in shls_dense: ke = kecuts_pgto[ib] idx = numpy.where((ke0 < ke) & (ke <= ke1))[0] np1 = len(idx) cs = cell._libcint_ctr_coeff(ib) np, nc = cs.shape if np1 < np: # no pGTO splitting within the shell pexp = cell._bas[ib,PTR_EXP] pcoeff = cell._bas[ib,PTR_COEFF] cs1 = cs[idx] cell_dense._env[pcoeff:pcoeff+cs1.size] = cs1.T.ravel() cell_dense._env[pexp:pexp+np1] = cell.bas_exp(ib)[idx] cell_dense._bas[ib,NPRIM_OF] = np1 ke_cutoff = max(ke_cutoff, ke[idx].max()) ia = cell.bas_atom(ib) rcut_atom[ia] = max(rcut_atom[ia], rcuts_pgto[ib][idx].max()) cell_dense._bas = cell_dense._bas[shls_dense] ao_idx = numpy.hstack([numpy.arange(ao_loc[i], ao_loc[i+1]) for i in shls_dense]) cell_dense.rcut = max(rcut_atom) return cell_dense, ao_idx, ke_cutoff, rcut_atom # cell that needs sparse integration grids def make_cell_sparse_exp(shls_sparse, ke0, ke1): cell_sparse = cell.copy(deep=False) cell_sparse._bas = cell._bas.copy() cell_sparse._env = cell._env.copy() for ib in shls_sparse: idx = numpy.where(kecuts_pgto[ib] <= ke0)[0] np1 = len(idx) cs = cell._libcint_ctr_coeff(ib) np, nc = cs.shape if np1 < np: # no pGTO splitting within the shell pexp = cell._bas[ib,PTR_EXP] pcoeff = cell._bas[ib,PTR_COEFF] cs1 = cs[idx] cell_sparse._env[pcoeff:pcoeff+cs1.size] = cs1.T.ravel() cell_sparse._env[pexp:pexp+np1] = cell.bas_exp(ib)[idx] cell_sparse._bas[ib,NPRIM_OF] = np1 cell_sparse._bas = cell_sparse._bas[shls_sparse] ao_idx = numpy.hstack([numpy.arange(ao_loc[i], ao_loc[i+1]) for i in shls_sparse]) return cell_sparse, ao_idx a = cell.lattice_vectors() if abs(a-numpy.diag(a.diagonal())).max() < 1e-12: init_mesh = INIT_MESH_ORTH else: init_mesh = INIT_MESH_NONORTH ke_cutoff_min = tools.mesh_to_cutoff(cell.lattice_vectors(), init_mesh) ke_cutoff_max = max([ke.max() for ke in kecuts_pgto]) ke1 = ke_cutoff_min.min() ke_delimeter = [0, ke1] while ke1 < ke_cutoff_max: ke1 *= KE_RATIO ke_delimeter.append(ke1) tasks = [] for ke0, ke1 in zip(ke_delimeter[:-1], ke_delimeter[1:]): # shells which have high exps (small rcut) shls_dense = [ib for ib, ke in enumerate(kecuts_pgto) if numpy.any((ke0 < ke) & (ke <= ke1))] if len(shls_dense) == 0: continue mesh = tools.cutoff_to_mesh(a, ke1) if TO_EVEN_GRIDS: mesh = int((mesh+1)//2) * 2 # to the nearest even number if numpy.all(mesh >= fft_mesh): # Including all rest shells shls_dense = [ib for ib, ke in enumerate(kecuts_pgto) if numpy.any(ke0 < ke)] cell_dense, ao_idx_dense = make_cell_dense_exp(shls_dense, ke0, ke_cutoff_max+1)[:2] else: cell_dense, ao_idx_dense, ke_cutoff, rcut_atom = \ make_cell_dense_exp(shls_dense, ke0, ke1) cell_dense.mesh = mesh = numpy.min([mesh, fft_mesh], axis=0) grids_dense = gen_grid.UniformGrids(cell_dense) grids_dense.ao_idx = ao_idx_dense #grids_dense.rcuts_pgto = [rcuts_pgto[i] for i in shls_dense] # shells which have low exps (big rcut) shls_sparse = [ib for ib, ke in enumerate(kecuts_pgto) if numpy.any(ke <= ke0)] if len(shls_sparse) == 0: cell_sparse = None ao_idx_sparse = [] else: cell_sparse, ao_idx_sparse = make_cell_sparse_exp(shls_sparse, ke0, ke1) cell_sparse.mesh = mesh if cell_sparse is None: grids_sparse = None else: grids_sparse = gen_grid.UniformGrids(cell_sparse) grids_sparse.ao_idx = ao_idx_sparse log.debug('mesh %s nao dense/sparse %d %d rcut %g', mesh, len(ao_idx_dense), len(ao_idx_sparse), cell_dense.rcut) tasks.append([grids_dense, grids_sparse]) if numpy.all(mesh >= fft_mesh): break return tasks
def _primitive_gto_cutoff(cell, precision=None): '''Cutoff raidus, above which each shell decays to a value less than the required precsion''' if precision is None: precision = cell.precision vol = cell.vol weight_penalty = vol precision = cell.precision / max(weight_penalty, 1) omega = cell.omega rcut = [] ke_cutoff = [] for ib in range(cell.nbas): l = cell.bas_angular(ib) es = cell.bas_exp(ib) cs = abs(cell._libcint_ctr_coeff(ib)).max(axis=1) norm_ang = ((2*l+1)/(4*numpy.pi))**.5 fac = 2*numpy.pi/vol * cs*norm_ang/es / precision r = cell.rcut r = (numpy.log(fac * r**(l+1) + 1.) / es)**.5 r = (numpy.log(fac * r**(l+1) + 1.) / es)**.5 ke_guess = gto.cell._estimate_ke_cutoff(es, l, cs, precision, omega) rcut.append(r) ke_cutoff.append(ke_guess) return rcut, ke_cutoff
[docs] class MultiGridFFTDF(fft.FFTDF): _keys = {'tasks'} def __init__(self, cell, kpts=numpy.zeros((1,3))): fft.FFTDF.__init__(self, cell, kpts) self.tasks = None
[docs] def build(self): self.tasks = multi_grids_tasks(self.cell, self.mesh, self.verbose) return self
[docs] def reset(self, cell=None): self.tasks = None return fft.FFTDF.reset(cell)
get_pp = get_pp get_nuc = get_nuc
[docs] def get_jk(self, dm, hermi=1, kpts=None, kpts_band=None, with_j=True, with_k=True, exxdiv='ewald', **kwargs): from pyscf.pbc.df import fft_jk if with_k: logger.warn(self, 'MultiGridFFTDF does not support HFX. ' 'HFX is computed by FFTDF.get_k_kpts function.') if kpts is None: if numpy.all(self.kpts == 0): # Gamma-point J/K by default kpts = numpy.zeros(3) else: kpts = self.kpts else: kpts = numpy.asarray(kpts) vj = vk = None if kpts.shape == (3,): if with_k: vk = fft_jk.get_jk(self, dm, hermi, kpts, kpts_band, False, True, exxdiv)[1] vj = get_j_kpts(self, dm, hermi, kpts.reshape(1,3), kpts_band) if kpts_band is None: vj = vj[...,0,:,:] else: if with_k: vk = fft_jk.get_k_kpts(self, dm, hermi, kpts, kpts_band, exxdiv) if with_j: vj = get_j_kpts(self, dm, hermi, kpts, kpts_band) return vj, vk
get_rho = get_rho
[docs] def multigrid_fftdf(mf): '''Use MultiGridFFTDF to replace the default FFTDF integration method in the DFT object. ''' mf.with_df, old_df = MultiGridFFTDF(mf.cell), mf.with_df mf.with_df.__dict__.update(old_df.__dict__) return mf
multigrid = multigrid_fftdf # for backward compatibility def _pgto_shells(cell): return cell._bas[:,NPRIM_OF].sum()