#!/usr/bin/env python
# Copyright 2014-2024 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Garnet Chan <gkc1000@gmail.com>
# Timothy Berkelbach <tim.berkelbach@gmail.com>
# Qiming Sun <osirpt.sun@gmail.com>
#
'''
Hartree-Fock for periodic systems at a single k-point
See Also:
pyscf.pbc.scf.khf.py : Hartree-Fock for periodic systems with k-point sampling
'''
import sys
import numpy as np
import h5py
from pyscf.scf import hf as mol_hf
from pyscf import lib
from pyscf.lib import logger
from pyscf.data import nist
from pyscf.pbc import gto
from pyscf.pbc import tools
from pyscf.pbc.gto import ecp
from pyscf.pbc.gto.pseudo import get_pp
from pyscf.pbc.scf import addons
from pyscf.pbc import df
from pyscf.pbc.scf.rsjk import RangeSeparatedJKBuilder
from pyscf.pbc.lib.kpts_helper import gamma_point
from pyscf import __config__
[docs]
def get_ovlp(cell, kpt=np.zeros(3)):
'''Get the overlap AO matrix.
'''
precision = cell.precision * 1e-5
rcut = max(cell.rcut, gto.estimate_rcut(cell, precision))
with lib.temporary_env(cell, rcut=rcut, precision=precision):
# Avoid pbcopt's prescreening in the lattice sum, for better accuracy
s = cell.pbc_intor('int1e_ovlp', hermi=0, kpts=kpt,
pbcopt=lib.c_null_ptr())
s = np.asarray(s)
hermi_error = abs(s - np.rollaxis(s.conj(), -1, -2)).max()
if hermi_error > cell.precision and hermi_error > 1e-12:
logger.warn(cell, '%.4g error found in overlap integrals. '
'cell.precision or cell.rcut can be adjusted to '
'improve accuracy.', hermi_error)
if cell.verbose >= logger.DEBUG:
cond = np.max(lib.cond(s))
if cond * precision > 1e2:
prec = 1e7 / cond
rmin = gto.estimate_rcut(cell, prec*1e-5)
logger.warn(cell, 'Singularity detected in overlap matrix. '
'Integral accuracy may be not enough.\n '
'You can adjust cell.precision or cell.rcut to '
'improve accuracy. Recommended settings are\n '
'cell.precision < %.2g\n '
'cell.rcut > %.4g', prec, rmin)
return s
[docs]
def get_hcore(cell, kpt=np.zeros(3)):
'''Get the core Hamiltonian AO matrix.
'''
hcore = get_t(cell, kpt)
if cell.pseudo:
hcore += get_pp(cell, kpt)
else:
hcore += get_nuc(cell, kpt)
if len(cell._ecpbas) > 0:
hcore += ecp.ecp_int(cell, kpt)
return hcore
[docs]
def get_t(cell, kpt=np.zeros(3)):
'''Get the kinetic energy AO matrix.
'''
return cell.pbc_intor('int1e_kin', hermi=1, kpts=kpt)
[docs]
def get_nuc(cell, kpt=np.zeros(3)):
'''Get the bare periodic nuc-el AO matrix, with G=0 removed.
See Martin (12.16)-(12.21).
'''
return df.FFTDF(cell).get_nuc(kpt)
[docs]
def get_j(cell, dm, hermi=1, vhfopt=None, kpt=np.zeros(3), kpts_band=None):
'''Get the Coulomb (J) AO matrix for the given density matrix.
Args:
dm : ndarray or list of ndarrays
A density matrix or a list of density matrices
Kwargs:
hermi : int
Whether J, K matrix is hermitian
| 0 : no hermitian or symmetric
| 1 : hermitian
| 2 : anti-hermitian
vhfopt :
A class which holds precomputed quantities to optimize the
computation of J, K matrices
kpt : (3,) ndarray
The "inner" dummy k-point at which the DM was evaluated (or
sampled).
kpts_band : ``(3,)`` ndarray or ``(*,3)`` ndarray
An arbitrary "band" k-point at which J is evaluated.
Returns:
The function returns one J matrix, corresponding to the input
density matrix (both order and shape).
'''
return df.FFTDF(cell).get_jk(dm, hermi, kpt, kpts_band, with_k=False)[0]
[docs]
def get_jk(mf, cell, dm, hermi=1, vhfopt=None, kpt=np.zeros(3),
kpts_band=None, with_j=True, with_k=True, omega=None, **kwargs):
'''Get the Coulomb (J) and exchange (K) AO matrices for the given density matrix.
Args:
dm : ndarray or list of ndarrays
A density matrix or a list of density matrices
Kwargs:
hermi : int
Whether J, K matrix is hermitian
| 0 : no hermitian or symmetric
| 1 : hermitian
| 2 : anti-hermitian
vhfopt :
A class which holds precomputed quantities to optimize the
computation of J, K matrices
kpt : (3,) ndarray
The "inner" dummy k-point at which the DM was evaluated (or
sampled).
kpts_band : ``(3,)`` ndarray or ``(*,3)`` ndarray
An arbitrary "band" k-point at which J and K are evaluated.
Returns:
The function returns one J and one K matrix, corresponding to the input
density matrix (both order and shape).
'''
return df.FFTDF(cell).get_jk(dm, hermi, kpt, kpts_band, with_j, with_k,
omega, exxdiv=mf.exxdiv)
[docs]
def get_bands(mf, kpts_band, cell=None, dm=None, kpt=None):
'''Get energy bands at the given (arbitrary) 'band' k-points.
Returns:
mo_energy : (nmo,) ndarray or a list of (nmo,) ndarray
Bands energies E_n(k)
mo_coeff : (nao, nmo) ndarray or a list of (nao,nmo) ndarray
Band orbitals psi_n(k)
'''
if cell is None: cell = mf.cell
if dm is None: dm = mf.make_rdm1()
if kpt is None: kpt = mf.kpt
kpts_band = np.asarray(kpts_band)
single_kpt_band = (getattr(kpts_band, 'ndim', None) == 1)
kpts_band = kpts_band.reshape(-1,3)
fock = mf.get_hcore(cell, kpts_band)
fock = fock + mf.get_veff(cell, dm, kpt=kpt, kpts_band=kpts_band)
s1e = mf.get_ovlp(cell, kpts_band)
nkpts = len(kpts_band)
mo_energy = []
mo_coeff = []
for k in range(nkpts):
e, c = mf.eig(fock[k], s1e[k])
mo_energy.append(e)
mo_coeff.append(c)
if single_kpt_band:
mo_energy = mo_energy[0]
mo_coeff = mo_coeff[0]
return mo_energy, mo_coeff
[docs]
def init_guess_by_chkfile(cell, chkfile_name, project=None, kpt=None):
'''Read the HF results from checkpoint file, then project it to the
basis defined by ``cell``
Returns:
Density matrix, (nao,nao) ndarray
'''
from pyscf.pbc.scf import uhf
dm = uhf.init_guess_by_chkfile(cell, chkfile_name, project, kpt)
return dm[0] + dm[1]
get_fock = mol_hf.get_fock
get_occ = mol_hf.get_occ
get_grad = mol_hf.get_grad
make_rdm1 = mol_hf.make_rdm1
energy_elec = mol_hf.energy_elec
[docs]
def dip_moment(cell, dm, unit='Debye', verbose=logger.NOTE,
grids=None, rho=None, kpt=np.zeros(3), origin=None):
''' Dipole moment in the cell (is it well defined)?
Args:
cell : an instance of :class:`Cell`
dm (ndarray) : density matrix
Return:
A list: the dipole moment on x, y and z components
'''
from pyscf.pbc import tools
from pyscf.pbc.dft import gen_grid
from pyscf.pbc.dft import numint
if cell.dimension != 3:
# raise NotImplementedError
logger.warn(cell, 'Dipole moment for low-dimension system is not supported.')
return np.zeros(3)
log = logger.new_logger(cell, verbose)
a = cell.lattice_vectors()
b = np.linalg.inv(a).T
if grids is None:
grids = gen_grid.UniformGrids(cell)
if rho is None:
rho = numint.NumInt().get_rho(cell, dm, grids, kpt, cell.max_memory)
# With the optimal origin of the unti cell, the net dipole in the unit
# cell should be strictly zero. However, the integral grids are often not
# enough to produce the zero dipole. Errors are caused by the sub-optimal
# origin and the numerial integration.
if origin is None:
origin = _search_dipole_gauge_origin(cell, grids, rho, log)
def shift_grids(r):
r_frac = (r - origin).dot(b.T)
r_frac5 = r_frac.round(5)
# With origin at the center of the unit cell Grids on the edge
# (r_frac == +/-0.5) of the new cell may lead to unbalanced
# contributions to the dipole moment.
r_frac[r_frac5== 0.5] = 0
r_frac[r_frac5==-0.5] = 0
r_frac[r_frac5 > 0.5] -= 1
r_frac[r_frac5 <-0.5] += 1
r = lib.dot(r_frac, a)
return r
r = shift_grids(grids.coords)
e_dip = np.einsum('g,g,gx->x', rho, grids.weights, r)
charges = cell.atom_charges()
r = shift_grids(cell.atom_coords())
nuc_dip = np.einsum('g,gx->x', charges, r)
dip = nuc_dip - e_dip
if unit.upper() == 'DEBYE':
dip *= nist.AU2DEBYE
log.note('Dipole moment(X, Y, Z, Debye): %8.5f, %8.5f, %8.5f', *dip)
else:
log.note('Dipole moment(X, Y, Z, A.U.): %8.5f, %8.5f, %8.5f', *dip)
return dip
def _search_dipole_gauge_origin(cell, grids, rho, log):
'''Optimize the position of the unit cell in crystal. With a proper unit
cell, the nuclear charge center and the electron density center can be
placed at the same point (zero net dipole). This function returns the
coordinates of the center of the unit cell.
'''
from pyscf.pbc.dft import gen_grid
a = cell.lattice_vectors()
b = np.linalg.inv(a).T
charges = cell.atom_charges()
coords = cell.atom_coords()
nelec = np.dot(rho, grids.weights)
# The dipole moment in the crystal is not uniquely defined. Depending on
# the position and the shape of the unit cell, the value of dipole moment
# can be very different. The optimization below searches the origin of a
# cell inside which the nuclear charge center and electron density charge
# center locate at the same point.
if (cell.dimension == 3 and
# For orthogonal lattice only
abs(np.diag(a.diagonal())).max() and
isinstance(grids, gen_grid.UniformGrids)):
r_nuc_frac = coords.dot(b.T)
grid_frac = [np.fft.fftfreq(x) for x in grids.mesh]
wxyz = grids.weights.reshape(grids.mesh)
rhoxyz = rho.reshape(grids.mesh)
def search_orig(ix):
nx = grids.mesh[ix]
den = np.einsum('xyz,xyz->'+('xyz'[ix]), rhoxyz, wxyz)
nuc_x = r_nuc_frac[:,ix]
grid_x = grid_frac[ix]
# possible origin of the unit cell
possible_orig = grid_x
# shifts the unit cell
possible_x = grid_x - possible_orig[:,None]
possible_x[possible_x < 0] += 1
possible_nuc_x = nuc_x - possible_orig[:,None]
possible_nuc_x[possible_nuc_x < 0] += 1
# Handle the grids on the edge of a unit cell.
possible_nuc_x[possible_nuc_x==0] = .5
possible_nuc_x[possible_nuc_x==1] = .5
possible_x[possible_x==0] = .5
possible_x[possible_x==1] = .5
# dip in fractional coordinates
dip = np.einsum('sx,x->s', possible_nuc_x, charges)
dip -= np.einsum('sx,x->s', possible_x, den)
# Put the net charge at the center of the unit cell
dip -= .5 * (charges.sum() - nelec)
idx = abs(dip).argmin()
dip_min = dip[idx]
if abs(dip_min) > 1e-4:
dip_nearest1 = dip[idx-1]
dip_nearest2 = dip[(idx+1)%nx]
if dip_nearest1 * dip_nearest2 > 0:
if dip_nearest1 * dip_min > dip_nearest2 * dip_min:
idx_nearest = idx - 1
else:
idx_nearest = idx + 1
else:
if dip_nearest1 * dip_min < dip_nearest2 * dip_min:
idx_nearest = idx - 1
else:
idx_nearest = idx + 1
dip_nearest = dip[idx_nearest%nx]
if dip_nearest * dip_min < 0:
# extrapolation
idx = (idx_nearest*dip_min-idx*dip_nearest) / (dip_min-dip_nearest)
# wraparound
if idx >= nx // 2:
idx -= nx
shift = idx / nx * a[ix]
return shift
orig_x = search_orig(0)
orig_y = search_orig(1)
orig_z = search_orig(2)
origin = orig_x + orig_y + orig_z
log.debug1('optimized cell origin = %s', origin)
log.debug1(' origin_x %s', orig_x)
log.debug1(' origin_y %s', orig_y)
log.debug1(' origin_z %s', orig_z)
center = origin + .5 * a.sum(axis=0)
log.debug1('gauge origin = %s', center)
else:
# If the grids are non-cubic grids, regenerating the grids is expensive if
# the position or the shape of the unit cell is changed. The position of
# the unit cell is not optimized. The gauge origin is set to the nuclear
# charge center of the original unit cell.
center = np.einsum('i,ix->x', charges, coords) / charges.sum()
return center
[docs]
def get_rho(mf, dm=None, grids=None, kpt=None):
'''Compute density in real space
'''
from pyscf.pbc.dft import gen_grid
from pyscf.pbc.dft import numint
if dm is None:
dm = mf.make_rdm1()
if getattr(dm, 'ndim', None) != 2: # UHF
dm = dm[0] + dm[1]
if grids is None:
grids = gen_grid.UniformGrids(mf.cell)
if kpt is None:
kpt = mf.kpt
ni = numint.NumInt()
return ni.get_rho(mf.cell, dm, grids, kpt, mf.max_memory)
def _dip_correction(mf):
'''Makov-Payne corrections for charged systems.'''
from pyscf.pbc import tools
from pyscf.pbc.dft import gen_grid
log = logger.new_logger(mf)
cell = mf.cell
a = cell.lattice_vectors()
b = np.linalg.inv(a).T
grids = gen_grid.UniformGrids(cell)
ke_cutoff = gto.estimate_ke_cutoff(cell, 1e-5)
grids.mesh = tools.cutoff_to_mesh(a, ke_cutoff)
dm = mf.make_rdm1()
rho = mf.get_rho(dm, grids)
origin = _search_dipole_gauge_origin(cell, grids, rho, log)
def shift_grids(r):
r_frac = lib.dot(r - origin, b.T)
# Grids on the boundary (r_frac == +/-0.5) of the new cell may lead to
# unbalanced contributions to the dipole moment. Exclude them from the
# dipole and quadrupole
r_frac[r_frac== 0.5] = 0
r_frac[r_frac==-0.5] = 0
r_frac[r_frac > 0.5] -= 1
r_frac[r_frac <-0.5] += 1
r = lib.dot(r_frac, a)
return r
# SC BCC FCC
madelung = (-2.83729747948, -3.63923344951, -4.58486207411)
vol = cell.vol
L = vol ** (1./3)
chg = cell.charge
# epsilon is the dielectric constant of the system. For systems
# surrounded by vacuum, epsilon = 1.
epsilon = 1
# Energy correction of point charges of a simple cubic lattice.
de_mono = - chg**2 * np.array(madelung) / (2 * L * epsilon)
# dipole energy correction
r_e = shift_grids(grids.coords)
r_nuc = shift_grids(cell.atom_coords())
charges = cell.atom_charges()
e_dip = np.einsum('g,g,gx->x', rho, grids.weights, r_e)
nuc_dip = np.einsum('g,gx->x', charges, r_nuc)
dip = nuc_dip - e_dip
de_dip = -2.*np.pi/(3*cell.vol) * np.linalg.norm(dip)**2
# quadrupole energy correction
if abs(a - np.eye(3)*L).max() > 1e-5:
logger.warn(mf, 'System is not cubic cell. Quadrupole energy '
'correction is inaccurate since it is developed based on '
'cubic cell.')
e_quad = np.einsum('g,g,gx,gx->', rho, grids.weights, r_e, r_e)
nuc_quad = np.einsum('g,gx,gx->', charges, r_nuc, r_nuc)
quad = nuc_quad - e_quad
de_quad = 2.*np.pi/(3*cell.vol) * quad
de = de_mono + de_dip + de_quad
return de_mono, de_dip, de_quad, de
[docs]
def makov_payne_correction(mf):
'''Makov-Payne correction (Phys. Rev. B, 51, 4014)
'''
cell = mf.cell
logger.note(mf, 'Makov-Payne correction for charged 3D PBC systems')
# PRB 51 (1995), 4014
# PRB 77 (2008), 115139
if cell.dimension != 3:
logger.warn(mf, 'Correction for low-dimension PBC systems'
'is not available.')
return 0
de_mono, de_dip, de_quad, de = _dip_correction(mf)
if mf.verbose >= logger.NOTE:
write = mf.stdout.write
write('Corrections (AU)\n')
write(' Monopole Dipole Quadrupole total\n')
write('SC %12.8f %12.8f %12.8f %12.8f\n' %
(de_mono[0], de_dip , de_quad , de[0]))
write('BCC %12.8f %12.8f %12.8f %12.8f\n' %
(de_mono[1], de_dip , de_quad , de[1]))
write('FCC %12.8f %12.8f %12.8f %12.8f\n' %
(de_mono[2], de_dip , de_quad , de[2]))
return de
[docs]
class SCF(mol_hf.SCF):
'''SCF base class adapted for PBCs.
Attributes:
kpt : (3,) ndarray
The AO k-point in Cartesian coordinates, in units of 1/Bohr.
exxdiv : str
Exchange divergence treatment, can be one of
| None : ignore G=0 contribution in exchange
| 'ewald' : Ewald probe charge correction [JCP 122, 234102 (2005); DOI:10.1063/1.1926272]
with_df : density fitting object
Default is the FFT based DF model. For all-electron calculation,
MDF model is favored for better accuracy. See also :mod:`pyscf.pbc.df`.
'''
_keys = {'cell', 'exxdiv', 'with_df', 'rsjk'}
init_direct_scf = lib.invalid_method('init_direct_scf')
get_bands = get_bands
get_rho = get_rho
def __init__(self, cell, kpt=np.zeros(3),
exxdiv=getattr(__config__, 'pbc_scf_SCF_exxdiv', 'ewald')):
if not cell._built:
sys.stderr.write('Warning: cell.build() is not called in input\n')
cell.build()
mol_hf.SCF.__init__(self, cell)
self.with_df = df.FFTDF(cell)
# Range separation JK builder
self.rsjk = None
self.exxdiv = exxdiv
self.kpt = kpt
self.conv_tol = max(cell.precision * 10, 1e-8)
@property
def kpt(self):
if 'kpt' in self.__dict__:
# To handle the attribute kpt loaded from chkfile
self.kpt = self.__dict__.pop('kpt')
return self.with_df.kpts.reshape(3)
@kpt.setter
def kpt(self, x):
self.with_df.kpts = np.reshape(x, (1, 3))
if self.rsjk:
self.rsjk.kpts = self.with_df.kpts
@property
def kpts(self):
if 'kpts' in self.__dict__:
# To handle the attribute kpt loaded from chkfile
self.kpts = self.__dict__.pop('kpts')
return self.with_df.kpts
@kpts.setter
def kpts(self, x):
self.with_df.kpts = np.reshape(x, (-1,3))
if self.rsjk:
self.rsjk.kpts = self.with_df.kpts
[docs]
def build(self, cell=None):
# To handle the attribute kpt or kpts loaded from chkfile
if 'kpts' in self.__dict__:
self.kpts = self.__dict__.pop('kpts')
elif 'kpt' in self.__dict__:
self.kpt = self.__dict__.pop('kpt')
# "vcut_ws" precomputing is triggered by pbc.tools.pbc.get_coulG
#if self.exxdiv == 'vcut_ws':
# if self.exx_built is False:
# self.precompute_exx()
# logger.info(self, 'WS alpha = %s', self.exx_alpha)
kpts = self.kpts
if self.rsjk:
if not np.all(self.rsjk.kpts == self.kpt):
self.rsjk = self.rsjk.__class__(cell, kpts)
# for GDF and MDF
with_df = self.with_df
if len(kpts) > 1 and getattr(with_df, '_j_only', False):
logger.warn(self, 'df.j_only cannot be used with k-point HF')
with_df._j_only = False
with_df.reset()
if self.verbose >= logger.WARN:
self.check_sanity()
return self
[docs]
def reset(self, cell=None):
'''Reset cell and relevant attributes associated to the old cell object'''
if cell is not None:
self.cell = cell
self.with_df.reset(cell)
return self
# used by hf kernel
@property
def mol(self):
return self.cell
@mol.setter
def mol(self, x):
self.cell = x
[docs]
def dump_flags(self, verbose=None):
mol_hf.SCF.dump_flags(self, verbose)
logger.info(self, '******** PBC SCF flags ********')
logger.info(self, 'kpt = %s', self.kpt)
logger.info(self, 'Exchange divergence treatment (exxdiv) = %s', self.exxdiv)
cell = self.cell
if ((cell.dimension >= 2 and cell.low_dim_ft_type != 'inf_vacuum') and
isinstance(self.exxdiv, str) and self.exxdiv.lower() == 'ewald'):
madelung = tools.pbc.madelung(cell, [self.kpt])
logger.info(self, ' madelung (= occupied orbital energy shift) = %s', madelung)
logger.info(self, ' Total energy shift due to Ewald probe charge'
' = -1/2 * Nelec*madelung = %.12g',
madelung*cell.nelectron * -.5)
if getattr(self, 'smearing_method', None) is not None:
logger.info(self, 'Smearing method = %s', self.smearing_method)
logger.info(self, 'DF object = %s', self.with_df)
if not getattr(self.with_df, 'build', None):
# .dump_flags() is called in pbc.df.build function
self.with_df.dump_flags(verbose)
return self
[docs]
def check_sanity(self):
lib.StreamObject.check_sanity(self)
if (isinstance(self.exxdiv, str) and self.exxdiv.lower() != 'ewald' and
isinstance(self.with_df, df.df.DF)):
logger.warn(self, 'exxdiv %s is not supported in DF or MDF',
self.exxdiv)
if self.verbose >= logger.DEBUG:
s = self.get_ovlp()
cond = np.max(lib.cond(s))
if cond * 1e-17 > self.conv_tol:
logger.warn(self, 'Singularity detected in overlap matrix (condition number = %4.3g). '
'SCF may be inaccurate and hard to converge.', cond)
return self
[docs]
def get_hcore(self, cell=None, kpt=None):
if cell is None: cell = self.cell
if kpt is None: kpt = self.kpt
if cell.pseudo:
nuc = self.with_df.get_pp(kpt)
else:
nuc = self.with_df.get_nuc(kpt)
if len(cell._ecpbas) > 0:
nuc += ecp.ecp_int(cell, kpt)
return nuc + cell.pbc_intor('int1e_kin', 1, 1, kpt)
[docs]
def get_ovlp(self, cell=None, kpt=None):
if cell is None: cell = self.cell
if kpt is None: kpt = self.kpt
return get_ovlp(cell, kpt)
[docs]
def get_jk(self, cell=None, dm=None, hermi=1, kpt=None, kpts_band=None,
with_j=True, with_k=True, omega=None, **kwargs):
r'''Get Coulomb (J) and exchange (K) following :func:`scf.hf.RHF.get_jk_`.
for particular k-point (kpt).
When kpts_band is given, the J, K matrices on kpts_band are evaluated.
J_{pq} = \sum_{rs} (pq|rs) dm[s,r]
K_{pq} = \sum_{rs} (pr|sq) dm[r,s]
where r,s are orbitals on kpt. p and q are orbitals on kpts_band
if kpts_band is given otherwise p and q are orbitals on kpt.
'''
if cell is None: cell = self.cell
if dm is None: dm = self.make_rdm1()
if kpt is None: kpt = self.kpt
cpu0 = (logger.process_clock(), logger.perf_counter())
dm = np.asarray(dm)
nao = dm.shape[-1]
if (not omega and kpts_band is None and
# TODO: generate AO integrals with rsjk algorithm
not self.rsjk and
(self.exxdiv == 'ewald' or not self.exxdiv) and
(self._eri is not None or cell.incore_anyway or
self._is_mem_enough())):
if self._eri is None:
logger.debug(self, 'Building PBC AO integrals incore')
self._eri = self.with_df.get_ao_eri(kpt, compact=True)
vj, vk = mol_hf.dot_eri_dm(self._eri, dm, hermi, with_j, with_k)
if with_k and self.exxdiv == 'ewald':
from pyscf.pbc.df.df_jk import _ewald_exxdiv_for_G0
# G=0 is not inculded in the ._eri integrals
_ewald_exxdiv_for_G0(self.cell, kpt, dm.reshape(-1,nao,nao),
vk.reshape(-1,nao,nao))
elif self.rsjk:
vj, vk = self.rsjk.get_jk(dm.reshape(-1,nao,nao), hermi, kpt, kpts_band,
with_j, with_k, omega, exxdiv=self.exxdiv)
else:
vj, vk = self.with_df.get_jk(dm.reshape(-1,nao,nao), hermi, kpt, kpts_band,
with_j, with_k, omega, exxdiv=self.exxdiv)
if with_j:
vj = _format_jks(vj, dm, kpts_band)
if with_k:
vk = _format_jks(vk, dm, kpts_band)
logger.timer(self, 'vj and vk', *cpu0)
return vj, vk
[docs]
def get_j(self, cell=None, dm=None, hermi=1, kpt=None, kpts_band=None,
omega=None):
r'''Compute J matrix for the given density matrix and k-point (kpt).
When kpts_band is given, the J matrices on kpts_band are evaluated.
J_{pq} = \sum_{rs} (pq|rs) dm[s,r]
where r,s are orbitals on kpt. p and q are orbitals on kpts_band
if kpts_band is given otherwise p and q are orbitals on kpt.
'''
return self.get_jk(cell, dm, hermi, kpt, kpts_band, with_k=False,
omega=omega)[0]
[docs]
def get_k(self, cell=None, dm=None, hermi=1, kpt=None, kpts_band=None,
omega=None):
'''Compute K matrix for the given density matrix.
'''
return self.get_jk(cell, dm, hermi, kpt, kpts_band, with_j=False,
omega=omega)[1]
[docs]
def get_veff(self, cell=None, dm=None, dm_last=0, vhf_last=0, hermi=1,
kpt=None, kpts_band=None):
'''Hartree-Fock potential matrix for the given density matrix.
See :func:`scf.hf.get_veff` and :func:`scf.hf.RHF.get_veff`
'''
if cell is None: cell = self.cell
if dm is None: dm = self.make_rdm1()
if kpt is None: kpt = self.kpt
vj, vk = self.get_jk(cell, dm, hermi, kpt, kpts_band)
vhf = vj - vk * .5
return vhf
[docs]
def get_jk_incore(self, cell=None, dm=None, hermi=1, kpt=None, omega=None,
**kwargs):
'''Get Coulomb (J) and exchange (K) following :func:`scf.hf.RHF.get_jk_`.
*Incore* version of Coulomb and exchange build only.
Currently RHF always uses PBC AO integrals (unlike RKS), since
exchange is currently computed by building PBC AO integrals.
'''
if omega:
raise NotImplementedError
if cell is None: cell = self.cell
if kpt is None: kpt = self.kpt
if self._eri is None:
self._eri = self.with_df.get_ao_eri(kpt, compact=True)
return self.get_jk(cell, dm, hermi, kpt)
[docs]
def energy_nuc(self):
return self.cell.enuc
[docs]
@lib.with_doc(dip_moment.__doc__)
def dip_moment(self, cell=None, dm=None, unit='Debye', verbose=logger.NOTE,
**kwargs):
if cell is None:
cell = self.cell
rho = kwargs.pop('rho', None)
if rho is None:
rho = self.get_rho(dm)
return dip_moment(cell, dm, unit, verbose, rho=rho, kpt=self.kpt, **kwargs)
def _finalize(self):
'''Hook for dumping results and clearing up the object.'''
mol_hf.SCF._finalize(self)
if self.cell.charge != 0:
makov_payne_correction(self)
return self
[docs]
def get_init_guess(self, cell=None, key='minao', s1e=None):
if cell is None: cell = self.cell
dm = mol_hf.SCF.get_init_guess(self, cell, key)
dm = normalize_dm_(self, dm, s1e)
return dm
[docs]
def init_guess_by_1e(self, cell=None):
if cell is None: cell = self.cell
if cell.dimension < 3:
logger.warn(self, 'Hcore initial guess is not recommended in '
'the SCF of low-dimensional systems.')
return mol_hf.SCF.init_guess_by_1e(self, cell)
[docs]
def init_guess_by_chkfile(self, chk=None, project=None, kpt=None):
if chk is None: chk = self.chkfile
if kpt is None: kpt = self.kpt
return init_guess_by_chkfile(self.cell, chk, project, kpt)
[docs]
def from_chk(self, chk=None, project=None, kpt=None):
return self.init_guess_by_chkfile(chk, project, kpt)
[docs]
def dump_chk(self, envs):
if self.chkfile:
mol_hf.SCF.dump_chk(self, envs)
with lib.H5FileWrap(self.chkfile, 'a') as fh5:
fh5['scf/kpt'] = self.kpt
return self
def _is_mem_enough(self):
nao = self.cell.nao_nr()
if abs(self.kpt).sum() < 1e-9:
mem_need = nao**4*8/4/1e6
else:
mem_need = nao**4*16/1e6
return mem_need + lib.current_memory()[0] < self.max_memory*.95
[docs]
def analyze(self, verbose=None, with_meta_lowdin=None, **kwargs):
raise NotImplementedError
[docs]
def mulliken_pop(self):
raise NotImplementedError
[docs]
def density_fit(self, auxbasis=None, with_df=None):
from pyscf.pbc.df import df_jk
return df_jk.density_fit(self, auxbasis, with_df=with_df)
[docs]
def rs_density_fit(self, auxbasis=None, with_df=None):
from pyscf.pbc.df import rsdf_jk
return rsdf_jk.density_fit(self, auxbasis, with_df=with_df)
[docs]
def mix_density_fit(self, auxbasis=None, with_df=None):
from pyscf.pbc.df import mdf_jk
return mdf_jk.density_fit(self, auxbasis, with_df=with_df)
[docs]
def sfx2c1e(self):
from pyscf.pbc.x2c import sfx2c1e
return sfx2c1e.sfx2c1e(self)
x2c = x2c1e = sfx2c1e
[docs]
def to_rhf(self):
'''Convert the input mean-field object to a RHF/ROHF/RKS/ROKS object'''
return addons.convert_to_rhf(self)
[docs]
def to_uhf(self):
'''Convert the input mean-field object to a UHF/UKS object'''
return addons.convert_to_uhf(self)
[docs]
def to_ghf(self):
'''Convert the input mean-field object to a GHF/GKS object'''
return addons.convert_to_ghf(self)
[docs]
def to_kscf(self):
'''Convert gamma point SCF object to k-point SCF object
'''
from pyscf.pbc.scf.addons import convert_to_kscf
return convert_to_kscf(self)
[docs]
def jk_method(self, J='FFTDF', K=None):
'''
Set up the schemes to evaluate Coulomb and exchange matrix
FFTDF: planewave density fitting using Fast Fourier Transform
AFTDF: planewave density fitting using analytic Fourier Transform
GDF: Gaussian density fitting
MDF: Gaussian and planewave mix density fitting
RS: range-separation JK builder
RSDF: range-separation density fitting
'''
if K is None:
K = J
if J != K:
raise NotImplementedError('J != K')
if 'DF' in J or 'DF' in K:
if 'DF' in J and 'DF' in K:
assert J == K
else:
df_method = J if 'DF' in J else K
self.with_df = getattr(df, df_method)(self.cell, self.kpts)
if 'RS' in J or 'RS' in K:
self.rsjk = RangeSeparatedJKBuilder(self.cell, self.kpts)
self.rsjk.verbose = self.verbose
# For nuclear attraction
if J == 'RS' and K == 'RS' and not isinstance(self.with_df, df.GDF):
self.with_df = df.GDF(self.cell, self.kpts)
nuc = self.with_df.__class__.__name__
logger.debug1(self, 'Apply %s for J, %s for K, %s for nuc', J, K, nuc)
return self
[docs]
def to_gpu(self):
raise NotImplementedError
class KohnShamDFT:
'''A mock DFT base class
The base class is defined in the pbc.dft.rks module. This class can
be used to verify if an SCF object is an pbc-Hartree-Fock method or an
pbc-DFT method. It should be overwritten by the actual KohnShamDFT class
when loading dft module.
'''
[docs]
class RHF(SCF):
analyze = mol_hf.RHF.analyze
spin_square = mol_hf.RHF.spin_square
stability = mol_hf.RHF.stability
to_gpu = lib.to_gpu
[docs]
def nuc_grad_method(self):
raise NotImplementedError
[docs]
def to_ks(self, xc='HF'):
'''Convert to RKS object.
'''
from pyscf.pbc import dft
return self._transfer_attrs_(dft.RKS(self.cell, xc=xc))
[docs]
def convert_from_(self, mf):
'''Convert given mean-field object to RHF/ROHF'''
addons.convert_to_rhf(mf, self)
return self
def _format_jks(vj, dm, kpts_band):
if kpts_band is None:
vj = vj.reshape(dm.shape)
elif kpts_band.ndim == 1: # a single k-point on bands
vj = vj.reshape(dm.shape)
elif getattr(dm, "ndim", 0) == 2:
vj = vj[0]
return vj
[docs]
def normalize_dm_(mf, dm, s1e=None):
'''
Scale density matrix to make it produce the correct number of electrons.
'''
cell = mf.cell
if s1e is None:
s1e = mf.get_ovlp(cell)
ne = lib.einsum('ij,ji->', dm, s1e).real
if abs(ne - cell.nelectron) > 0.01:
logger.debug(mf, 'Big error detected in the electron number '
'of initial guess density matrix (Ne/cell = %g)!\n'
' This can cause huge error in Fock matrix and '
'lead to instability in SCF for low-dimensional '
'systems.\n DM is normalized wrt the number '
'of electrons %s', ne, cell.nelectron)
dm *= cell.nelectron / ne
return dm