Source code for pyscf.pbc.scf.ghf

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Generalized Hartree-Fock for periodic systems at a single k-point
'''

import numpy as np
import scipy.linalg
from pyscf import lib
from pyscf.lib import logger
import pyscf.scf.ghf as mol_ghf
from pyscf.pbc.scf import hf as pbchf
from pyscf.pbc.scf import addons
from pyscf import __config__


[docs] def get_jk(mf, cell=None, dm=None, hermi=0, kpt=None, kpts_band=None, with_j=True, with_k=True, **kwargs): if cell is None: cell = mf.cell if dm is None: dm = mf.make_rdm1() if kpt is None: kpt = mf.kpt dm = np.asarray(dm) nso = dm.shape[-1] nao = nso // 2 dms = dm.reshape(-1,nso,nso) if kpts_band is None: # kpts_band is set to kpt nband = 1 jk_shape = dm.shape elif getattr(kpts_band, 'ndim', None) == 1: # single kpt_band nband = 1 jk_shape = dm.shape elif dm.ndim == 2: nband = len(kpts_band) jk_shape = (nband, nso, nso) else: nband = len(kpts_band) jk_shape = (dm.shape[0], nband, nso, nso) dmaa = dms[:,:nao,:nao] dmab = dms[:,nao:,:nao] dmbb = dms[:,nao:,nao:] if with_k: if hermi: dms = np.stack((dmaa, dmbb, dmab)) else: dmba = dms[:,nao:,:nao] dms = np.stack((dmaa, dmbb, dmab, dmba)) # Note the off-diagonal block breaks the hermitian _hermi = 0 else: dms = np.stack((dmaa, dmbb)) _hermi = 1 nblocks, n_dm = dms.shape[:2] dms = dms.reshape(nblocks*n_dm, nao, nao) if mf.rsjk: logger.warn(mf, 'RSJK does not support GHF') raise NotImplementedError j1, k1 = mf.with_df.get_jk(dms, _hermi, kpt, kpts_band, with_j, with_k, exxdiv=mf.exxdiv) vj = vk = None if with_j: j1 = j1.reshape(nblocks,n_dm*nband,nao,nao) vj = np.zeros((n_dm*nband,nso,nso), j1.dtype) vj[:,:nao,:nao] = vj[:,nao:,nao:] = j1[0] + j1[1] vj = vj.reshape(jk_shape) if with_k: k1 = k1.reshape(nblocks,n_dm*nband,nao,nao) vk = np.zeros((n_dm*nband,nso,nso), k1.dtype) vk[:,:nao,:nao] = k1[0] vk[:,nao:,nao:] = k1[1] vk[:,:nao,nao:] = k1[2] if hermi: vk[:,nao:,:nao] = k1[2].conj().transpose(0,2,1) else: vk[:,nao:,:nao] = k1[3] vk = vk.reshape(jk_shape) return vj, vk
[docs] class GHF(pbchf.SCF): '''GHF class for PBCs. ''' _keys = {'with_soc'} def __init__(self, cell, kpt=np.zeros(3), exxdiv=getattr(__config__, 'pbc_scf_SCF_exxdiv', 'ewald')): pbchf.SCF.__init__(self, cell, kpt, exxdiv) self.with_soc = None init_guess_by_chkfile = mol_ghf.GHF.init_guess_by_chkfile init_guess_by_minao = mol_ghf.GHF.init_guess_by_minao init_guess_by_atom = mol_ghf.GHF.init_guess_by_atom init_guess_by_huckel = mol_ghf.GHF.init_guess_by_huckel get_jk = get_jk get_occ = mol_ghf.get_occ get_grad = mol_ghf.GHF.get_grad _finalize = mol_ghf.GHF._finalize analyze = lib.invalid_method('analyze') mulliken_pop = lib.invalid_method('mulliken_pop') mulliken_meta = lib.invalid_method('mulliken_meta') spin_square = mol_ghf.GHF.spin_square stability = mol_ghf.GHF.stability
[docs] def get_hcore(self, cell=None, kpt=None): hcore = pbchf.SCF.get_hcore(self, cell, kpt) hcore = scipy.linalg.block_diag(hcore, hcore) if self.with_soc: raise NotImplementedError return hcore
[docs] def get_ovlp(self, cell=None, kpt=None): s = pbchf.SCF.get_ovlp(self, cell, kpt) return scipy.linalg.block_diag(s, s)
[docs] def get_veff(self, cell=None, dm=None, dm_last=0, vhf_last=0, hermi=1, kpt=None, kpts_band=None): vj, vk = self.get_jk(cell, dm, hermi, kpt, kpts_band) vhf = vj - vk return vhf
[docs] def get_bands(self, kpts_band, cell=None, dm=None, kpt=None): '''Get energy bands at the given (arbitrary) 'band' k-points. Returns: mo_energy : (nmo,) ndarray or a list of (nmo,) ndarray Bands energies E_n(k) mo_coeff : (nao, nmo) ndarray or a list of (nao,nmo) ndarray Band orbitals psi_n(k) ''' raise NotImplementedError
[docs] def x2c1e(self): '''X2C with spin-orbit coupling effects in spin-orbital basis''' from pyscf.pbc.x2c.x2c1e import x2c1e_gscf return x2c1e_gscf(self)
x2c = sfx2c1e = x2c1e
[docs] def to_ks(self, xc='HF'): '''Convert to RKS object. ''' from pyscf.pbc import dft return self._transfer_attrs_(dft.GKS(self.cell, self.kpt, xc=xc))
[docs] def convert_from_(self, mf): '''Convert given mean-field object to GHF''' addons.convert_to_ghf(mf, self) return self
to_gpu = lib.to_gpu
if __name__ == '__main__': from pyscf.pbc import gto from pyscf.pbc import scf cell = gto.Cell() cell.atom = ''' H 0 0 0 H 1 0 0 H 0 1 0 H 0 1 1 ''' cell.a = np.eye(3)*2 cell.basis = [[0, [1.2, 1]]] cell.verbose = 4 cell.build() kpts = cell.make_kpts([2,2,2]) mf = scf.RHF(cell, kpt=kpts[7]).run() mf = GHF(cell, kpt=kpts[7]) mf.kernel()