#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Timothy Berkelbach <tim.berkelbach@gmail.com>
# Qiming Sun <osirpt.sun@gmail.com>
#
import sys
import numpy
from pyscf import lib
from pyscf.dft import numint
from pyscf.dft.numint import eval_mat, _dot_ao_ao, _dot_ao_dm, _tau_dot
from pyscf.dft.numint import _scale_ao, _contract_rho
from pyscf.dft.numint import OCCDROP
from pyscf.dft.gen_grid import NBINS, CUTOFF, ALIGNMENT_UNIT
from pyscf.pbc.dft.gen_grid import make_mask, BLKSIZE
from pyscf.pbc.lib.kpts_helper import is_zero, KPT_DIFF_TOL
from pyscf.pbc.lib.kpts import KPoints
[docs]
def eval_ao(cell, coords, kpt=numpy.zeros(3), deriv=0, relativity=0, shls_slice=None,
non0tab=None, cutoff=None, out=None, verbose=None):
'''Collocate AO crystal orbitals (opt. gradients) on the real-space grid.
Args:
cell : instance of :class:`Cell`
coords : (nx*ny*nz, 3) ndarray
The real-space grid point coordinates.
Kwargs:
kpt : (3,) ndarray
The k-point corresponding to the crystal AO.
deriv : int
AO derivative order. It affects the shape of the return array.
If deriv=0, the returned AO values are stored in a (N,nao) array.
Otherwise the AO values are stored in an array of shape (M,N,nao).
Here N is the number of grids, nao is the number of AO functions,
M is the size associated to the derivative deriv.
Returns:
aoR : ([4,] nx*ny*nz, nao=cell.nao_nr()) ndarray
The value of the AO crystal orbitals on the real-space grid by default.
If deriv=1, also contains the value of the orbitals gradient in the
x, y, and z directions. It can be either complex or float array,
depending on the kpt argument. If kpt is not given (gamma point),
aoR is a float array.
See Also:
pyscf.dft.numint.eval_ao
'''
ao_kpts = eval_ao_kpts(cell, coords, numpy.reshape(kpt, (-1,3)), deriv,
relativity, shls_slice, non0tab, cutoff, out, verbose)
return ao_kpts[0]
[docs]
def eval_ao_kpts(cell, coords, kpts=None, deriv=0, relativity=0,
shls_slice=None, non0tab=None, cutoff=None, out=None,
verbose=None, **kwargs):
'''
Returns:
ao_kpts: (nkpts, [comp], ngrids, nao) ndarray
AO values at each k-point
'''
if kpts is None:
if 'kpt' in kwargs:
sys.stderr.write('WARN: KNumInt.eval_ao function finds keyword '
'argument "kpt" and converts it to "kpts"\n')
kpts = kwargs['kpt']
else:
kpts = numpy.zeros((1,3))
kpts = numpy.reshape(kpts, (-1,3))
comp = (deriv+1)*(deriv+2)*(deriv+3)//6
if cell.cart:
feval = 'GTOval_cart_deriv%d' % deriv
else:
feval = 'GTOval_sph_deriv%d' % deriv
return cell.pbc_eval_gto(feval, coords, comp, kpts, shls_slice=shls_slice,
non0tab=non0tab, cutoff=cutoff, out=out)
[docs]
def eval_rho(cell, ao, dm, non0tab=None, xctype='LDA', hermi=0, with_lapl=True,
verbose=None):
'''Collocate the density (opt. gradients) on the real-space grid.
Args:
cell : instance of :class:`Mole` or :class:`Cell`
ao : ([4,] nx*ny*nz, nao=cell.nao_nr()) ndarray
The value of the AO crystal orbitals on the real-space grid by default.
If xctype='GGA', also contains the value of the gradient in the x, y,
and z directions.
Returns:
rho : ([4,] nx*ny*nz) ndarray
The value of the density on the real-space grid. If xctype='GGA',
also contains the value of the gradient in the x, y, and z
directions.
See Also:
pyscf.dft.numint.eval_rho
'''
ngrids, nao = ao.shape[-2:]
# complex orbitals or density matrix
if numpy.iscomplexobj(ao) or numpy.iscomplexobj(dm):
shls_slice = (0, cell.nbas)
ao_loc = cell.ao_loc_nr()
dm = dm.astype(numpy.complex128)
if hermi == 1:
dot_bra = _contract_rho
dtype = numpy.float64
else:
def dot_bra(bra, aodm):
return numpy.einsum('pi,pi->p', bra.conj(), aodm)
dtype = numpy.complex128
if xctype == 'LDA' or xctype == 'HF':
c0 = _dot_ao_dm(cell, ao, dm, non0tab, shls_slice, ao_loc)
rho = dot_bra(ao, c0)
elif xctype == 'GGA':
rho = numpy.empty((4,ngrids), dtype=dtype)
c0 = _dot_ao_dm(cell, ao[0], dm, non0tab, shls_slice, ao_loc)
rho[0] = dot_bra(ao[0], c0)
for i in range(1, 4):
rho[i] = dot_bra(ao[i], c0)
if hermi == 1:
rho[1:4] *= 2
else:
for i in range(1, 4):
c1 = _dot_ao_dm(cell, ao[i], dm, non0tab, shls_slice, ao_loc)
rho[i] += dot_bra(ao[0], c1)
else:
if with_lapl:
# rho[4] = \nabla^2 rho, rho[5] = 1/2 |nabla f|^2
rho = numpy.empty((6,ngrids), dtype=dtype)
tau_idx = 5
else:
rho = numpy.empty((5,ngrids), dtype=dtype)
tau_idx = 4
c0 = _dot_ao_dm(cell, ao[0], dm, non0tab, shls_slice, ao_loc)
rho[0] = dot_bra(ao[0], c0)
rho[tau_idx] = 0
for i in range(1, 4):
c1 = _dot_ao_dm(cell, ao[i], dm, non0tab, shls_slice, ao_loc)
rho[tau_idx] += dot_bra(ao[i], c1)
rho[i] = dot_bra(ao[i], c0)
if hermi == 1:
rho[i] *= 2
else:
rho[i] += dot_bra(ao[0], c1)
if with_lapl:
if ao.shape[0] > 4:
XX, YY, ZZ = 4, 7, 9
ao2 = ao[XX] + ao[YY] + ao[ZZ]
rho[4] = dot_bra(ao2, c0)
rho[4] += rho[5]
if hermi == 1:
rho[4] *= 2
else:
c2 = _dot_ao_dm(cell, ao2, dm, non0tab, shls_slice, ao_loc)
rho[4] += dot_bra(ao[0], c2)
rho[4] += rho[5]
else:
raise ValueError('Not enough derivatives in ao')
rho[tau_idx] *= .5
else:
# real orbitals and real DM
rho = numint.eval_rho(cell, ao, dm, non0tab, xctype, hermi, with_lapl, verbose)
return rho
[docs]
def eval_rho2(cell, ao, mo_coeff, mo_occ, non0tab=None, xctype='LDA',
with_lapl=True, verbose=None):
'''Refer to `pyscf.dft.numint.eval_rho2` for full documentation.
'''
xctype = xctype.upper()
ngrids, nao = ao.shape[-2:]
# complex orbitals or density matrix
if numpy.iscomplexobj(ao) or numpy.iscomplexobj(mo_coeff):
shls_slice = (0, cell.nbas)
ao_loc = cell.ao_loc_nr()
pos = mo_occ > OCCDROP
cpos = numpy.einsum('ij,j->ij', mo_coeff[:,pos], numpy.sqrt(mo_occ[pos]))
if pos.sum() > 0:
if xctype == 'LDA' or xctype == 'HF':
c0 = _dot_ao_dm(cell, ao, cpos, non0tab, shls_slice, ao_loc)
rho = _contract_rho(c0, c0)
elif xctype == 'GGA':
rho = numpy.empty((4,ngrids))
c0 = _dot_ao_dm(cell, ao[0], cpos, non0tab, shls_slice, ao_loc)
rho[0] = _contract_rho(c0, c0)
for i in range(1, 4):
c1 = _dot_ao_dm(cell, ao[i], cpos, non0tab, shls_slice, ao_loc)
rho[i] = _contract_rho(c0, c1) * 2 # *2 for +c.c.
else: # meta-GGA
if with_lapl:
# rho[4] = \nabla^2 rho, rho[5] = 1/2 |nabla f|^2
rho = numpy.empty((6,ngrids))
tau_idx = 5
else:
rho = numpy.empty((5,ngrids))
tau_idx = 4
c0 = _dot_ao_dm(cell, ao[0], cpos, non0tab, shls_slice, ao_loc)
rho[0] = _contract_rho(c0, c0)
rho[tau_idx] = 0
for i in range(1, 4):
c1 = _dot_ao_dm(cell, ao[i], cpos, non0tab, shls_slice, ao_loc)
rho[i] = _contract_rho(c0, c1) * 2 # *2 for +c.c.
rho[tau_idx]+= _contract_rho(c1, c1)
if with_lapl:
XX, YY, ZZ = 4, 7, 9
ao2 = ao[XX] + ao[YY] + ao[ZZ]
c1 = _dot_ao_dm(cell, ao2, cpos, non0tab, shls_slice, ao_loc)
rho[4] = _contract_rho(c0, c1)
rho[4]+= rho[5]
rho[4]*= 2
rho[tau_idx] *= .5
else:
if xctype == 'LDA' or xctype == 'HF':
rho = numpy.zeros(ngrids)
elif xctype == 'GGA':
rho = numpy.zeros((4,ngrids))
elif with_lapl:
# rho[4] = \nabla^2 rho, rho[5] = 1/2 |nabla f|^2
rho = numpy.zeros((6,ngrids))
tau_idx = 5
else:
rho = numpy.zeros((5,ngrids))
tau_idx = 4
neg = mo_occ < -OCCDROP
if neg.sum() > 0:
cneg = numpy.einsum('ij,j->ij', mo_coeff[:,neg], numpy.sqrt(-mo_occ[neg]))
if xctype == 'LDA' or xctype == 'HF':
c0 = _dot_ao_dm(cell, ao, cneg, non0tab, shls_slice, ao_loc)
rho -= _contract_rho(c0, c0)
elif xctype == 'GGA':
c0 = _dot_ao_dm(cell, ao[0], cneg, non0tab, shls_slice, ao_loc)
rho[0] -= _contract_rho(c0, c0)
for i in range(1, 4):
c1 = _dot_ao_dm(cell, ao[i], cneg, non0tab, shls_slice, ao_loc)
rho[i] -= _contract_rho(c0, c1) * 2 # *2 for +c.c.
else:
c0 = _dot_ao_dm(cell, ao[0], cneg, non0tab, shls_slice, ao_loc)
rho[0] -= _contract_rho(c0, c0)
rho5 = 0
for i in range(1, 4):
c1 = _dot_ao_dm(cell, ao[i], cneg, non0tab, shls_slice, ao_loc)
rho[i] -= _contract_rho(c0, c1) * 2 # *2 for +c.c.
rho5 -= _contract_rho(c1, c1)
if with_lapl:
XX, YY, ZZ = 4, 7, 9
ao2 = ao[XX] + ao[YY] + ao[ZZ]
c1 = _dot_ao_dm(cell, ao2, cneg, non0tab, shls_slice, ao_loc)
rho[4] -= _contract_rho(c0, c1) * 2
rho[4] -= rho5 * 2
rho[tau_idx] -= rho5 * .5
else:
rho = numint.eval_rho2(cell, ao, mo_coeff, mo_occ, non0tab, xctype, verbose)
return rho
[docs]
def nr_rks(ni, cell, grids, xc_code, dms, spin=0, relativity=0, hermi=1,
kpts=None, kpts_band=None, max_memory=2000, verbose=None):
'''Calculate RKS XC functional and potential matrix for given meshgrids and density matrix
Note: This is a replica of pyscf.dft.numint.nr_rks_vxc with kpts added.
This implemented uses slow function in numint, which only calls eval_rho, eval_mat.
Args:
ni : an instance of :class:`NumInt` or :class:`KNumInt`
cell : instance of :class:`Mole` or :class:`Cell`
grids : an instance of :class:`Grids`
grids.coords and grids.weights are needed for coordinates and weights of meshgrids.
xc_code : str
XC functional description.
See :func:`parse_xc` of pyscf/dft/libxc.py for more details.
dms : 2D/3D array or a list of 2D/3D arrays
Density matrices (2D) / density matrices for k-points (3D)
Kwargs:
spin : int
spin polarized if spin = 1
relativity : int
No effects.
hermi : int
Whether the input density matrix is hermitian
max_memory : int or float
The maximum size of cache to use (in MB).
verbose : int or object of :class:`Logger`
No effects.
kpts : (3,) ndarray or (nkpts,3) ndarray
Single or multiple k-points sampled for the DM. Default is gamma point.
kpts_band : (3,) ndarray or (*,3) ndarray
A list of arbitrary "band" k-points at which to evaluate the XC matrix.
Returns:
nelec, excsum, vmat.
nelec is the number of electrons generated by numerical integration.
excsum is the XC functional value. vmat is the XC potential matrix in
2D array of shape (nao,nao) where nao is the number of AO functions.
'''
if kpts is None:
kpts = numpy.zeros((1,3))
elif isinstance(kpts, KPoints):
kpts = kpts.kpts
xctype = ni._xc_type(xc_code)
if xctype == 'LDA':
ao_deriv = 0
elif xctype == 'GGA':
ao_deriv = 1
elif xctype == 'MGGA':
if (any(x in xc_code.upper() for x in ('CC06', 'CS', 'BR89', 'MK00'))):
raise NotImplementedError('laplacian in meta-GGA method')
ao_deriv = 1
elif xctype == 'HF':
ao_deriv = 0
else:
raise NotImplementedError(f'r_vxc for functional {xc_code}')
make_rho, nset, nao = ni._gen_rho_evaluator(cell, dms, hermi, False)
if xctype in ('LDA', 'GGA', 'MGGA'):
nelec = numpy.zeros(nset)
excsum = numpy.zeros(nset)
shls_slice = (0, cell.nbas)
ao_loc = cell.ao_loc
deriv = 1
vmat = [0]*nset
v_hermi = 1 # the output matrix must be hermitian
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, kpts_band,
max_memory):
for i in range(nset):
rho = make_rho(i, ao_k2, mask, xctype).real
exc, vxc = ni.eval_xc_eff(xc_code, rho, deriv, xctype=xctype)[:2]
if xctype == 'LDA':
den = rho*weight
else:
den = rho[0]*weight
nelec[i] += den.sum()
excsum[i] += den.dot(exc)
wv = weight * vxc
vmat[i] += ni._vxc_mat(cell, ao_k1, wv, mask, xctype,
shls_slice, ao_loc, v_hermi)
vmat = numpy.stack(vmat)
# call swapaxes method to swap last two indices because vmat may be a 3D
# array (nset,nao,nao) in single k-point mode or a 4D array
# (nset,nkpts,nao,nao) in k-points mode
vmat = vmat + vmat.conj().swapaxes(-2,-1)
if nset == 1:
nelec = nelec[0]
excsum = excsum[0]
vmat = vmat[0]
else:
nelec = excsum = vmat = 0
return nelec, excsum, vmat
[docs]
def nr_uks(ni, cell, grids, xc_code, dms, spin=1, relativity=0, hermi=1,
kpts=None, kpts_band=None, max_memory=2000, verbose=None):
'''Calculate UKS XC functional and potential matrix for given meshgrids and density matrix
Note: This is a replica of pyscf.dft.numint.nr_rks_vxc with kpts added.
This implemented uses slow function in numint, which only calls eval_rho, eval_mat.
Args:
ni : an instance of :class:`NumInt` or :class:`KNumInt`
cell : instance of :class:`Mole` or :class:`Cell`
grids : an instance of :class:`Grids`
grids.coords and grids.weights are needed for coordinates and weights of meshgrids.
xc_code : str
XC functional description.
See :func:`parse_xc` of pyscf/dft/libxc.py for more details.
dms :
Density matrices
Kwargs:
spin : int
spin polarized if spin = 1
relativity : int
No effects.
hermi : int
Whether the input density matrix is hermitian
max_memory : int or float
The maximum size of cache to use (in MB).
verbose : int or object of :class:`Logger`
No effects.
kpts : (3,) ndarray or (nkpts,3) ndarray
Single or multiple k-points sampled for the DM. Default is gamma point.
kpts_band : (3,) ndarray or (*,3) ndarray
A list of arbitrary "band" k-points at which to evaluate the XC matrix.
Returns:
nelec, excsum, vmat.
nelec is the number of electrons generated by numerical integration.
excsum is the XC functional value. vmat is the XC potential matrix in
2D array of shape (nao,nao) where nao is the number of AO functions.
'''
if kpts is None:
kpts = numpy.zeros((1,3))
elif isinstance(kpts, KPoints):
kpts = kpts.kpts
xctype = ni._xc_type(xc_code)
if xctype == 'LDA':
ao_deriv = 0
elif xctype == 'GGA':
ao_deriv = 1
elif xctype == 'MGGA':
if (any(x in xc_code.upper() for x in ('CC06', 'CS', 'BR89', 'MK00'))):
raise NotImplementedError('laplacian in meta-GGA method')
ao_deriv = 1
elif xctype == 'HF':
ao_deriv = 0
else:
raise NotImplementedError(f'r_vxc for functional {xc_code}')
dma, dmb = _format_uks_dm(dms)
nao = dma.shape[-1]
make_rhoa, nset = ni._gen_rho_evaluator(cell, dma, hermi, False)[:2]
make_rhob = ni._gen_rho_evaluator(cell, dmb, hermi, False)[0]
nelec = numpy.zeros((2,nset))
excsum = numpy.zeros(nset)
if xctype in ('LDA', 'GGA', 'MGGA'):
shls_slice = (0, cell.nbas)
ao_loc = cell.ao_loc
deriv = 1
vmata = [0]*nset
vmatb = [0]*nset
v_hermi = 1 # the output matrix must be hermitian
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, kpts_band,
max_memory):
for i in range(nset):
rho_a = make_rhoa(i, ao_k2, mask, xctype).real
rho_b = make_rhob(i, ao_k2, mask, xctype).real
rho = (rho_a, rho_b)
exc, vxc = ni.eval_xc_eff(xc_code, rho, deriv, xctype=xctype)[:2]
if xctype == 'LDA':
dena = rho_a * weight
denb = rho_b * weight
else:
dena = rho_a[0] * weight
denb = rho_b[0] * weight
nelec[0,i] += dena.sum()
nelec[1,i] += denb.sum()
excsum[i] += dena.dot(exc)
excsum[i] += denb.dot(exc)
wv = weight * vxc
vmata[i] += ni._vxc_mat(cell, ao_k1, wv[0], mask, xctype,
shls_slice, ao_loc, v_hermi)
vmatb[i] += ni._vxc_mat(cell, ao_k1, wv[1], mask, xctype,
shls_slice, ao_loc, hermi)
vmat = numpy.stack([vmata, vmatb])
# call swapaxes method to swap last two indices because vmat may be a 3D
# array (nset,nao,nao) in single k-point mode or a 4D array
# (nset,nkpts,nao,nao) in k-points mode
vmat = vmat + vmat.conj().swapaxes(-2,-1)
if nset == 1:
nelec = nelec[:,0]
excsum = excsum[0]
vmat = vmat[:,0]
else:
nelec = excsum = vmat = 0
return nelec, excsum, vmat
def _format_uks_dm(dms):
dma, dmb = dms
if getattr(dms, 'mo_coeff', None) is not None:
#TODO: test whether dm.mo_coeff matching dm
mo_coeff = dms.mo_coeff
mo_occ = dms.mo_occ
if (isinstance(mo_coeff[0], numpy.ndarray) and
mo_coeff[0].ndim < dma.ndim): # handle ROKS
mo_occa = [numpy.array(occ> 0, dtype=numpy.double) for occ in mo_occ]
mo_occb = [numpy.array(occ==2, dtype=numpy.double) for occ in mo_occ]
dma = lib.tag_array(dma, mo_coeff=mo_coeff, mo_occ=mo_occa)
dmb = lib.tag_array(dmb, mo_coeff=mo_coeff, mo_occ=mo_occb)
else:
dma = lib.tag_array(dma, mo_coeff=mo_coeff[0], mo_occ=mo_occ[0])
dmb = lib.tag_array(dmb, mo_coeff=mo_coeff[1], mo_occ=mo_occ[1])
return dma, dmb
nr_rks_vxc = nr_rks
nr_uks_vxc = nr_uks
[docs]
def nr_nlc_vxc(ni, cell, grids, xc_code, dms, relativity=0, hermi=1,
kpts=None, kpts_band=None, max_memory=2000, verbose=None):
'''Calculate NLC functional and potential matrix on given grids
Args:
ni : an instance of :class:`NumInt`
cell : an instance of :class:`Cell`
grids : an instance of :class:`Grids`
grids.coords and grids.weights are needed for coordinates and weights of meshgrids.
xc_code : str
XC functional description.
See :func:`parse_xc` of pyscf/dft/libxc.py for more details.
dm : 2D array
Density matrix or multiple density matrices
Kwargs:
hermi : int
Input density matrices symmetric or not. It also indicates whether
the potential matrices in return are symmetric or not.
max_memory : int or float
The maximum size of cache to use (in MB).
Returns:
nelec, excsum, vmat.
nelec is the number of electrons generated by numerical integration.
excsum is the XC functional value. vmat is the XC potential matrix in
2D array of shape (nao,nao) where nao is the number of AO functions.
'''
make_rho, nset, nao = ni._gen_rho_evaluator(cell, dms, hermi, False)
assert nset == 1
xctype = 'GGA'
ao_deriv = 1
vvrho = []
for ao_k1, _, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, None, max_memory):
vvrho.append(make_rho(0, ao_k1, mask, xctype))
rho = numpy.hstack(vvrho)
exc = 0
vxc = 0
nlc_coefs = ni.nlc_coeff(xc_code)
for nlc_pars, fac in nlc_coefs:
e, v = numint._vv10nlc(rho, grids.coords, rho, grids.weights,
grids.coords, nlc_pars)
exc += e * fac
vxc += v * fac
den = rho[0] * grids.weights
nelec = den.sum()
excsum = numpy.dot(den, exc)
vv_vxc = numint.xc_deriv.transform_vxc(rho, vxc, xctype, spin=0)
shls_slice = (0, cell.nbas)
ao_loc = cell.ao_loc_nr()
vmat = 0
hermi = 1
p1 = 0
for ao_k1, _, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts_band, None, max_memory):
p0, p1 = p1, p1 + weight.size
wv = vv_vxc[:,p0:p1] * weight
vmat += ni._vxc_mat(cell, ao_k1, wv, mask, xctype,
shls_slice, ao_loc, hermi)
vmat = vmat + vmat.conj().swapaxes(-2,-1)
return nelec, excsum, vmat
[docs]
def nr_rks_fxc(ni, cell, grids, xc_code, dm0, dms, relativity=0, hermi=0,
rho0=None, vxc=None, fxc=None, kpts=None, max_memory=2000,
verbose=None):
'''Contract RKS XC kernel matrix with given density matrices
Args:
ni : an instance of :class:`NumInt` or :class:`KNumInt`
cell : instance of :class:`Mole` or :class:`Cell`
grids : an instance of :class:`Grids`
grids.coords and grids.weights are needed for coordinates and weights of meshgrids.
xc_code : str
XC functional description.
See :func:`parse_xc` of pyscf/dft/libxc.py for more details.
dms : 2D/3D array or a list of 2D/3D arrays
Density matrices (2D) / density matrices for k-points (3D)
Kwargs:
hermi : int
Whether the input density matrix is hermitian
max_memory : int or float
The maximum size of cache to use (in MB).
rho0 : float array
Zero-order density (and density derivative for GGA). Giving kwargs rho0,
vxc and fxc to improve better performance.
vxc : float array
First order XC derivatives
fxc : float array
Second order XC derivatives
Examples:
'''
xctype = ni._xc_type(xc_code)
if xctype == 'LDA':
ao_deriv = 0
elif xctype == 'GGA':
ao_deriv = 1
elif xctype == 'MGGA':
if (any(x in xc_code.upper() for x in ('CC06', 'CS', 'BR89', 'MK00'))):
raise NotImplementedError('laplacian in meta-GGA method')
ao_deriv = 1
elif xctype == 'HF':
ao_deriv = 0
else:
raise NotImplementedError(f'r_vxc for functional {xc_code}')
if fxc is None and xctype in ('LDA', 'GGA', 'MGGA'):
spin = 0
fxc = ni.cache_xc_kernel1(cell, grids, xc_code, dm0, spin, kpts,
max_memory=max_memory)[2]
if kpts is None:
kpts = numpy.zeros((1,3))
elif isinstance(kpts, KPoints):
kpts = kpts.kpts_ibz
if is_zero(kpts):
if isinstance(dms, numpy.ndarray) and dms.dtype == numpy.double:
# for real orbitals and real matrix, K_{ia,bj} = K_{ia,jb}
# The output matrix v = K*x_{ia} is symmetric
hermi = 1
if xctype in ('LDA', 'GGA', 'MGGA'):
make_rho, nset, nao = ni._gen_rho_evaluator(cell, dms, hermi, False)
shls_slice = (0, cell.nbas)
ao_loc = cell.ao_loc_nr()
vmat = [0] * nset
p1 = 0
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, None, max_memory):
p0, p1 = p1, p1 + weight.size
_fxc = fxc[:,:,p0:p1]
for i in range(nset):
rho1 = make_rho(i, ao_k1, mask, xctype)
if xctype == 'LDA':
vxc1 = numpy.einsum('g,yg->yg', rho1, _fxc[0])
else:
vxc1 = numpy.einsum('xg,xyg->yg', rho1, _fxc)
wv = weight * vxc1
vmat[i] += ni._vxc_mat(cell, ao_k1, wv, mask, xctype,
shls_slice, ao_loc, hermi)
vmat = numpy.stack(vmat)
if hermi == 1:
# call swapaxes method to swap last two indices because vmat may be a 3D
# array (nset,nao,nao) in single k-point mode or a 4D array
# (nset,nkpts,nao,nao) in k-points mode
vmat = vmat + vmat.conj().swapaxes(-2,-1)
if nset == 1:
vmat = vmat.reshape(dms.shape)
else:
vmat = 0
return vmat
[docs]
def nr_rks_fxc_st(ni, cell, grids, xc_code, dm0, dms_alpha, relativity=0, singlet=True,
rho0=None, vxc=None, fxc=None, kpts=None, max_memory=2000,
verbose=None):
'''Associated to singlet or triplet Hessian
Note the difference to nr_rks_fxc, dms_alpha is the response density
matrices of alpha spin, alpha+/-beta DM is applied due to singlet/triplet
coupling
Ref. CPL, 256, 454
'''
if fxc is None:
spin = 1
fxc = ni.cache_xc_kernel1(cell, grids, xc_code, dm0, spin, kpts,
max_memory=max_memory)[2]
if singlet:
fxc = fxc[0,:,0] + fxc[0,:,1]
else:
fxc = fxc[0,:,0] - fxc[0,:,1]
return ni.nr_rks_fxc(cell, grids, xc_code, dm0, dms_alpha, hermi=0, fxc=fxc,
kpts=kpts, max_memory=max_memory)
[docs]
def nr_uks_fxc(ni, cell, grids, xc_code, dm0, dms, relativity=0, hermi=0,
rho0=None, vxc=None, fxc=None, kpts=None, max_memory=2000,
verbose=None):
'''Contract UKS XC kernel matrix with given density matrices
Args:
ni : an instance of :class:`NumInt` or :class:`KNumInt`
cell : instance of :class:`Mole` or :class:`Cell`
grids : an instance of :class:`Grids`
grids.coords and grids.weights are needed for coordinates and weights of meshgrids.
xc_code : str
XC functional description.
See :func:`parse_xc` of pyscf/dft/libxc.py for more details.
dms : 2D array a list of 2D arrays
Density matrix or multiple density matrices
Kwargs:
hermi : int
Input density matrices symmetric or not
max_memory : int or float
The maximum size of cache to use (in MB).
rho0 : float array
Zero-order density (and density derivative for GGA). Giving kwargs rho0,
vxc and fxc to improve better performance.
vxc : float array
First order XC derivatives
fxc : float array
Second order XC derivatives
Returns:
nelec, excsum, vmat.
nelec is the number of electrons generated by numerical integration.
excsum is the XC functional value. vmat is the XC potential matrix in
2D array of shape (nao,nao) where nao is the number of AO functions.
Examples:
'''
xctype = ni._xc_type(xc_code)
if xctype == 'LDA':
ao_deriv = 0
elif xctype == 'GGA':
ao_deriv = 1
elif xctype == 'MGGA':
if (any(x in xc_code.upper() for x in ('CC06', 'CS', 'BR89', 'MK00'))):
raise NotImplementedError('laplacian in meta-GGA method')
ao_deriv = 1
elif xctype == 'HF':
ao_deriv = 0
else:
raise NotImplementedError(f'r_vxc for functional {xc_code}')
if fxc is None and xctype in ('LDA', 'GGA', 'MGGA'):
spin = 1
fxc = ni.cache_xc_kernel1(cell, grids, xc_code, dm0, spin, kpts,
max_memory=max_memory)[2]
if kpts is None:
kpts = numpy.zeros((1,3))
elif isinstance(kpts, KPoints):
kpts = kpts.kpts_ibz
dma, dmb = _format_uks_dm(dms)
if is_zero(kpts) and dma.dtype == numpy.double:
# for real orbitals and real matrix, K_{ia,bj} = K_{ia,jb}
# The output matrix v = K*x_{ia} is symmetric
hermi = 1
nao = dma.shape[-1]
make_rhoa, nset = ni._gen_rho_evaluator(cell, dma, hermi, False)[:2]
make_rhob = ni._gen_rho_evaluator(cell, dmb, hermi, False)[0]
shls_slice = (0, cell.nbas)
ao_loc = cell.ao_loc_nr()
vmata = [0] * nset
vmatb = [0] * nset
if xctype in ('LDA', 'GGA', 'MGGA'):
p1 = 0
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, None, max_memory):
p0, p1 = p1, p1 + weight.size
_fxc = fxc[:,:,:,:,p0:p1]
for i in range(nset):
rho1a = make_rhoa(i, ao_k1, mask, xctype)
rho1b = make_rhob(i, ao_k1, mask, xctype)
rho1 = numpy.stack([rho1a, rho1b])
if xctype == 'LDA':
vxc1 = numpy.einsum('ag,abyg->byg', rho1, _fxc[:,0,:])
else:
vxc1 = numpy.einsum('axg,axbyg->byg', rho1, _fxc)
wv = weight * vxc1
vmata[i] += ni._vxc_mat(cell, ao_k1, wv[0], mask, xctype,
shls_slice, ao_loc, hermi)
vmatb[i] += ni._vxc_mat(cell, ao_k1, wv[1], mask, xctype,
shls_slice, ao_loc, hermi)
vmat = numpy.stack([vmata, vmatb])
if hermi == 1:
vmat = vmat + vmat.conj().swapaxes(-2,-1)
if nset == 1:
vmat = vmat.reshape((2,) + dma.shape)
else:
vmat = 0
return vmat
def _vxc_mat(cell, ao, wv, mask, xctype, shls_slice, ao_loc, hermi):
# NOTE ao might be complex. wv should be real for vxc_mat. wv can be complex
# for fxc_mat
if xctype == 'LDA':
#:aow = numpy.einsum('pi,p->pi', ao, wv)
aow = _scale_ao(ao, wv[0])
mat = _dot_ao_ao(cell, ao, aow, mask, shls_slice, ao_loc)
elif xctype == 'GGA':
#:aow = numpy.einsum('npi,np->pi', ao, wv)
aow = _scale_ao(ao, wv[:4])
mat = _dot_ao_ao(cell, ao[0], aow, mask, shls_slice, ao_loc)
if hermi != 1:
aow = _scale_ao(ao[1:4], wv[1:4].conj())
mat += _dot_ao_ao(cell, aow, ao[0], mask, shls_slice, ao_loc)
elif xctype == 'MGGA':
tau_idx = 4
aow = _scale_ao(ao, wv[:4])
mat = _dot_ao_ao(cell, ao[0], aow, mask, shls_slice, ao_loc)
mat+= _tau_dot(cell, ao, ao, wv[tau_idx], mask, shls_slice, ao_loc)
if hermi != 1:
aow = _scale_ao(ao[1:4], wv[1:4].conj())
mat += _dot_ao_ao(cell, aow, ao[0], mask, shls_slice, ao_loc)
return mat
[docs]
def cache_xc_kernel(ni, cell, grids, xc_code, mo_coeff, mo_occ, spin=0,
kpts=None, max_memory=2000):
'''Compute the 0th order density, Vxc and fxc. They can be used in TDDFT,
DFT hessian module etc.
'''
if kpts is None:
kpts = numpy.zeros((1,3))
elif isinstance(kpts, KPoints):
if kpts.kpts.size > 3: # multiple k points
mo_coeff = kpts.transform_mo_coeff(mo_coeff)
mo_occ = kpts.transform_mo_occ(mo_occ)
kpts = kpts.kpts
xctype = ni._xc_type(xc_code)
if xctype == 'GGA':
ao_deriv = 1
elif xctype == 'MGGA':
ao_deriv = 2 if numint.MGGA_DENSITY_LAPL else 1
else:
ao_deriv = 0
if isinstance(ni, KNumInt):
# mo_coeff of KRHF has [mo_k1, mo_k2, ...]
is_rhf = mo_coeff[0][0].ndim == 1
else:
is_rhf = mo_coeff[0].ndim == 1
nao = cell.nao_nr()
if is_rhf:
rho = []
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, None, max_memory):
rho.append(ni.eval_rho2(cell, ao_k1, mo_coeff, mo_occ, mask, xctype))
rho = numpy.hstack(rho)
if spin == 1:
rho *= .5
rho = numpy.repeat(rho[numpy.newaxis], 2, axis=0)
else:
assert spin == 1
rhoa = []
rhob = []
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, None, max_memory):
rhoa.append(ni.eval_rho2(cell, ao_k1, mo_coeff[0], mo_occ[0], mask, xctype))
rhob.append(ni.eval_rho2(cell, ao_k1, mo_coeff[1], mo_occ[1], mask, xctype))
rho = numpy.stack([numpy.hstack(rhoa), numpy.hstack(rhob)])
vxc, fxc = ni.eval_xc_eff(xc_code, rho, deriv=2, xctype=xctype)[1:3]
return rho, vxc, fxc
[docs]
def cache_xc_kernel1(ni, cell, grids, xc_code, dm, spin=0,
kpts=None, max_memory=2000):
'''Compute the 0th order density, Vxc and fxc. They can be used in TDDFT,
DFT hessian module etc.
'''
if kpts is None:
kpts = numpy.zeros((1,3))
elif isinstance(kpts, KPoints):
kpts = kpts.kpts
xctype = ni._xc_type(xc_code)
if xctype == 'GGA':
ao_deriv = 1
elif xctype == 'MGGA':
ao_deriv = 2 if numint.MGGA_DENSITY_LAPL else 1
else:
ao_deriv = 0
if isinstance(ni, KNumInt):
is_rhf = dm[0][0].ndim == 1
else:
is_rhf = dm[0].ndim == 1
# 0th order density matrix must be hermitian
hermi = 1
nao = cell.nao_nr()
if is_rhf:
rho = []
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, None, max_memory):
rho.append(ni.eval_rho1(cell, ao_k1, dm, mask, xctype, hermi))
rho = numpy.hstack(rho)
if spin == 1:
rho *= .5
rho = numpy.repeat(rho[numpy.newaxis], 2, axis=0)
else:
assert spin == 1
rhoa = []
rhob = []
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, ao_deriv, kpts, None, max_memory):
rhoa.append(ni.eval_rho1(cell, ao_k1, dm[0], mask, xctype, hermi))
rhob.append(ni.eval_rho1(cell, ao_k1, dm[1], mask, xctype, hermi))
rho = numpy.stack([numpy.hstack(rhoa), numpy.hstack(rhob)])
vxc, fxc = ni.eval_xc_eff(xc_code, rho, deriv=2, xctype=xctype)[1:3]
return rho, vxc, fxc
[docs]
def get_rho(ni, cell, dm, grids, kpts=numpy.zeros((1,3)), max_memory=2000):
'''Density in real space
'''
hermi = 1
make_rho, nset, nao = ni._gen_rho_evaluator(cell, dm, hermi, False)
assert nset == 1
rho = numpy.empty(grids.weights.size)
p1 = 0
for ao_k1, ao_k2, mask, weight, coords \
in ni.block_loop(cell, grids, nao, 0, kpts, None, max_memory):
p0, p1 = p1, p1 + weight.size
rho[p0:p1] = make_rho(0, ao_k1, mask, 'LDA')
return rho
[docs]
class NumInt(lib.StreamObject, numint.LibXCMixin):
'''Generalization of pyscf's NumInt class for a single k-point shift and
periodic images.
'''
cutoff = CUTOFF * 1e2 # cutoff for small AO product
[docs]
def nr_vxc(self, cell, grids, xc_code, dms, spin=0, relativity=0, hermi=1,
kpt=None, kpts_band=None, max_memory=2000, verbose=None):
'''Evaluate RKS/UKS XC functional and potential matrix.
See :func:`nr_rks` and :func:`nr_uks` for more details.
'''
if spin == 0:
return self.nr_rks(cell, grids, xc_code, dms, 0, hermi,
kpt, kpts_band, max_memory, verbose)
else:
return self.nr_uks(cell, grids, xc_code, dms, 0, hermi,
kpt, kpts_band, max_memory, verbose)
get_vxc = nr_vxc
[docs]
@lib.with_doc(nr_rks.__doc__)
def nr_rks(self, cell, grids, xc_code, dms, relativity=0, hermi=1,
kpt=numpy.zeros(3), kpts_band=None, max_memory=2000, verbose=None):
if kpts_band is not None:
# To compute Vxc on kpts_band, convert the NumInt object to KNumInt object.
ni = self.view(KNumInt)
nao = dms.shape[-1]
dms = dms.reshape(-1,nao,nao)
return ni.nr_rks(cell, grids, xc_code, dms, relativity,
hermi, kpt.reshape(1,3), kpts_band, max_memory, verbose)
spin = 0
return nr_rks(self, cell, grids, xc_code, dms, spin, relativity,
hermi, kpt, kpts_band, max_memory, verbose)
[docs]
@lib.with_doc(nr_uks.__doc__)
def nr_uks(self, cell, grids, xc_code, dms, relativity=0, hermi=1,
kpt=numpy.zeros(3), kpts_band=None, max_memory=2000, verbose=None):
if kpts_band is not None:
# To compute Vxc on kpts_band, convert the NumInt object to KNumInt object.
ni = self.view(KNumInt)
nao = dms.shape[-1]
dms = dms.reshape(2,-1,nao,nao)
return ni.nr_uks(cell, grids, xc_code, dms, relativity,
hermi, kpt.reshape(1,3), kpts_band, max_memory, verbose)
spin = 1
return nr_uks(self, cell, grids, xc_code, dms, spin, relativity,
hermi, kpt, kpts_band, max_memory, verbose)
def _vxc_mat(self, cell, ao, wv, mask, xctype, shls_slice, ao_loc, hermi):
if hermi == 1:
# *.5 because mat + mat.T in the caller when hermi=1
wv[0] *= .5
if xctype == 'MGGA':
tau_idx = 4
wv[tau_idx] *= .5
return _vxc_mat(cell, ao, wv, mask, xctype, shls_slice, ao_loc, hermi)
[docs]
@lib.with_doc(nr_rks_fxc.__doc__)
def nr_fxc(self, cell, grids, xc_code, dm0, dms, spin=0, relativity=0, hermi=0,
rho0=None, vxc=None, fxc=None, kpt=None, max_memory=2000,
verbose=None):
if spin == 0:
return self.nr_rks_fxc(cell, grids, xc_code, dm0, dms, relativity,
hermi, rho0, vxc, fxc, kpt, max_memory, verbose)
else:
return self.nr_uks_fxc(cell, grids, xc_code, dm0, dms, relativity,
hermi, rho0, vxc, fxc, kpt, max_memory, verbose)
get_fxc = nr_fxc
[docs]
def cache_xc_kernel(self, cell, grids, xc_code, mo_coeff, mo_occ, spin=0,
kpt=None, max_memory=2000):
return cache_xc_kernel(self, cell, grids, xc_code, mo_coeff, mo_occ, spin,
kpt, max_memory)
[docs]
def cache_xc_kernel1(self, cell, grids, xc_code, dm, spin=0,
kpt=None, max_memory=2000):
return cache_xc_kernel1(self, cell, grids, xc_code, dm, spin, kpt, max_memory)
[docs]
def block_loop(self, cell, grids, nao=None, deriv=0, kpt=None,
kpts_band=None, max_memory=2000, non0tab=None, blksize=None):
'''Define this macro to loop over grids by blocks.
'''
# For UniformGrids, grids.coords does not indicate whehter grids are initialized
if grids.non0tab is None:
grids.build(with_non0tab=True)
if nao is None:
nao = cell.nao
grids_coords = grids.coords
grids_weights = grids.weights
ngrids = grids_coords.shape[0]
comp = (deriv+1)*(deriv+2)*(deriv+3)//6
# NOTE to index grids.non0tab, blksize needs to be integer multiplier of BLKSIZE
if blksize is None:
blksize = int(max_memory*1e6/(comp*2*nao*16*BLKSIZE))
blksize = max(4, min(blksize, ngrids//BLKSIZE+1, 2400)) * BLKSIZE
assert blksize % BLKSIZE == 0
if non0tab is None:
non0tab = grids.non0tab
if non0tab is None:
non0tab = numpy.empty(((ngrids+BLKSIZE-1)//BLKSIZE,cell.nbas),
dtype=numpy.uint8)
non0tab[:] = 0xff
if kpt is None:
kpt = numpy.zeros(3)
else:
kpt = numpy.reshape(kpt, 3)
if kpts_band is None:
kpt1 = kpt2 = kpt
else:
kpt1 = kpts_band
kpt2 = kpt
for ip0 in range(0, ngrids, blksize):
ip1 = min(ngrids, ip0+blksize)
coords = grids_coords[ip0:ip1]
weight = grids_weights[ip0:ip1]
non0 = non0tab[ip0//BLKSIZE:]
ao_k2 = self.eval_ao(cell, coords, kpt2, deriv=deriv, non0tab=non0,
cutoff=grids.cutoff)
if abs(kpt1-kpt2).sum() < 1e-9:
ao_k1 = ao_k2
else:
ao_k1 = self.eval_ao(cell, coords, kpt1, deriv=deriv,
cutoff=grids.cutoff)
yield ao_k1, ao_k2, non0, weight, coords
ao_k1 = ao_k2 = None
_gen_rho_evaluator = numint.NumInt._gen_rho_evaluator
nr_rks_fxc = nr_rks_fxc
nr_uks_fxc = nr_uks_fxc
nr_rks_fxc_st = nr_rks_fxc_st
nr_nlc_vxc = nr_nlc_vxc
make_mask = staticmethod(make_mask)
eval_ao = staticmethod(eval_ao)
eval_rho = staticmethod(eval_rho)
eval_rho2 = staticmethod(eval_rho2)
get_rho = get_rho
[docs]
def eval_rho1(self, cell, ao, dm, screen_index=None, xctype='LDA', hermi=0,
with_lapl=True, cutoff=None, ao_cutoff=None, verbose=None):
return self.eval_rho(cell, ao, dm, screen_index, xctype, hermi,
with_lapl, verbose)
to_gpu = lib.to_gpu
_NumInt = NumInt
[docs]
class KNumInt(lib.StreamObject, numint.LibXCMixin):
'''Generalization of pyscf's NumInt class for k-point sampling and
periodic images.
'''
def __init__(self, kpts=numpy.zeros((1,3))):
self.kpts = numpy.reshape(kpts, (-1,3))
eval_ao = staticmethod(eval_ao_kpts)
[docs]
@lib.with_doc(make_mask.__doc__)
def make_mask(self, cell, coords, relativity=0, shls_slice=None,
verbose=None):
return make_mask(cell, coords, relativity, shls_slice, verbose)
[docs]
def eval_rho(self, cell, ao_kpts, dm_kpts, non0tab=None, xctype='LDA',
hermi=0, with_lapl=True, verbose=None):
'''Collocate the density (opt. gradients) on the real-space grid.
Args:
cell : Mole or Cell object
ao_kpts : (nkpts, ngrids, nao) ndarray
AO values at each k-point
dm_kpts: (nkpts, nao, nao) ndarray
Density matrix at each k-point
Returns:
rhoR : (ngrids,) ndarray
'''
nkpts = len(ao_kpts)
rho_ks = [eval_rho(cell, ao_kpts[k], dm_kpts[k], non0tab, xctype,
hermi, with_lapl, verbose)
for k in range(nkpts)]
dtype = numpy.result_type(*rho_ks)
rho = numpy.zeros(rho_ks[0].shape, dtype=dtype)
for k in range(nkpts):
rho += rho_ks[k]
rho *= 1./nkpts
return rho
[docs]
def eval_rho1(self, cell, ao_kpts, dm_kpts, non0tab=None, xctype='LDA', hermi=0,
with_lapl=True, cutoff=CUTOFF, grids=None, verbose=None):
return self.eval_rho(cell, ao_kpts, dm_kpts, non0tab, xctype, hermi,
with_lapl, verbose)
[docs]
def eval_rho2(self, cell, ao_kpts, mo_coeff_kpts, mo_occ_kpts,
non0tab=None, xctype='LDA', with_lapl=True, verbose=None):
nkpts = len(ao_kpts)
rhoR = 0
for k in range(nkpts):
rhoR += eval_rho2(cell, ao_kpts[k], mo_coeff_kpts[k],
mo_occ_kpts[k], non0tab, xctype, with_lapl, verbose)
rhoR *= 1./nkpts
return rhoR
[docs]
def nr_vxc(self, cell, grids, xc_code, dms, spin=0, relativity=0, hermi=1,
kpts=None, kpts_band=None, max_memory=2000, verbose=None):
'''Evaluate RKS/UKS XC functional and potential matrix.
See :func:`nr_rks` and :func:`nr_uks` for more details.
'''
if spin == 0:
return self.nr_rks(cell, grids, xc_code, dms, hermi,
kpts, kpts_band, max_memory, verbose)
else:
return self.nr_uks(cell, grids, xc_code, dms, hermi,
kpts, kpts_band, max_memory, verbose)
get_vxc = nr_vxc
[docs]
@lib.with_doc(nr_rks.__doc__)
def nr_rks(self, cell, grids, xc_code, dms, relativity=0, hermi=1,
kpts=None, kpts_band=None, max_memory=2000, verbose=None, **kwargs):
if kpts is None:
if 'kpt' in kwargs:
sys.stderr.write('WARN: KNumInt.nr_rks function finds keyword '
'argument "kpt" and converts it to "kpts"\n')
kpts = kwargs['kpt']
else:
kpts = self.kpts
kpts = kpts.reshape(-1,3)
return nr_rks(self, cell, grids, xc_code, dms, 0, 0,
hermi, kpts, kpts_band, max_memory, verbose)
[docs]
@lib.with_doc(nr_uks.__doc__)
def nr_uks(self, cell, grids, xc_code, dms, relativity=0, hermi=1,
kpts=None, kpts_band=None, max_memory=2000, verbose=None, **kwargs):
if kpts is None:
if 'kpt' in kwargs:
sys.stderr.write('WARN: KNumInt.nr_uks function finds keyword '
'argument "kpt" and converts it to "kpts"\n')
kpts = kwargs['kpt']
else:
kpts = self.kpts
kpts = kpts.reshape(-1,3)
return nr_uks(self, cell, grids, xc_code, dms, 1, 0,
hermi, kpts, kpts_band, max_memory, verbose)
def _vxc_mat(self, cell, ao_kpts, wv, mask, xctype, shls_slice, ao_loc, hermi):
r'''Numerical integration \sum_{kpt,i} wv_i * ao_{kpt,i}.conj() * ao_{kpt,i}'''
nkpts = len(ao_kpts)
nao = ao_kpts[0].shape[-1]
dtype = numpy.result_type(wv, *ao_kpts)
mat = numpy.empty((nkpts,nao,nao), dtype=dtype)
if hermi == 1:
# *.5 because mat + mat.T in the caller when hermi=1
wv[0] *= .5
if xctype == 'MGGA':
tau_idx = 4
wv[tau_idx] *= .5
for k in range(nkpts):
mat[k] = _vxc_mat(cell, ao_kpts[k], wv, mask, xctype, shls_slice,
ao_loc, hermi)
return mat
[docs]
def block_loop(self, cell, grids, nao=None, deriv=0, kpts=None,
kpts_band=None, max_memory=2000, non0tab=None, blksize=None):
'''Define this macro to loop over grids by blocks.
'''
if grids.coords is None:
grids.build(with_non0tab=True)
if nao is None:
nao = cell.nao
grids_coords = grids.coords
grids_weights = grids.weights
ngrids = grids_coords.shape[0]
comp = (deriv+1)*(deriv+2)*(deriv+3)//6
if kpts is None:
kpts = numpy.zeros((1,3))
kpts_all = kpts
if kpts_band is not None:
kpts_band = numpy.reshape(kpts_band, (-1,3))
dk = abs(kpts[:,None] - kpts_band).max(axis=2)
k_idx, kband_idx = numpy.where(dk < KPT_DIFF_TOL)
where = numpy.empty(len(kpts_band), dtype=int)
where[kband_idx] = k_idx
kband_mask = numpy.ones(len(kpts_band), dtype=bool)
kband_mask[kband_idx] = False
kpts_band_uniq = kpts_band[kband_mask]
if kpts_band_uniq.size > 0:
kpts_all = numpy.vstack([kpts,kpts_band_uniq])
where[kband_mask] = len(kpts) + numpy.arange(kpts_band_uniq.shape[0])
# NOTE to index grids.non0tab, the blksize needs to be the integer multiplier of BLKSIZE
if blksize is None:
blksize = int(max_memory*1e6/(comp*2*len(kpts_all)*nao*16*BLKSIZE))*BLKSIZE
blksize = max(BLKSIZE, min(blksize, ngrids, BLKSIZE*2400))
if non0tab is None:
non0tab = grids.non0tab
if non0tab is None:
non0tab = numpy.empty(((ngrids+BLKSIZE-1)//BLKSIZE,cell.nbas),
dtype=numpy.uint8)
non0tab[:] = 0xff
for ip0 in range(0, ngrids, blksize):
ip1 = min(ngrids, ip0+blksize)
coords = grids_coords[ip0:ip1]
weight = grids_weights[ip0:ip1]
non0 = non0tab[ip0//BLKSIZE:]
ao_kall = self.eval_ao(cell, coords, kpts_all, deriv=deriv, non0tab=non0)
if kpts_band is None:
ao_k1 = ao_k2 = ao_kall
else:
ao_k1 = [ao_kall[k] for k in where]
ao_k2 = ao_kall[:len(kpts)]
yield ao_k1, ao_k2, non0, weight, coords
ao_k1 = ao_k2 = None
def _gen_rho_evaluator(self, cell, dms, hermi=0, with_lapl=False, grids=None):
if getattr(dms, 'mo_coeff', None) is not None:
mo_coeff = dms.mo_coeff
mo_occ = dms.mo_occ
if isinstance(dms[0], numpy.ndarray) and dms[0].ndim == 2:
mo_coeff = [mo_coeff]
mo_occ = [mo_occ]
nao = dms[0].shape[-1]
ndms = len(mo_occ)
def make_rho(idm, ao, non0tab, xctype):
return self.eval_rho2(cell, ao, mo_coeff[idm], mo_occ[idm],
non0tab, xctype, with_lapl)
else:
if isinstance(dms[0], numpy.ndarray):
if dms[0].ndim == 2:
dms = [numpy.stack(dms)]
elif dms[0].ndim != 3:
raise RuntimeError(f'dm has incorrect dimension {numpy.ndim(dms)}')
nao = dms[0].shape[-1]
ndms = len(dms)
def make_rho(idm, ao_kpts, non0tab, xctype):
return self.eval_rho(cell, ao_kpts, dms[idm], non0tab, xctype,
hermi, with_lapl)
return make_rho, ndms, nao
nr_rks_fxc = nr_rks_fxc
nr_uks_fxc = nr_uks_fxc
nr_rks_fxc_st = nr_rks_fxc_st
cache_xc_kernel = cache_xc_kernel
cache_xc_kernel1 = cache_xc_kernel1
get_rho = get_rho
to_gpu = lib.to_gpu
_KNumInt = KNumInt