#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
import ctypes
import numpy as np
from pyscf import lib
from pyscf.gto import moleintor
from pyscf.gto.eval_gto import _get_intor_and_comp, BLKSIZE
from pyscf.pbc.gto import _pbcintor
from pyscf import __config__
EXTRA_PREC = getattr(__config__, 'pbc_gto_eval_gto_extra_precision', 1e-2)
libpbc = _pbcintor.libpbc
[docs]
def eval_gto(cell, eval_name, coords, comp=None, kpts=None, kpt=None,
shls_slice=None, non0tab=None, ao_loc=None, cutoff=None,
out=None, Ls=None, rcut=None):
r'''Evaluate PBC-AO function value on the given grids,
Args:
eval_name : str::
========================== =======================
Function Expression
========================== =======================
"GTOval_sph" \sum_T exp(ik*T) |AO>
"GTOval_ip_sph" nabla \sum_T exp(ik*T) |AO>
"GTOval_cart" \sum_T exp(ik*T) |AO>
"GTOval_ip_cart" nabla \sum_T exp(ik*T) |AO>
========================== =======================
atm : int32 ndarray
libcint integral function argument
bas : int32 ndarray
libcint integral function argument
env : float64 ndarray
libcint integral function argument
coords : 2D array, shape (N,3)
The coordinates of the grids.
Kwargs:
shls_slice : 2-element list
(shl_start, shl_end).
If given, only part of AOs (shl_start <= shell_id < shl_end) are
evaluated. By default, all shells defined in cell will be evaluated.
non0tab : 2D bool array
mask array to indicate whether the AO values are zero. The mask
array can be obtained by calling :func:`dft.gen_grid.make_mask`
cutoff : float
AO values smaller than cutoff will be set to zero. The default
cutoff threshold is ~1e-22 (defined in gto/grid_ao_drv.h)
out : ndarray
If provided, results are written into this array.
Returns:
A list of 2D (or 3D) arrays to hold the AO values on grids. Each
element of the list corresponds to a k-point and it has the shape
(N,nao) Or shape (\*,N,nao).
Examples:
>>> cell = pbc.gto.M(a=numpy.eye(3)*4, atom='He 1 1 1', basis='6-31g')
>>> coords = cell.get_uniform_grids([10,10,10])
>>> kpts = cell.make_kpts([3,3,3])
>>> ao_value = cell.pbc_eval_gto("GTOval_sph", coords, kpts)
>>> len(ao_value)
27
>>> ao_value[0].shape
(1000, 2)
>>> ao_value = cell.pbc_eval_gto("GTOval_ig_sph", coords, kpts, comp=3)
>>> print(ao_value.shape)
>>> len(ao_value)
27
>>> ao_value[0].shape
(3, 1000, 2)
'''
if eval_name[:3] == 'PBC': # PBCGTOval_xxx
eval_name, comp = _get_intor_and_comp(cell, eval_name[3:], comp)
else:
eval_name, comp = _get_intor_and_comp(cell, eval_name, comp)
eval_name = 'PBC' + eval_name
atm = np.asarray(cell._atm, dtype=np.int32, order='C')
bas = np.asarray(cell._bas, dtype=np.int32, order='C')
env = np.asarray(cell._env, dtype=np.double, order='C')
natm = atm.shape[0]
nbas = bas.shape[0]
if kpts is None:
if kpt is not None:
kpts_lst = np.reshape(kpt, (1,3))
else:
kpts_lst = np.zeros((1,3))
else:
kpts_lst = np.reshape(kpts, (-1,3))
nkpts = len(kpts_lst)
ngrids = len(coords)
if non0tab is None:
non0tab = np.empty(((ngrids+BLKSIZE-1)//BLKSIZE, nbas),
dtype=np.uint8)
# non0tab stores the number of images to be summed in real space.
# Initializing it to 255 means all images should be included
non0tab[:] = 0xff
if ao_loc is None:
ao_loc = moleintor.make_loc(bas, eval_name)
if shls_slice is None:
shls_slice = (0, nbas)
sh0, sh1 = shls_slice
nao = ao_loc[sh1] - ao_loc[sh0]
out = np.empty((nkpts,comp,nao,ngrids), dtype=np.complex128)
coords = np.asarray(coords, order='F')
if rcut is None:
rcut = _estimate_rcut(cell)
if Ls is None:
Ls = get_lattice_Ls(cell, rcut=rcut.max())
Ls = Ls[np.argsort(lib.norm(Ls, axis=1), kind='stable')]
expLk = np.exp(1j * np.asarray(np.dot(Ls, kpts_lst.T), order='C'))
with cell.with_integral_screen(cutoff):
drv = getattr(libpbc, eval_name)
drv(ctypes.c_int(ngrids),
(ctypes.c_int*2)(*shls_slice), ao_loc.ctypes.data_as(ctypes.c_void_p),
Ls.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(len(Ls)),
expLk.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nkpts),
out.ctypes.data_as(ctypes.c_void_p),
coords.ctypes.data_as(ctypes.c_void_p),
rcut.ctypes.data_as(ctypes.c_void_p),
non0tab.ctypes.data_as(ctypes.c_void_p),
atm.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(natm),
bas.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(nbas),
env.ctypes.data_as(ctypes.c_void_p))
ao_kpts = []
for k, kpt in enumerate(kpts_lst):
v = out[k]
if abs(kpt).sum() < 1e-9:
v = np.asarray(v.real, order='C')
v = v.transpose(0,2,1)
if comp == 1:
v = v[0]
ao_kpts.append(v)
if kpts is None or np.shape(kpts) == (3,): # A single k-point
ao_kpts = ao_kpts[0]
return ao_kpts
pbc_eval_gto = eval_gto
def _estimate_rcut(cell):
'''Cutoff raidus, above which each shell decays to a value less than the
required precsion'''
vol = cell.vol
weight_penalty = vol # ~ V[r] * (vol/ngrids) * ngrids
precision = cell.precision / max(weight_penalty, 1)
rcut = []
for ib in range(cell.nbas):
l = cell.bas_angular(ib)
es = cell.bas_exp(ib)
cs = abs(cell._libcint_ctr_coeff(ib)).max(axis=1)
norm_ang = ((2*l+1)/(4*np.pi))**.5
fac = 2*np.pi/vol * cs*norm_ang/es / precision
r = cell.rcut
r = (np.log(fac * r**(l+1) + 1.) / es)**.5
r = (np.log(fac * r**(l+1) + 1.) / es)**.5
rcut.append(r.max())
return np.array(rcut)
[docs]
def get_lattice_Ls(cell, nimgs=None, rcut=None, dimension=None, discard=True):
'''Get lattice-sum vectors for eval_gto
'''
if dimension is None:
# For atoms near the boundary of the cell, it is necessary (even in low-
# dimensional systems) to include lattice translations in all 3 dimensions.
if cell.dimension < 2 or cell.low_dim_ft_type == 'inf_vacuum':
dimension = cell.dimension
else:
dimension = 3
if rcut is None:
rcut = cell.rcut
if dimension == 0 or rcut <= 0:
return np.zeros((1, 3))
a = cell.lattice_vectors()
atom_coords = cell.atom_coords()
scaled_atom_coords = np.linalg.solve(a.T, atom_coords.T).T
atom_boundary_max = scaled_atom_coords[:,:dimension].max(axis=0)
atom_boundary_min = scaled_atom_coords[:,:dimension].min(axis=0)
atom_boundary_max[atom_boundary_max > 1] = 1
atom_boundary_min[atom_boundary_min <-1] = -1
atom_bound1 = np.diag(atom_boundary_max).dot(a[:dimension])
atom_bound2 = np.diag(atom_boundary_min).dot(a[:dimension])
def find_boundary(a):
aR = np.vstack([a, atom_bound1, atom_bound2])
r = np.linalg.qr(aR.T)[1]
ub = (rcut + abs(r[2,3:]).max()) / abs(r[2,2])
return ub
xb = find_boundary(a[[1,2,0]])
if dimension > 1:
yb = find_boundary(a[[2,0,1]])
else:
yb = 0
if dimension > 2:
zb = find_boundary(a)
else:
zb = 0
bounds = np.ceil([xb, yb, zb]).astype(int)
Ts = lib.cartesian_prod((np.arange(-bounds[0], bounds[0]+1),
np.arange(-bounds[1], bounds[1]+1),
np.arange(-bounds[2], bounds[2]+1)))
Ls = np.dot(Ts[:,:dimension], a[:dimension])
# grids with wrap_around: grids_edge ~ [-.5, .5]
# regular grids: grids_edge ~ [0, 1]
grids_edge = lib.cartesian_prod([[-.5, 1.]] * dimension).dot(a[:dimension])
edge_lb = grids_edge.min(axis=0)
edge_ub = grids_edge.max(axis=0)
grids2atm = Ls + atom_coords[:,None,:]
edge_filter1 = grids2atm > edge_lb
edge_filter2 = grids2atm < edge_ub
grids2atm[~edge_filter1[:,:,0],0] -= edge_lb[0]
grids2atm[~edge_filter1[:,:,1],1] -= edge_lb[1]
grids2atm[~edge_filter1[:,:,2],2] -= edge_lb[2]
grids2atm[~edge_filter2[:,:,0],0] -= edge_ub[0]
grids2atm[~edge_filter2[:,:,1],1] -= edge_ub[1]
grids2atm[~edge_filter2[:,:,2],2] -= edge_ub[2]
grids2atm[edge_filter1 & edge_filter2] = 0.
Ls_mask = (np.linalg.norm(grids2atm, axis=2) < rcut).any(axis=0)
Ls = Ls[Ls_mask]
return np.asarray(Ls, order='C')