#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Garnet Chan <gkc1000@gmail.com>
# Timothy Berkelbach <tim.berkelbach@gmail.com>
# Qiming Sun <osirpt.sun@gmail.com>
#
'''
Hartree-Fock for periodic systems with k-point sampling
See Also:
hf.py : Hartree-Fock for periodic systems at a single k-point
'''
import sys
from functools import reduce
import numpy as np
import scipy.linalg
import h5py
from pyscf.pbc.scf import hf as pbchf
from pyscf import lib
from pyscf.scf import hf as mol_hf
from pyscf.lib import logger
from pyscf.pbc.gto import ecp
from pyscf.pbc.scf import addons
from pyscf.pbc.scf import chkfile # noqa
from pyscf.pbc import tools
from pyscf.pbc import df
from pyscf.pbc.scf.rsjk import RangeSeparatedJKBuilder
from pyscf.pbc.lib.kpts import KPoints
from pyscf import __config__
WITH_META_LOWDIN = getattr(__config__, 'pbc_scf_analyze_with_meta_lowdin', True)
PRE_ORTH_METHOD = getattr(__config__, 'pbc_scf_analyze_pre_orth_method', 'ANO')
CHECK_COULOMB_IMAG = getattr(__config__, 'pbc_scf_check_coulomb_imag', True)
[docs]
def get_ovlp(mf, cell=None, kpts=None):
'''Get the overlap AO matrices at sampled k-points.
Args:
kpts : (nkpts, 3) ndarray
Returns:
ovlp_kpts : (nkpts, nao, nao) ndarray
'''
if cell is None: cell = mf.cell
if kpts is None: kpts = mf.kpts
return pbchf.get_ovlp(cell, kpts)
[docs]
def get_hcore(mf, cell=None, kpts=None):
'''Get the core Hamiltonian AO matrices at sampled k-points.
Args:
kpts : (nkpts, 3) ndarray
Returns:
hcore : (nkpts, nao, nao) ndarray
'''
if cell is None: cell = mf.cell
if kpts is None: kpts = mf.kpts
if cell.pseudo:
nuc = lib.asarray(mf.with_df.get_pp(kpts))
else:
nuc = lib.asarray(mf.with_df.get_nuc(kpts))
if len(cell._ecpbas) > 0:
nuc += lib.asarray(ecp.ecp_int(cell, kpts))
t = lib.asarray(cell.pbc_intor('int1e_kin', 1, 1, kpts))
return nuc + t
[docs]
def get_j(mf, cell, dm_kpts, kpts, kpts_band=None):
'''Get the Coulomb (J) AO matrix at sampled k-points.
Args:
dm_kpts : (nkpts, nao, nao) ndarray or a list of (nkpts,nao,nao) ndarray
Density matrix at each k-point. If a list of k-point DMs, eg,
UHF alpha and beta DM, the alpha and beta DMs are contracted
separately. It needs to be Hermitian.
Kwargs:
kpts_band : (k,3) ndarray
A list of arbitrary "band" k-points at which to evalute the matrix.
Returns:
vj : (nkpts, nao, nao) ndarray
or list of vj if the input dm_kpts is a list of DMs
'''
return df.FFTDF(cell).get_jk(dm_kpts, kpts, kpts_band, with_k=False)[0]
[docs]
def get_jk(mf, cell, dm_kpts, kpts, kpts_band=None, with_j=True, with_k=True,
omega=None, **kwargs):
'''Get the Coulomb (J) and exchange (K) AO matrices at sampled k-points.
Args:
dm_kpts : (nkpts, nao, nao) ndarray
Density matrix at each k-point. It needs to be Hermitian.
Kwargs:
kpts_band : (3,) ndarray
A list of arbitrary "band" k-point at which to evalute the matrix.
Returns:
vj : (nkpts, nao, nao) ndarray
vk : (nkpts, nao, nao) ndarray
or list of vj and vk if the input dm_kpts is a list of DMs
'''
return df.FFTDF(cell).get_jk(dm_kpts, kpts, kpts_band, with_j, with_k,
omega, exxdiv=mf.exxdiv)
[docs]
def get_fock(mf, h1e=None, s1e=None, vhf=None, dm=None, cycle=-1, diis=None,
diis_start_cycle=None, level_shift_factor=None, damp_factor=None,
fock_last=None):
h1e_kpts, s_kpts, vhf_kpts, dm_kpts = h1e, s1e, vhf, dm
if h1e_kpts is None: h1e_kpts = mf.get_hcore()
if vhf_kpts is None: vhf_kpts = mf.get_veff(mf.cell, dm_kpts)
f_kpts = h1e_kpts + vhf_kpts
if cycle < 0 and diis is None: # Not inside the SCF iteration
return f_kpts
if diis_start_cycle is None:
diis_start_cycle = mf.diis_start_cycle
if level_shift_factor is None:
level_shift_factor = mf.level_shift
if damp_factor is None:
damp_factor = mf.damp
if s_kpts is None: s_kpts = mf.get_ovlp()
if dm_kpts is None: dm_kpts = mf.make_rdm1()
if 0 <= cycle < diis_start_cycle-1 and abs(damp_factor) > 1e-4 and fock_last is not None:
f_kpts = [mol_hf.damping(f, f_prev, damp_factor) for f,f_prev in zip(f_kpts,fock_last)]
if diis and cycle >= diis_start_cycle:
f_kpts = diis.update(s_kpts, dm_kpts, f_kpts, mf, h1e_kpts, vhf_kpts, f_prev=fock_last)
if abs(level_shift_factor) > 1e-4:
f_kpts = [mol_hf.level_shift(s, dm_kpts[k], f_kpts[k], level_shift_factor)
for k, s in enumerate(s_kpts)]
return lib.asarray(f_kpts)
[docs]
def get_fermi(mf, mo_energy_kpts=None, mo_occ_kpts=None):
'''Fermi level
'''
if mo_energy_kpts is None: mo_energy_kpts = mf.mo_energy
if mo_occ_kpts is None: mo_occ_kpts = mf.mo_occ
# mo_energy_kpts and mo_occ_kpts are k-point RHF quantities
assert (mo_energy_kpts[0].ndim == 1)
assert (mo_occ_kpts[0].ndim == 1)
# occ array in mo_occ_kpts may have different size. See issue #250
nocc = sum(mo_occ.sum() for mo_occ in mo_occ_kpts) / 2
# nocc may not be perfect integer when smearing is enabled
nocc = int(nocc.round(3))
fermi = np.sort(np.hstack(mo_energy_kpts))[nocc-1]
for k, mo_e in enumerate(mo_energy_kpts):
mo_occ = mo_occ_kpts[k]
if mo_occ[mo_e > fermi].sum() > 1.:
logger.warn(mf, 'Occupied band above Fermi level: \n'
'k=%d, mo_e=%s, mo_occ=%s', k, mo_e, mo_occ)
return fermi
[docs]
def get_occ(mf, mo_energy_kpts=None, mo_coeff_kpts=None):
'''Label the occupancies for each orbital for sampled k-points.
This is a k-point version of scf.hf.SCF.get_occ
'''
if mo_energy_kpts is None: mo_energy_kpts = mf.mo_energy
nkpts = len(mo_energy_kpts)
nocc = mf.cell.tot_electrons(nkpts) // 2
mo_energy = np.sort(np.hstack(mo_energy_kpts))
fermi = mo_energy[nocc-1]
mo_occ_kpts = []
for mo_e in mo_energy_kpts:
mo_occ_kpts.append((mo_e <= fermi).astype(np.double) * 2)
if nocc < mo_energy.size:
logger.info(mf, 'HOMO = %.12g LUMO = %.12g',
mo_energy[nocc-1], mo_energy[nocc])
if mo_energy[nocc-1]+1e-3 > mo_energy[nocc]:
logger.warn(mf, 'HOMO %.12g == LUMO %.12g',
mo_energy[nocc-1], mo_energy[nocc])
else:
logger.info(mf, 'HOMO = %.12g', mo_energy[nocc-1])
if mf.verbose >= logger.DEBUG:
np.set_printoptions(threshold=len(mo_energy))
logger.debug(mf, ' k-point mo_energy')
for k,kpt in enumerate(mf.cell.get_scaled_kpts(mf.kpts)):
logger.debug(mf, ' %2d (%6.3f %6.3f %6.3f) %s %s',
k, kpt[0], kpt[1], kpt[2],
np.sort(mo_energy_kpts[k][mo_occ_kpts[k]> 0]),
np.sort(mo_energy_kpts[k][mo_occ_kpts[k]==0]))
np.set_printoptions(threshold=1000)
return mo_occ_kpts
[docs]
def get_grad(mo_coeff_kpts, mo_occ_kpts, fock):
'''
returns 1D array of gradients, like non K-pt version
note that occ and virt indices of different k pts now occur
in sequential patches of the 1D array
'''
nkpts = len(mo_occ_kpts)
grad_kpts = [mol_hf.get_grad(mo_coeff_kpts[k], mo_occ_kpts[k], fock[k])
for k in range(nkpts)]
return np.hstack(grad_kpts)
[docs]
def make_rdm1(mo_coeff_kpts, mo_occ_kpts, **kwargs):
'''One particle density matrices for all k-points.
Returns:
dm_kpts : (nkpts, nao, nao) ndarray
'''
nkpts = len(mo_occ_kpts)
dm = [mol_hf.make_rdm1(mo_coeff_kpts[k], mo_occ_kpts[k]) for k in range(nkpts)]
return lib.tag_array(dm, mo_coeff=mo_coeff_kpts, mo_occ=mo_occ_kpts)
[docs]
def energy_elec(mf, dm_kpts=None, h1e_kpts=None, vhf_kpts=None):
'''Following pyscf.scf.hf.energy_elec()
'''
if dm_kpts is None: dm_kpts = mf.make_rdm1()
if h1e_kpts is None: h1e_kpts = mf.get_hcore()
if vhf_kpts is None: vhf_kpts = mf.get_veff(mf.cell, dm_kpts)
nkpts = len(dm_kpts)
e1 = 1./nkpts * np.einsum('kij,kji', dm_kpts, h1e_kpts)
e_coul = 1./nkpts * np.einsum('kij,kji', dm_kpts, vhf_kpts) * 0.5
mf.scf_summary['e1'] = e1.real
mf.scf_summary['e2'] = e_coul.real
logger.debug(mf, 'E1 = %s E_coul = %s', e1, e_coul)
if CHECK_COULOMB_IMAG and abs(e_coul.imag > mf.cell.precision*10):
logger.warn(mf, "Coulomb energy has imaginary part %s. "
"Coulomb integrals (e-e, e-N) may not converge !",
e_coul.imag)
return (e1+e_coul).real, e_coul.real
[docs]
def analyze(mf, verbose=None, with_meta_lowdin=WITH_META_LOWDIN,
**kwargs):
'''Analyze the given SCF object: print orbital energies, occupancies;
print orbital coefficients; Mulliken population analysis; Dipole moment
'''
if verbose is None:
verbose = mf.verbose
mf.dump_scf_summary(verbose)
mo_occ = mf.mo_occ
mo_coeff = mf.mo_coeff
ovlp_ao = mf.get_ovlp()
dm = mf.make_rdm1(mo_coeff, mo_occ)
pop, chg = mf.mulliken_meta(mf.cell, dm, s=ovlp_ao, verbose=verbose)
dip = None
if with_meta_lowdin:
return (pop, chg), dip
else:
raise NotImplementedError
#return mf.mulliken_pop(mf.cell, dm, s=ovlp_ao, verbose=verbose)
[docs]
def canonicalize(mf, mo_coeff_kpts, mo_occ_kpts, fock=None):
if fock is None:
dm = mf.make_rdm1(mo_coeff_kpts, mo_occ_kpts)
fock = mf.get_fock(dm=dm)
mo_coeff = []
mo_energy = []
for k, mo in enumerate(mo_coeff_kpts):
mo1 = np.empty_like(mo)
mo_e = np.empty_like(mo_occ_kpts[k])
occidx = mo_occ_kpts[k] == 2
viridx = ~occidx
for idx in (occidx, viridx):
if np.count_nonzero(idx) > 0:
orb = mo[:,idx]
f1 = reduce(np.dot, (orb.T.conj(), fock[k], orb))
e, c = scipy.linalg.eigh(f1)
mo1[:,idx] = np.dot(orb, c)
mo_e[idx] = e
mo_coeff.append(mo1)
mo_energy.append(mo_e)
return mo_energy, mo_coeff
def _cast_mol_init_guess(fn):
def fn_init_guess(mf, cell=None, kpts=None):
if cell is None: cell = mf.cell
if kpts is None: kpts = mf.kpts
dm = fn(cell)
nkpts = len(kpts)
dm_kpts = np.asarray([dm] * nkpts)
if hasattr(dm, 'mo_coeff'):
mo_coeff = [dm.mo_coeff] * nkpts
mo_occ = [dm.mo_occ] * nkpts
dm_kpts = lib.tag_array(dm_kpts, mo_coeff=mo_coeff, mo_occ=mo_occ)
return dm_kpts
fn_init_guess.__name__ = fn.__name__
fn_init_guess.__doc__ = (
'Generates initial guess density matrix and the orbitals of the initial '
'guess DM ' + fn.__doc__)
return fn_init_guess
[docs]
def init_guess_by_minao(cell, kpts=None):
'''Generates initial guess density matrix and the orbitals of the initial
guess DM based on ANO basis.
'''
return KSCF(cell).init_guess_by_minao(cell, kpts)
[docs]
def init_guess_by_atom(cell, kpts=None):
'''Generates initial guess density matrix and the orbitals of the initial
guess DM based on the superposition of atomic HF density matrix.
'''
return KSCF(cell).init_guess_by_atom(cell, kpts)
[docs]
def init_guess_by_chkfile(cell, chkfile_name, project=None, kpts=None):
'''Read the KHF results from checkpoint file, then project it to the
basis defined by ``cell``
Returns:
Density matrix, 3D ndarray
'''
from pyscf.pbc.scf import kuhf
dm = kuhf.init_guess_by_chkfile(cell, chkfile_name, project, kpts)
return dm[0] + dm[1]
[docs]
def dip_moment(cell, dm_kpts, unit='Debye', verbose=logger.NOTE,
grids=None, rho=None, kpts=np.zeros((1,3))):
''' Dipole moment in the cell (is it well defined)?
Args:
cell : an instance of :class:`Cell`
dm_kpts (a list of ndarrays) : density matrices of k-points
Return:
A list: the dipole moment on x, y and z components
'''
from pyscf.pbc.dft import gen_grid
from pyscf.pbc.dft import numint
if grids is None:
grids = gen_grid.UniformGrids(cell)
if rho is None:
rho = numint.KNumInt().get_rho(cell, dm_kpts, grids, kpts, cell.max_memory)
return pbchf.dip_moment(cell, dm_kpts, unit, verbose, grids, rho, kpts)
[docs]
def get_rho(mf, dm=None, grids=None, kpts=None):
'''Compute density in real space
'''
from pyscf.pbc.dft import gen_grid
from pyscf.pbc.dft import numint
if dm is None:
dm = mf.make_rdm1()
if getattr(dm[0], 'ndim', None) != 2: # KUHF
dm = dm[0] + dm[1]
if grids is None:
grids = gen_grid.UniformGrids(mf.cell)
if kpts is None:
kpts = mf.kpts
ni = numint.KNumInt()
return ni.get_rho(mf.cell, dm, grids, kpts, mf.max_memory)
[docs]
class KSCF(pbchf.SCF):
'''SCF base class with k-point sampling.
Compared to molecular SCF, some members such as mo_coeff, mo_occ
now have an additional first dimension for the k-points,
e.g. mo_coeff is (nkpts, nao, nao) ndarray
Attributes:
kpts : (nks,3) ndarray
The sampling k-points in Cartesian coordinates, in units of 1/Bohr.
'''
conv_tol_grad = getattr(__config__, 'pbc_scf_KSCF_conv_tol_grad', None)
_keys = {'cell', 'exx_built', 'exxdiv', 'with_df', 'rsjk'}
reset = pbchf.SCF.reset
mol = pbchf.SCF.mol
check_sanity = pbchf.SCF.check_sanity
init_direct_scf = lib.invalid_method('init_direct_scf')
get_hcore = get_hcore
get_ovlp = get_ovlp
get_fock = get_fock
get_fermi = get_fermi
get_occ = get_occ
get_jk_incore = lib.invalid_method('get_jk_incore')
energy_elec = energy_elec
energy_nuc = pbchf.SCF.energy_nuc
get_rho = get_rho
init_guess_by_minao = _cast_mol_init_guess(mol_hf.init_guess_by_minao)
init_guess_by_atom = _cast_mol_init_guess(mol_hf.init_guess_by_atom)
_finalize = pbchf.SCF._finalize
canonicalize = canonicalize
def __init__(self, cell, kpts=np.zeros((1,3)),
exxdiv=getattr(__config__, 'pbc_scf_SCF_exxdiv', 'ewald')):
if not cell._built:
sys.stderr.write('Warning: cell.build() is not called in input\n')
cell.build()
mol_hf.SCF.__init__(self, cell)
self.with_df = df.FFTDF(cell)
# Range separation JK builder
self.rsjk = None
self.exxdiv = exxdiv
self.kpts = kpts
self.conv_tol = max(cell.precision * 10, 1e-8)
self.exx_built = False
@property
def mo_energy_kpts(self):
return self.mo_energy
@property
def mo_coeff_kpts(self):
return self.mo_coeff
@property
def mo_occ_kpts(self):
return self.mo_occ
[docs]
def dump_flags(self, verbose=None):
mol_hf.SCF.dump_flags(self, verbose)
logger.info(self, '\n')
logger.info(self, '******** PBC SCF flags ********')
logger.info(self, 'N kpts = %d', len(self.kpts))
logger.debug(self, 'kpts = %s', self.kpts)
logger.info(self, 'Exchange divergence treatment (exxdiv) = %s', self.exxdiv)
cell = self.cell
if ((cell.dimension >= 2 and cell.low_dim_ft_type != 'inf_vacuum') and
isinstance(self.exxdiv, str) and self.exxdiv.lower() == 'ewald'):
madelung = tools.pbc.madelung(cell, [self.kpts])
logger.info(self, ' madelung (= occupied orbital energy shift) = %s', madelung)
nkpts = len(self.kpts)
# FIXME: consider the fractional num_electron or not? This maybe
# relates to the charged system.
nelectron = float(self.cell.tot_electrons(nkpts)) / nkpts
logger.info(self, ' Total energy shift due to Ewald probe charge'
' = -1/2 * Nelec*madelung = %.12g',
madelung*nelectron * -.5)
if getattr(self, 'smearing_method', None) is not None:
logger.info(self, 'Smearing method = %s', self.smearing_method)
logger.info(self, 'DF object = %s', self.with_df)
if not getattr(self.with_df, 'build', None):
# .dump_flags() is called in pbc.df.build function
self.with_df.dump_flags(verbose)
return self
[docs]
def get_init_guess(self, cell=None, key='minao', s1e=None):
raise NotImplementedError
[docs]
def init_guess_by_1e(self, cell=None):
if cell is None: cell = self.cell
if cell.dimension < 3:
logger.warn(self, 'Hcore initial guess is not recommended in '
'the SCF of low-dimensional systems.')
return mol_hf.SCF.init_guess_by_1e(self, cell)
[docs]
def get_j(self, cell=None, dm_kpts=None, hermi=1, kpts=None,
kpts_band=None, omega=None):
return self.get_jk(cell, dm_kpts, hermi, kpts, kpts_band,
with_k=False, omega=omega)[0]
[docs]
def get_k(self, cell=None, dm_kpts=None, hermi=1, kpts=None,
kpts_band=None, omega=None):
return self.get_jk(cell, dm_kpts, hermi, kpts, kpts_band,
with_j=False, omega=omega)[1]
[docs]
def get_jk(self, cell=None, dm_kpts=None, hermi=1, kpts=None, kpts_band=None,
with_j=True, with_k=True, omega=None, **kwargs):
if cell is None: cell = self.cell
if kpts is None: kpts = self.kpts
if dm_kpts is None: dm_kpts = self.make_rdm1()
cpu0 = (logger.process_clock(), logger.perf_counter())
if self.rsjk:
vj, vk = self.rsjk.get_jk(dm_kpts, hermi, kpts, kpts_band,
with_j, with_k, omega=omega, exxdiv=self.exxdiv)
else:
vj, vk = self.with_df.get_jk(dm_kpts, hermi, kpts, kpts_band,
with_j, with_k, omega=omega, exxdiv=self.exxdiv)
logger.timer(self, 'vj and vk', *cpu0)
return vj, vk
[docs]
def get_veff(self, cell=None, dm_kpts=None, dm_last=0, vhf_last=0, hermi=1,
kpts=None, kpts_band=None):
'''Hartree-Fock potential matrix for the given density matrix.
See :func:`scf.hf.get_veff` and :func:`scf.hf.RHF.get_veff`
'''
if dm_kpts is None:
dm_kpts = self.make_rdm1()
vj, vk = self.get_jk(cell, dm_kpts, hermi, kpts, kpts_band)
return vj - vk * .5
[docs]
def get_grad(self, mo_coeff_kpts, mo_occ_kpts, fock=None):
'''
returns 1D array of gradients, like non K-pt version
note that occ and virt indices of different k pts now occur
in sequential patches of the 1D array
'''
if fock is None:
dm1 = self.make_rdm1(mo_coeff_kpts, mo_occ_kpts)
fock = self.get_hcore(self.cell, self.kpts) + self.get_veff(self.cell, dm1)
return get_grad(mo_coeff_kpts, mo_occ_kpts, fock)
[docs]
def eig(self, h_kpts, s_kpts):
nkpts = len(h_kpts)
eig_kpts = []
mo_coeff_kpts = []
for k in range(nkpts):
e, c = self._eigh(h_kpts[k], s_kpts[k])
eig_kpts.append(e)
mo_coeff_kpts.append(c)
return eig_kpts, mo_coeff_kpts
[docs]
def make_rdm1(self, mo_coeff_kpts=None, mo_occ_kpts=None, **kwargs):
if mo_coeff_kpts is None:
# Note: this is actually "self.mo_coeff_kpts"
# which is stored in self.mo_coeff of the scf.hf.RHF superclass
mo_coeff_kpts = self.mo_coeff
if mo_occ_kpts is None:
# Note: this is actually "self.mo_occ_kpts"
# which is stored in self.mo_occ of the scf.hf.RHF superclass
mo_occ_kpts = self.mo_occ
return make_rdm1(mo_coeff_kpts, mo_occ_kpts, **kwargs)
[docs]
def make_rdm2(self, mo_coeff_kpts, mo_occ_kpts, **kwargs):
raise NotImplementedError
[docs]
def get_bands(self, kpts_band, cell=None, dm_kpts=None, kpts=None):
'''Get energy bands at the given (arbitrary) 'band' k-points.
Returns:
mo_energy : (nmo,) ndarray or a list of (nmo,) ndarray
Bands energies E_n(k)
mo_coeff : (nao, nmo) ndarray or a list of (nao,nmo) ndarray
Band orbitals psi_n(k)
'''
if cell is None: cell = self.cell
if dm_kpts is None: dm_kpts = self.make_rdm1()
if kpts is None: kpts = self.kpts
kpts_band = np.asarray(kpts_band)
single_kpt_band = (kpts_band.ndim == 1)
kpts_band = kpts_band.reshape(-1,3)
fock = self.get_hcore(cell, kpts_band)
fock = fock + self.get_veff(cell, dm_kpts, kpts=kpts, kpts_band=kpts_band)
s1e = self.get_ovlp(cell, kpts_band)
mo_energy, mo_coeff = self.eig(fock, s1e)
if single_kpt_band:
mo_energy = mo_energy[0]
mo_coeff = mo_coeff[0]
return mo_energy, mo_coeff
[docs]
def init_guess_by_chkfile(self, chk=None, project=None, kpts=None):
if chk is None: chk = self.chkfile
if kpts is None: kpts = self.kpts
return init_guess_by_chkfile(self.cell, chk, project, kpts)
[docs]
def from_chk(self, chk=None, project=None, kpts=None):
return self.init_guess_by_chkfile(chk, project, kpts)
[docs]
def dump_chk(self, envs):
if self.chkfile:
mol_hf.SCF.dump_chk(self, envs)
with lib.H5FileWrap(self.chkfile, 'a') as fh5:
fh5['scf/kpts'] = self.kpts
return self
[docs]
def analyze(mf, verbose=None, with_meta_lowdin=WITH_META_LOWDIN, **kwargs):
raise NotImplementedError
[docs]
def mulliken_pop(self):
raise NotImplementedError
[docs]
@lib.with_doc(dip_moment.__doc__)
def dip_moment(self, cell=None, dm=None, unit='Debye', verbose=logger.NOTE,
**kwargs):
if cell is None:
cell = self.cell
rho = kwargs.pop('rho', None)
if rho is None:
rho = self.get_rho(dm)
return dip_moment(cell, dm, unit, verbose, rho=rho, kpts=self.kpts, **kwargs)
[docs]
def density_fit(self, auxbasis=None, with_df=None):
from pyscf.pbc.df import df_jk
return df_jk.density_fit(self, auxbasis, with_df=with_df)
[docs]
def rs_density_fit(self, auxbasis=None, with_df=None):
from pyscf.pbc.df import rsdf_jk
return rsdf_jk.density_fit(self, auxbasis, with_df=with_df)
[docs]
def mix_density_fit(self, auxbasis=None, with_df=None):
from pyscf.pbc.df import mdf_jk
return mdf_jk.density_fit(self, auxbasis, with_df=with_df)
[docs]
def newton(self):
from pyscf.pbc.scf import newton_ah
return newton_ah.newton(self)
[docs]
def sfx2c1e(self):
from pyscf.pbc.x2c import sfx2c1e
return sfx2c1e.sfx2c1e(self)
x2c = x2c1e = sfx2c1e
[docs]
def to_rhf(self):
'''Convert the input mean-field object to a KRHF/KROHF/KRKS/KROKS object'''
return addons.convert_to_rhf(self)
[docs]
def to_uhf(self):
'''Convert the input mean-field object to a KUHF/KUKS object'''
return addons.convert_to_uhf(self)
[docs]
def to_ghf(self):
'''Convert the input mean-field object to a KGHF/KGKS object'''
return addons.convert_to_ghf(self)
[docs]
def to_kscf(self):
'''Convert to k-point SCF object
'''
return self
[docs]
def to_khf(self):
'''Disable point group symmetry
'''
return self
[docs]
def convert_from_(self, mf):
raise NotImplementedError
[docs]
class KRHF(KSCF):
analyze = analyze
spin_square = mol_hf.RHF.spin_square
to_gpu = lib.to_gpu
[docs]
def check_sanity(self):
cell = self.cell
if isinstance(self.kpts, KPoints):
nkpts = self.kpts.nkpts
else:
nkpts = len(self.kpts)
if cell.spin != 0 and nkpts % 2 != 0:
logger.warn(self, 'Problematic nelec %s and number of k-points %d '
'found in KRHF method.', cell.nelec, nkpts)
return KSCF.check_sanity(self)
[docs]
def get_init_guess(self, cell=None, key='minao', s1e=None):
if s1e is None:
s1e = self.get_ovlp(cell)
dm = mol_hf.SCF.get_init_guess(self, cell, key)
nkpts = len(self.kpts)
if dm.ndim == 2:
# dm[nao,nao] at gamma point -> dm_kpts[nkpts,nao,nao]
dm = np.repeat(dm[None,:,:], nkpts, axis=0)
dm_kpts = dm
ne = lib.einsum('kij,kji->', dm_kpts, s1e).real
# FIXME: consider the fractional num_electron or not? This maybe
# relate to the charged system.
nelectron = float(self.cell.tot_electrons(nkpts))
if abs(ne - nelectron) > 0.01*nkpts:
logger.debug(self, 'Big error detected in the electron number '
'of initial guess density matrix (Ne/cell = %g)!\n'
' This can cause huge error in Fock matrix and '
'lead to instability in SCF for low-dimensional '
'systems.\n DM is normalized wrt the number '
'of electrons %s', ne/nkpts, nelectron/nkpts)
dm_kpts *= (nelectron / ne).reshape(-1,1,1)
return dm_kpts
[docs]
def nuc_grad_method(self):
from pyscf.pbc.grad import krhf
return krhf.Gradients(self)
[docs]
def stability(self,
internal=getattr(__config__, 'pbc_scf_KSCF_stability_internal', True),
external=getattr(__config__, 'pbc_scf_KSCF_stability_external', False),
verbose=None):
from pyscf.pbc.scf.stability import rhf_stability
return rhf_stability(self, internal, external, verbose)
[docs]
def to_ks(self, xc='HF'):
'''Convert to RKS object.
'''
from pyscf.pbc import dft
return self._transfer_attrs_(dft.KRKS(self.cell, self.kpts, xc=xc))
[docs]
def convert_from_(self, mf):
'''Convert given mean-field object to KRHF/KROHF'''
addons.convert_to_rhf(mf, self)
return self