Source code for pyscf.pbc.scf.khf

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Garnet Chan <gkc1000@gmail.com>
#          Timothy Berkelbach <tim.berkelbach@gmail.com>
#          Qiming Sun <osirpt.sun@gmail.com>
#

'''
Hartree-Fock for periodic systems with k-point sampling

See Also:
    hf.py : Hartree-Fock for periodic systems at a single k-point
'''

import sys

from functools import reduce
import numpy as np
import scipy.linalg
import h5py
from pyscf.pbc.scf import hf as pbchf
from pyscf import lib
from pyscf.scf import hf as mol_hf
from pyscf.lib import logger
from pyscf.pbc.gto import ecp
from pyscf.pbc.scf import addons
from pyscf.pbc.scf import chkfile  # noqa
from pyscf.pbc import tools
from pyscf.pbc import df
from pyscf.pbc.scf.rsjk import RangeSeparatedJKBuilder
from pyscf.pbc.lib.kpts import KPoints
from pyscf import __config__

WITH_META_LOWDIN = getattr(__config__, 'pbc_scf_analyze_with_meta_lowdin', True)
PRE_ORTH_METHOD = getattr(__config__, 'pbc_scf_analyze_pre_orth_method', 'ANO')
CHECK_COULOMB_IMAG = getattr(__config__, 'pbc_scf_check_coulomb_imag', True)


[docs] def get_ovlp(mf, cell=None, kpts=None): '''Get the overlap AO matrices at sampled k-points. Args: kpts : (nkpts, 3) ndarray Returns: ovlp_kpts : (nkpts, nao, nao) ndarray ''' if cell is None: cell = mf.cell if kpts is None: kpts = mf.kpts return pbchf.get_ovlp(cell, kpts)
[docs] def get_hcore(mf, cell=None, kpts=None): '''Get the core Hamiltonian AO matrices at sampled k-points. Args: kpts : (nkpts, 3) ndarray Returns: hcore : (nkpts, nao, nao) ndarray ''' if cell is None: cell = mf.cell if kpts is None: kpts = mf.kpts if cell.pseudo: nuc = lib.asarray(mf.with_df.get_pp(kpts)) else: nuc = lib.asarray(mf.with_df.get_nuc(kpts)) if len(cell._ecpbas) > 0: nuc += lib.asarray(ecp.ecp_int(cell, kpts)) t = lib.asarray(cell.pbc_intor('int1e_kin', 1, 1, kpts)) return nuc + t
[docs] def get_j(mf, cell, dm_kpts, kpts, kpts_band=None): '''Get the Coulomb (J) AO matrix at sampled k-points. Args: dm_kpts : (nkpts, nao, nao) ndarray or a list of (nkpts,nao,nao) ndarray Density matrix at each k-point. If a list of k-point DMs, eg, UHF alpha and beta DM, the alpha and beta DMs are contracted separately. It needs to be Hermitian. Kwargs: kpts_band : (k,3) ndarray A list of arbitrary "band" k-points at which to evalute the matrix. Returns: vj : (nkpts, nao, nao) ndarray or list of vj if the input dm_kpts is a list of DMs ''' return df.FFTDF(cell).get_jk(dm_kpts, kpts, kpts_band, with_k=False)[0]
[docs] def get_jk(mf, cell, dm_kpts, kpts, kpts_band=None, with_j=True, with_k=True, omega=None, **kwargs): '''Get the Coulomb (J) and exchange (K) AO matrices at sampled k-points. Args: dm_kpts : (nkpts, nao, nao) ndarray Density matrix at each k-point. It needs to be Hermitian. Kwargs: kpts_band : (3,) ndarray A list of arbitrary "band" k-point at which to evalute the matrix. Returns: vj : (nkpts, nao, nao) ndarray vk : (nkpts, nao, nao) ndarray or list of vj and vk if the input dm_kpts is a list of DMs ''' return df.FFTDF(cell).get_jk(dm_kpts, kpts, kpts_band, with_j, with_k, omega, exxdiv=mf.exxdiv)
[docs] def get_fock(mf, h1e=None, s1e=None, vhf=None, dm=None, cycle=-1, diis=None, diis_start_cycle=None, level_shift_factor=None, damp_factor=None, fock_last=None): h1e_kpts, s_kpts, vhf_kpts, dm_kpts = h1e, s1e, vhf, dm if h1e_kpts is None: h1e_kpts = mf.get_hcore() if vhf_kpts is None: vhf_kpts = mf.get_veff(mf.cell, dm_kpts) f_kpts = h1e_kpts + vhf_kpts if cycle < 0 and diis is None: # Not inside the SCF iteration return f_kpts if diis_start_cycle is None: diis_start_cycle = mf.diis_start_cycle if level_shift_factor is None: level_shift_factor = mf.level_shift if damp_factor is None: damp_factor = mf.damp if s_kpts is None: s_kpts = mf.get_ovlp() if dm_kpts is None: dm_kpts = mf.make_rdm1() if 0 <= cycle < diis_start_cycle-1 and abs(damp_factor) > 1e-4 and fock_last is not None: f_kpts = [mol_hf.damping(f, f_prev, damp_factor) for f,f_prev in zip(f_kpts,fock_last)] if diis and cycle >= diis_start_cycle: f_kpts = diis.update(s_kpts, dm_kpts, f_kpts, mf, h1e_kpts, vhf_kpts, f_prev=fock_last) if abs(level_shift_factor) > 1e-4: f_kpts = [mol_hf.level_shift(s, dm_kpts[k], f_kpts[k], level_shift_factor) for k, s in enumerate(s_kpts)] return lib.asarray(f_kpts)
[docs] def get_fermi(mf, mo_energy_kpts=None, mo_occ_kpts=None): '''Fermi level ''' if mo_energy_kpts is None: mo_energy_kpts = mf.mo_energy if mo_occ_kpts is None: mo_occ_kpts = mf.mo_occ # mo_energy_kpts and mo_occ_kpts are k-point RHF quantities assert (mo_energy_kpts[0].ndim == 1) assert (mo_occ_kpts[0].ndim == 1) # occ array in mo_occ_kpts may have different size. See issue #250 nocc = sum(mo_occ.sum() for mo_occ in mo_occ_kpts) / 2 # nocc may not be perfect integer when smearing is enabled nocc = int(nocc.round(3)) fermi = np.sort(np.hstack(mo_energy_kpts))[nocc-1] for k, mo_e in enumerate(mo_energy_kpts): mo_occ = mo_occ_kpts[k] if mo_occ[mo_e > fermi].sum() > 1.: logger.warn(mf, 'Occupied band above Fermi level: \n' 'k=%d, mo_e=%s, mo_occ=%s', k, mo_e, mo_occ) return fermi
[docs] def get_occ(mf, mo_energy_kpts=None, mo_coeff_kpts=None): '''Label the occupancies for each orbital for sampled k-points. This is a k-point version of scf.hf.SCF.get_occ ''' if mo_energy_kpts is None: mo_energy_kpts = mf.mo_energy nkpts = len(mo_energy_kpts) nocc = mf.cell.tot_electrons(nkpts) // 2 mo_energy = np.sort(np.hstack(mo_energy_kpts)) fermi = mo_energy[nocc-1] mo_occ_kpts = [] for mo_e in mo_energy_kpts: mo_occ_kpts.append((mo_e <= fermi).astype(np.double) * 2) if nocc < mo_energy.size: logger.info(mf, 'HOMO = %.12g LUMO = %.12g', mo_energy[nocc-1], mo_energy[nocc]) if mo_energy[nocc-1]+1e-3 > mo_energy[nocc]: logger.warn(mf, 'HOMO %.12g == LUMO %.12g', mo_energy[nocc-1], mo_energy[nocc]) else: logger.info(mf, 'HOMO = %.12g', mo_energy[nocc-1]) if mf.verbose >= logger.DEBUG: np.set_printoptions(threshold=len(mo_energy)) logger.debug(mf, ' k-point mo_energy') for k,kpt in enumerate(mf.cell.get_scaled_kpts(mf.kpts)): logger.debug(mf, ' %2d (%6.3f %6.3f %6.3f) %s %s', k, kpt[0], kpt[1], kpt[2], np.sort(mo_energy_kpts[k][mo_occ_kpts[k]> 0]), np.sort(mo_energy_kpts[k][mo_occ_kpts[k]==0])) np.set_printoptions(threshold=1000) return mo_occ_kpts
[docs] def get_grad(mo_coeff_kpts, mo_occ_kpts, fock): ''' returns 1D array of gradients, like non K-pt version note that occ and virt indices of different k pts now occur in sequential patches of the 1D array ''' nkpts = len(mo_occ_kpts) grad_kpts = [mol_hf.get_grad(mo_coeff_kpts[k], mo_occ_kpts[k], fock[k]) for k in range(nkpts)] return np.hstack(grad_kpts)
[docs] def make_rdm1(mo_coeff_kpts, mo_occ_kpts, **kwargs): '''One particle density matrices for all k-points. Returns: dm_kpts : (nkpts, nao, nao) ndarray ''' nkpts = len(mo_occ_kpts) dm = [mol_hf.make_rdm1(mo_coeff_kpts[k], mo_occ_kpts[k]) for k in range(nkpts)] return lib.tag_array(dm, mo_coeff=mo_coeff_kpts, mo_occ=mo_occ_kpts)
[docs] def energy_elec(mf, dm_kpts=None, h1e_kpts=None, vhf_kpts=None): '''Following pyscf.scf.hf.energy_elec() ''' if dm_kpts is None: dm_kpts = mf.make_rdm1() if h1e_kpts is None: h1e_kpts = mf.get_hcore() if vhf_kpts is None: vhf_kpts = mf.get_veff(mf.cell, dm_kpts) nkpts = len(dm_kpts) e1 = 1./nkpts * np.einsum('kij,kji', dm_kpts, h1e_kpts) e_coul = 1./nkpts * np.einsum('kij,kji', dm_kpts, vhf_kpts) * 0.5 mf.scf_summary['e1'] = e1.real mf.scf_summary['e2'] = e_coul.real logger.debug(mf, 'E1 = %s E_coul = %s', e1, e_coul) if CHECK_COULOMB_IMAG and abs(e_coul.imag > mf.cell.precision*10): logger.warn(mf, "Coulomb energy has imaginary part %s. " "Coulomb integrals (e-e, e-N) may not converge !", e_coul.imag) return (e1+e_coul).real, e_coul.real
[docs] def analyze(mf, verbose=None, with_meta_lowdin=WITH_META_LOWDIN, **kwargs): '''Analyze the given SCF object: print orbital energies, occupancies; print orbital coefficients; Mulliken population analysis; Dipole moment ''' if verbose is None: verbose = mf.verbose mf.dump_scf_summary(verbose) mo_occ = mf.mo_occ mo_coeff = mf.mo_coeff ovlp_ao = mf.get_ovlp() dm = mf.make_rdm1(mo_coeff, mo_occ) pop, chg = mf.mulliken_meta(mf.cell, dm, s=ovlp_ao, verbose=verbose) dip = None if with_meta_lowdin: return (pop, chg), dip else: raise NotImplementedError
#return mf.mulliken_pop(mf.cell, dm, s=ovlp_ao, verbose=verbose)
[docs] def mulliken_meta(cell, dm_ao_kpts, verbose=logger.DEBUG, pre_orth_method=PRE_ORTH_METHOD, s=None): '''A modified Mulliken population analysis, based on meta-Lowdin AOs. Note this function only computes the Mulliken population for the gamma point density matrix. ''' from pyscf.lo import orth if s is None: s = get_ovlp(cell) log = logger.new_logger(cell, verbose) log.note('Analyze output for *gamma point*') log.info(' To include the contributions from k-points, transform to a ' 'supercell then run the population analysis on the supercell\n' ' from pyscf.pbc.tools import k2gamma\n' ' k2gamma.k2gamma(mf).mulliken_meta()') log.note("KRHF mulliken_meta") dm_ao_gamma = dm_ao_kpts[0,:,:].real s_gamma = s[0,:,:].real orth_coeff = orth.orth_ao(cell, 'meta_lowdin', pre_orth_method, s=s_gamma) c_inv = np.dot(orth_coeff.T, s_gamma) dm = reduce(np.dot, (c_inv, dm_ao_gamma, c_inv.T.conj())) log.note(' ** Mulliken pop on meta-lowdin orthogonal AOs **') return mol_hf.mulliken_pop(cell, dm, np.eye(orth_coeff.shape[0]), log)
[docs] def canonicalize(mf, mo_coeff_kpts, mo_occ_kpts, fock=None): if fock is None: dm = mf.make_rdm1(mo_coeff_kpts, mo_occ_kpts) fock = mf.get_fock(dm=dm) mo_coeff = [] mo_energy = [] for k, mo in enumerate(mo_coeff_kpts): mo1 = np.empty_like(mo) mo_e = np.empty_like(mo_occ_kpts[k]) occidx = mo_occ_kpts[k] == 2 viridx = ~occidx for idx in (occidx, viridx): if np.count_nonzero(idx) > 0: orb = mo[:,idx] f1 = reduce(np.dot, (orb.T.conj(), fock[k], orb)) e, c = scipy.linalg.eigh(f1) mo1[:,idx] = np.dot(orb, c) mo_e[idx] = e mo_coeff.append(mo1) mo_energy.append(mo_e) return mo_energy, mo_coeff
def _cast_mol_init_guess(fn): def fn_init_guess(mf, cell=None, kpts=None): if cell is None: cell = mf.cell if kpts is None: kpts = mf.kpts dm = fn(cell) nkpts = len(kpts) dm_kpts = np.asarray([dm] * nkpts) if hasattr(dm, 'mo_coeff'): mo_coeff = [dm.mo_coeff] * nkpts mo_occ = [dm.mo_occ] * nkpts dm_kpts = lib.tag_array(dm_kpts, mo_coeff=mo_coeff, mo_occ=mo_occ) return dm_kpts fn_init_guess.__name__ = fn.__name__ fn_init_guess.__doc__ = ( 'Generates initial guess density matrix and the orbitals of the initial ' 'guess DM ' + fn.__doc__) return fn_init_guess
[docs] def init_guess_by_minao(cell, kpts=None): '''Generates initial guess density matrix and the orbitals of the initial guess DM based on ANO basis. ''' return KSCF(cell).init_guess_by_minao(cell, kpts)
[docs] def init_guess_by_atom(cell, kpts=None): '''Generates initial guess density matrix and the orbitals of the initial guess DM based on the superposition of atomic HF density matrix. ''' return KSCF(cell).init_guess_by_atom(cell, kpts)
[docs] def init_guess_by_chkfile(cell, chkfile_name, project=None, kpts=None): '''Read the KHF results from checkpoint file, then project it to the basis defined by ``cell`` Returns: Density matrix, 3D ndarray ''' from pyscf.pbc.scf import kuhf dm = kuhf.init_guess_by_chkfile(cell, chkfile_name, project, kpts) return dm[0] + dm[1]
[docs] def dip_moment(cell, dm_kpts, unit='Debye', verbose=logger.NOTE, grids=None, rho=None, kpts=np.zeros((1,3))): ''' Dipole moment in the cell (is it well defined)? Args: cell : an instance of :class:`Cell` dm_kpts (a list of ndarrays) : density matrices of k-points Return: A list: the dipole moment on x, y and z components ''' from pyscf.pbc.dft import gen_grid from pyscf.pbc.dft import numint if grids is None: grids = gen_grid.UniformGrids(cell) if rho is None: rho = numint.KNumInt().get_rho(cell, dm_kpts, grids, kpts, cell.max_memory) return pbchf.dip_moment(cell, dm_kpts, unit, verbose, grids, rho, kpts)
[docs] def get_rho(mf, dm=None, grids=None, kpts=None): '''Compute density in real space ''' from pyscf.pbc.dft import gen_grid from pyscf.pbc.dft import numint if dm is None: dm = mf.make_rdm1() if getattr(dm[0], 'ndim', None) != 2: # KUHF dm = dm[0] + dm[1] if grids is None: grids = gen_grid.UniformGrids(mf.cell) if kpts is None: kpts = mf.kpts ni = numint.KNumInt() return ni.get_rho(mf.cell, dm, grids, kpts, mf.max_memory)
[docs] class KSCF(pbchf.SCF): '''SCF base class with k-point sampling. Compared to molecular SCF, some members such as mo_coeff, mo_occ now have an additional first dimension for the k-points, e.g. mo_coeff is (nkpts, nao, nao) ndarray Attributes: kpts : (nks,3) ndarray The sampling k-points in Cartesian coordinates, in units of 1/Bohr. ''' conv_tol_grad = getattr(__config__, 'pbc_scf_KSCF_conv_tol_grad', None) _keys = {'cell', 'exx_built', 'exxdiv', 'with_df', 'rsjk'} reset = pbchf.SCF.reset mol = pbchf.SCF.mol check_sanity = pbchf.SCF.check_sanity init_direct_scf = lib.invalid_method('init_direct_scf') get_hcore = get_hcore get_ovlp = get_ovlp get_fock = get_fock get_fermi = get_fermi get_occ = get_occ get_jk_incore = lib.invalid_method('get_jk_incore') energy_elec = energy_elec energy_nuc = pbchf.SCF.energy_nuc get_rho = get_rho init_guess_by_minao = _cast_mol_init_guess(mol_hf.init_guess_by_minao) init_guess_by_atom = _cast_mol_init_guess(mol_hf.init_guess_by_atom) _finalize = pbchf.SCF._finalize canonicalize = canonicalize def __init__(self, cell, kpts=np.zeros((1,3)), exxdiv=getattr(__config__, 'pbc_scf_SCF_exxdiv', 'ewald')): if not cell._built: sys.stderr.write('Warning: cell.build() is not called in input\n') cell.build() mol_hf.SCF.__init__(self, cell) self.with_df = df.FFTDF(cell) # Range separation JK builder self.rsjk = None self.exxdiv = exxdiv self.kpts = kpts self.conv_tol = max(cell.precision * 10, 1e-8) self.exx_built = False @property def mo_energy_kpts(self): return self.mo_energy @property def mo_coeff_kpts(self): return self.mo_coeff @property def mo_occ_kpts(self): return self.mo_occ
[docs] def dump_flags(self, verbose=None): mol_hf.SCF.dump_flags(self, verbose) logger.info(self, '\n') logger.info(self, '******** PBC SCF flags ********') logger.info(self, 'N kpts = %d', len(self.kpts)) logger.debug(self, 'kpts = %s', self.kpts) logger.info(self, 'Exchange divergence treatment (exxdiv) = %s', self.exxdiv) cell = self.cell if ((cell.dimension >= 2 and cell.low_dim_ft_type != 'inf_vacuum') and isinstance(self.exxdiv, str) and self.exxdiv.lower() == 'ewald'): madelung = tools.pbc.madelung(cell, [self.kpts]) logger.info(self, ' madelung (= occupied orbital energy shift) = %s', madelung) nkpts = len(self.kpts) # FIXME: consider the fractional num_electron or not? This maybe # relates to the charged system. nelectron = float(self.cell.tot_electrons(nkpts)) / nkpts logger.info(self, ' Total energy shift due to Ewald probe charge' ' = -1/2 * Nelec*madelung = %.12g', madelung*nelectron * -.5) if getattr(self, 'smearing_method', None) is not None: logger.info(self, 'Smearing method = %s', self.smearing_method) logger.info(self, 'DF object = %s', self.with_df) if not getattr(self.with_df, 'build', None): # .dump_flags() is called in pbc.df.build function self.with_df.dump_flags(verbose) return self
[docs] def get_init_guess(self, cell=None, key='minao', s1e=None): raise NotImplementedError
[docs] def init_guess_by_1e(self, cell=None): if cell is None: cell = self.cell if cell.dimension < 3: logger.warn(self, 'Hcore initial guess is not recommended in ' 'the SCF of low-dimensional systems.') return mol_hf.SCF.init_guess_by_1e(self, cell)
[docs] def get_j(self, cell=None, dm_kpts=None, hermi=1, kpts=None, kpts_band=None, omega=None): return self.get_jk(cell, dm_kpts, hermi, kpts, kpts_band, with_k=False, omega=omega)[0]
[docs] def get_k(self, cell=None, dm_kpts=None, hermi=1, kpts=None, kpts_band=None, omega=None): return self.get_jk(cell, dm_kpts, hermi, kpts, kpts_band, with_j=False, omega=omega)[1]
[docs] def get_jk(self, cell=None, dm_kpts=None, hermi=1, kpts=None, kpts_band=None, with_j=True, with_k=True, omega=None, **kwargs): if cell is None: cell = self.cell if kpts is None: kpts = self.kpts if dm_kpts is None: dm_kpts = self.make_rdm1() cpu0 = (logger.process_clock(), logger.perf_counter()) if self.rsjk: vj, vk = self.rsjk.get_jk(dm_kpts, hermi, kpts, kpts_band, with_j, with_k, omega=omega, exxdiv=self.exxdiv) else: vj, vk = self.with_df.get_jk(dm_kpts, hermi, kpts, kpts_band, with_j, with_k, omega=omega, exxdiv=self.exxdiv) logger.timer(self, 'vj and vk', *cpu0) return vj, vk
[docs] def get_veff(self, cell=None, dm_kpts=None, dm_last=0, vhf_last=0, hermi=1, kpts=None, kpts_band=None): '''Hartree-Fock potential matrix for the given density matrix. See :func:`scf.hf.get_veff` and :func:`scf.hf.RHF.get_veff` ''' if dm_kpts is None: dm_kpts = self.make_rdm1() vj, vk = self.get_jk(cell, dm_kpts, hermi, kpts, kpts_band) return vj - vk * .5
[docs] def get_grad(self, mo_coeff_kpts, mo_occ_kpts, fock=None): ''' returns 1D array of gradients, like non K-pt version note that occ and virt indices of different k pts now occur in sequential patches of the 1D array ''' if fock is None: dm1 = self.make_rdm1(mo_coeff_kpts, mo_occ_kpts) fock = self.get_hcore(self.cell, self.kpts) + self.get_veff(self.cell, dm1) return get_grad(mo_coeff_kpts, mo_occ_kpts, fock)
[docs] def eig(self, h_kpts, s_kpts): nkpts = len(h_kpts) eig_kpts = [] mo_coeff_kpts = [] for k in range(nkpts): e, c = self._eigh(h_kpts[k], s_kpts[k]) eig_kpts.append(e) mo_coeff_kpts.append(c) return eig_kpts, mo_coeff_kpts
[docs] def make_rdm1(self, mo_coeff_kpts=None, mo_occ_kpts=None, **kwargs): if mo_coeff_kpts is None: # Note: this is actually "self.mo_coeff_kpts" # which is stored in self.mo_coeff of the scf.hf.RHF superclass mo_coeff_kpts = self.mo_coeff if mo_occ_kpts is None: # Note: this is actually "self.mo_occ_kpts" # which is stored in self.mo_occ of the scf.hf.RHF superclass mo_occ_kpts = self.mo_occ return make_rdm1(mo_coeff_kpts, mo_occ_kpts, **kwargs)
[docs] def make_rdm2(self, mo_coeff_kpts, mo_occ_kpts, **kwargs): raise NotImplementedError
[docs] def get_bands(self, kpts_band, cell=None, dm_kpts=None, kpts=None): '''Get energy bands at the given (arbitrary) 'band' k-points. Returns: mo_energy : (nmo,) ndarray or a list of (nmo,) ndarray Bands energies E_n(k) mo_coeff : (nao, nmo) ndarray or a list of (nao,nmo) ndarray Band orbitals psi_n(k) ''' if cell is None: cell = self.cell if dm_kpts is None: dm_kpts = self.make_rdm1() if kpts is None: kpts = self.kpts kpts_band = np.asarray(kpts_band) single_kpt_band = (kpts_band.ndim == 1) kpts_band = kpts_band.reshape(-1,3) fock = self.get_hcore(cell, kpts_band) fock = fock + self.get_veff(cell, dm_kpts, kpts=kpts, kpts_band=kpts_band) s1e = self.get_ovlp(cell, kpts_band) mo_energy, mo_coeff = self.eig(fock, s1e) if single_kpt_band: mo_energy = mo_energy[0] mo_coeff = mo_coeff[0] return mo_energy, mo_coeff
[docs] def init_guess_by_chkfile(self, chk=None, project=None, kpts=None): if chk is None: chk = self.chkfile if kpts is None: kpts = self.kpts return init_guess_by_chkfile(self.cell, chk, project, kpts)
[docs] def from_chk(self, chk=None, project=None, kpts=None): return self.init_guess_by_chkfile(chk, project, kpts)
[docs] def dump_chk(self, envs): if self.chkfile: mol_hf.SCF.dump_chk(self, envs) with lib.H5FileWrap(self.chkfile, 'a') as fh5: fh5['scf/kpts'] = self.kpts return self
[docs] def analyze(mf, verbose=None, with_meta_lowdin=WITH_META_LOWDIN, **kwargs): raise NotImplementedError
[docs] def mulliken_meta(self, cell=None, dm=None, verbose=logger.DEBUG, pre_orth_method=PRE_ORTH_METHOD, s=None): raise NotImplementedError
[docs] def mulliken_pop(self): raise NotImplementedError
[docs] @lib.with_doc(dip_moment.__doc__) def dip_moment(self, cell=None, dm=None, unit='Debye', verbose=logger.NOTE, **kwargs): if cell is None: cell = self.cell rho = kwargs.pop('rho', None) if rho is None: rho = self.get_rho(dm) return dip_moment(cell, dm, unit, verbose, rho=rho, kpts=self.kpts, **kwargs)
[docs] def density_fit(self, auxbasis=None, with_df=None): from pyscf.pbc.df import df_jk return df_jk.density_fit(self, auxbasis, with_df=with_df)
[docs] def rs_density_fit(self, auxbasis=None, with_df=None): from pyscf.pbc.df import rsdf_jk return rsdf_jk.density_fit(self, auxbasis, with_df=with_df)
[docs] def mix_density_fit(self, auxbasis=None, with_df=None): from pyscf.pbc.df import mdf_jk return mdf_jk.density_fit(self, auxbasis, with_df=with_df)
[docs] def newton(self): from pyscf.pbc.scf import newton_ah return newton_ah.newton(self)
[docs] def sfx2c1e(self): from pyscf.pbc.x2c import sfx2c1e return sfx2c1e.sfx2c1e(self)
x2c = x2c1e = sfx2c1e
[docs] def to_rhf(self): '''Convert the input mean-field object to a KRHF/KROHF/KRKS/KROKS object''' return addons.convert_to_rhf(self)
[docs] def to_uhf(self): '''Convert the input mean-field object to a KUHF/KUKS object''' return addons.convert_to_uhf(self)
[docs] def to_ghf(self): '''Convert the input mean-field object to a KGHF/KGKS object''' return addons.convert_to_ghf(self)
[docs] def to_kscf(self): '''Convert to k-point SCF object ''' return self
[docs] def to_khf(self): '''Disable point group symmetry ''' return self
[docs] def convert_from_(self, mf): raise NotImplementedError
[docs] class KRHF(KSCF): analyze = analyze spin_square = mol_hf.RHF.spin_square to_gpu = lib.to_gpu
[docs] def check_sanity(self): cell = self.cell if isinstance(self.kpts, KPoints): nkpts = self.kpts.nkpts else: nkpts = len(self.kpts) if cell.spin != 0 and nkpts % 2 != 0: logger.warn(self, 'Problematic nelec %s and number of k-points %d ' 'found in KRHF method.', cell.nelec, nkpts) return KSCF.check_sanity(self)
[docs] def get_init_guess(self, cell=None, key='minao', s1e=None): if s1e is None: s1e = self.get_ovlp(cell) dm = mol_hf.SCF.get_init_guess(self, cell, key) nkpts = len(self.kpts) if dm.ndim == 2: # dm[nao,nao] at gamma point -> dm_kpts[nkpts,nao,nao] dm = np.repeat(dm[None,:,:], nkpts, axis=0) dm_kpts = dm ne = lib.einsum('kij,kji->', dm_kpts, s1e).real # FIXME: consider the fractional num_electron or not? This maybe # relate to the charged system. nelectron = float(self.cell.tot_electrons(nkpts)) if abs(ne - nelectron) > 0.01*nkpts: logger.debug(self, 'Big error detected in the electron number ' 'of initial guess density matrix (Ne/cell = %g)!\n' ' This can cause huge error in Fock matrix and ' 'lead to instability in SCF for low-dimensional ' 'systems.\n DM is normalized wrt the number ' 'of electrons %s', ne/nkpts, nelectron/nkpts) dm_kpts *= (nelectron / ne).reshape(-1,1,1) return dm_kpts
[docs] @lib.with_doc(mulliken_meta.__doc__) def mulliken_meta(self, cell=None, dm=None, verbose=logger.DEBUG, pre_orth_method=PRE_ORTH_METHOD, s=None): if cell is None: cell = self.cell if dm is None: dm = self.make_rdm1() if s is None: s = self.get_ovlp(cell) return mulliken_meta(cell, dm, s=s, verbose=verbose, pre_orth_method=pre_orth_method)
[docs] def nuc_grad_method(self): from pyscf.pbc.grad import krhf return krhf.Gradients(self)
[docs] def stability(self, internal=getattr(__config__, 'pbc_scf_KSCF_stability_internal', True), external=getattr(__config__, 'pbc_scf_KSCF_stability_external', False), verbose=None): from pyscf.pbc.scf.stability import rhf_stability return rhf_stability(self, internal, external, verbose)
[docs] def to_ks(self, xc='HF'): '''Convert to RKS object. ''' from pyscf.pbc import dft return self._transfer_attrs_(dft.KRKS(self.cell, self.kpts, xc=xc))
[docs] def convert_from_(self, mf): '''Convert given mean-field object to KRHF/KROHF''' addons.convert_to_rhf(mf, self) return self