Source code for pyscf.pbc.scf.krohf

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Restricted open-shell Hartree-Fock for periodic systems with k-point sampling
'''

from functools import reduce
import numpy as np
import scipy.linalg
from pyscf.scf import hf as mol_hf
from pyscf.pbc.scf import khf
from pyscf.pbc.scf import kuhf
from pyscf.pbc.scf import rohf as pbcrohf
from pyscf import lib
from pyscf.lib import logger
from pyscf.pbc.scf import addons
from pyscf import __config__

PRE_ORTH_METHOD = getattr(__config__, 'pbc_scf_analyze_pre_orth_method', 'ANO')


[docs] def make_rdm1(mo_coeff_kpts, mo_occ_kpts, **kwargs): '''Alpha and beta spin one particle density matrices for all k-points. Returns: dm_kpts : (2, nkpts, nao, nao) ndarray ''' dma = [] dmb = [] for k, occ in enumerate(mo_occ_kpts): mo_a = mo_coeff_kpts[k][:,occ> 0] mo_b = mo_coeff_kpts[k][:,occ==2] dma.append(np.dot(mo_a, mo_a.conj().T)) dmb.append(np.dot(mo_b, mo_b.conj().T)) return lib.tag_array((dma, dmb), mo_coeff=mo_coeff_kpts, mo_occ=mo_occ_kpts)
[docs] def get_fock(mf, h1e=None, s1e=None, vhf=None, dm=None, cycle=-1, diis=None, diis_start_cycle=None, level_shift_factor=None, damp_factor=None, fock_last=None): h1e_kpts, s_kpts, vhf_kpts, dm_kpts = h1e, s1e, vhf, dm if h1e_kpts is None: h1e_kpts = mf.get_hcore() if vhf_kpts is None: vhf_kpts = mf.get_veff(mf.cell, dm_kpts) focka = h1e_kpts + vhf_kpts[0] fockb = h1e_kpts + vhf_kpts[1] f_kpts = get_roothaan_fock((focka,fockb), dm, s1e) if cycle < 0 and diis is None: # Not inside the SCF iteration return f_kpts if diis_start_cycle is None: diis_start_cycle = mf.diis_start_cycle if level_shift_factor is None: level_shift_factor = mf.level_shift if damp_factor is None: damp_factor = mf.damp if s_kpts is None: s_kpts = mf.get_ovlp() if dm_kpts is None: dm_kpts = mf.make_rdm1() dm_sf = dm_kpts[0] + dm_kpts[1] if 0 <= cycle < diis_start_cycle-1 and abs(damp_factor) > 1e-4 and fock_last is not None: raise NotImplementedError('ROHF Fock-damping') if diis and cycle >= diis_start_cycle: f_kpts = diis.update(s_kpts, dm_sf, f_kpts, mf, h1e_kpts, vhf_kpts, f_prev=fock_last) if abs(level_shift_factor) > 1e-4: f_kpts = [mol_hf.level_shift(s, dm_sf[k]*.5, f_kpts[k], level_shift_factor) for k, s in enumerate(s_kpts)] f_kpts = lib.tag_array(lib.asarray(f_kpts), focka=focka, fockb=fockb) return f_kpts
[docs] def get_roothaan_fock(focka_fockb, dma_dmb, s): '''Roothaan's effective fock. ======== ======== ====== ========= space closed open virtual ======== ======== ====== ========= closed Fc Fb Fc open Fb Fc Fa virtual Fc Fa Fc ======== ======== ====== ========= where Fc = (Fa + Fb) / 2 Returns: Roothaan effective Fock matrix ''' nkpts = len(s) nao = s[0].shape[0] focka, fockb = focka_fockb dma, dmb = dma_dmb fock_kpts = [] for k in range(nkpts): fc = (focka[k] + fockb[k]) * .5 pc = np.dot(dmb[k], s[k]) po = np.dot(dma[k]-dmb[k], s[k]) pv = np.eye(nao) - np.dot(dma[k], s[k]) fock = reduce(np.dot, (pc.conj().T, fc, pc)) * .5 fock += reduce(np.dot, (po.conj().T, fc, po)) * .5 fock += reduce(np.dot, (pv.conj().T, fc, pv)) * .5 fock += reduce(np.dot, (po.conj().T, fockb[k], pc)) fock += reduce(np.dot, (po.conj().T, focka[k], pv)) fock += reduce(np.dot, (pv.conj().T, fc, pc)) fock_kpts.append(fock + fock.conj().T) fock_kpts = lib.tag_array(np.asarray(fock_kpts), focka=focka, fockb=fockb) return fock_kpts
[docs] def get_occ(mf, mo_energy_kpts=None, mo_coeff_kpts=None): '''Label the occupancies for each orbital for sampled k-points. This is a k-point version of scf.hf.SCF.get_occ ''' if mo_energy_kpts is None: mo_energy_kpts = mf.mo_energy if getattr(mo_energy_kpts[0], 'mo_ea', None) is not None: mo_ea_kpts = [x.mo_ea for x in mo_energy_kpts] mo_eb_kpts = [x.mo_eb for x in mo_energy_kpts] else: mo_ea_kpts = mo_eb_kpts = mo_energy_kpts nocc_a, nocc_b = mf.nelec mo_energy_kpts1 = np.hstack(mo_energy_kpts) mo_energy = np.sort(mo_energy_kpts1) if nocc_b > 0: core_level = mo_energy[nocc_b-1] else: core_level = -1e9 if nocc_a == nocc_b: fermi = core_level else: mo_ea_kpts1 = np.hstack(mo_ea_kpts) mo_ea = np.sort(mo_ea_kpts1[mo_energy_kpts1 > core_level]) fermi = mo_ea[nocc_a - nocc_b - 1] mo_occ_kpts = [] for k, mo_e in enumerate(mo_energy_kpts): occ = np.zeros_like(mo_e) occ[mo_e <= core_level] = 2 if nocc_a != nocc_b: occ[(mo_e > core_level) & (mo_ea_kpts[k] <= fermi)] = 1 mo_occ_kpts.append(occ) if nocc_a < len(mo_energy): logger.info(mf, 'HOMO = %.12g LUMO = %.12g', mo_energy[nocc_a-1], mo_energy[nocc_a]) else: logger.info(mf, 'HOMO = %.12g', mo_energy[nocc_a-1]) np.set_printoptions(threshold=len(mo_energy)) if mf.verbose >= logger.DEBUG: logger.debug(mf, ' Roothaan | alpha | beta') for k,kpt in enumerate(mf.cell.get_scaled_kpts(mf.kpts)): core_idx = mo_occ_kpts[k] == 2 open_idx = mo_occ_kpts[k] == 1 vir_idx = mo_occ_kpts[k] == 0 logger.debug(mf, ' kpt %2d (%6.3f %6.3f %6.3f)', k, kpt[0], kpt[1], kpt[2]) if np.count_nonzero(core_idx) > 0: logger.debug(mf, ' Highest 2-occ = %18.15g | %18.15g | %18.15g', max(mo_energy_kpts[k][core_idx]), max(mo_ea_kpts[k][core_idx]), max(mo_eb_kpts[k][core_idx])) if np.count_nonzero(vir_idx) > 0: logger.debug(mf, ' Lowest 0-occ = %18.15g | %18.15g | %18.15g', min(mo_energy_kpts[k][vir_idx]), min(mo_ea_kpts[k][vir_idx]), min(mo_eb_kpts[k][vir_idx])) for i in np.where(open_idx)[0]: logger.debug(mf, ' 1-occ = %18.15g | %18.15g | %18.15g', mo_energy_kpts[k][i], mo_ea_kpts[k][i], mo_eb_kpts[k][i]) logger.debug(mf, ' k-point Roothaan mo_energy') for k,kpt in enumerate(mf.cell.get_scaled_kpts(mf.kpts)): logger.debug(mf, ' %2d (%6.3f %6.3f %6.3f) %s %s', k, kpt[0], kpt[1], kpt[2], mo_energy_kpts[k][mo_occ_kpts[k]> 0], mo_energy_kpts[k][mo_occ_kpts[k]==0]) if mf.verbose >= logger.DEBUG1: logger.debug1(mf, ' k-point alpha mo_energy') for k,kpt in enumerate(mf.cell.get_scaled_kpts(mf.kpts)): logger.debug1(mf, ' %2d (%6.3f %6.3f %6.3f) %s %s', k, kpt[0], kpt[1], kpt[2], mo_ea_kpts[k][mo_occ_kpts[k]> 0], mo_ea_kpts[k][mo_occ_kpts[k]==0]) logger.debug1(mf, ' k-point beta mo_energy') for k,kpt in enumerate(mf.cell.get_scaled_kpts(mf.kpts)): logger.debug1(mf, ' %2d (%6.3f %6.3f %6.3f) %s %s', k, kpt[0], kpt[1], kpt[2], mo_eb_kpts[k][mo_occ_kpts[k]==2], mo_eb_kpts[k][mo_occ_kpts[k]!=2]) np.set_printoptions(threshold=1000) return mo_occ_kpts
energy_elec = kuhf.energy_elec dip_moment = kuhf.dip_moment get_rho = kuhf.get_rho
[docs] @lib.with_doc(khf.mulliken_meta.__doc__) def mulliken_meta(cell, dm_ao_kpts, verbose=logger.DEBUG, pre_orth_method=PRE_ORTH_METHOD, s=None): '''Mulliken population analysis, based on meta-Lowdin AOs. Note this function only computes the Mulliken population for the gamma point density matrix. ''' dm = dm_ao_kpts[0] + dm_ao_kpts[1] return khf.mulliken_meta(cell, dm, verbose, pre_orth_method, s)
[docs] def canonicalize(mf, mo_coeff_kpts, mo_occ_kpts, fock=None): '''Canonicalization diagonalizes the ROHF Fock matrix within occupied, virtual subspaces separatedly (without change occupancy). ''' if fock is None: dm = mf.make_rdm1(mo_coeff_kpts, mo_occ_kpts) fock = mf.get_fock(dm=dm) mo_coeff = [] mo_energy = [] for k, mo in enumerate(mo_coeff_kpts): mo1 = np.empty_like(mo) mo_e = np.empty_like(mo_occ_kpts[k]) coreidx = mo_occ_kpts[k] == 2 openidx = mo_occ_kpts[k] == 1 viridx = mo_occ_kpts[k] == 0 for idx in (coreidx, openidx, viridx): if np.count_nonzero(idx) > 0: orb = mo[:,idx] f1 = reduce(np.dot, (orb.T.conj(), fock[k], orb)) e, c = scipy.linalg.eigh(f1) mo1[:,idx] = np.dot(orb, c) mo_e[idx] = e if getattr(fock, 'focka', None) is not None: fa, fb = fock.focka[k], fock.fockb[k] mo_ea = np.einsum('pi,pi->i', mo1.conj(), fa.dot(mo1)).real mo_eb = np.einsum('pi,pi->i', mo1.conj(), fb.dot(mo1)).real mo_e = lib.tag_array(mo_e, mo_ea=mo_ea, mo_eb=mo_eb) mo_coeff.append(mo1) mo_energy.append(mo_e) return mo_energy, mo_coeff
init_guess_by_chkfile = kuhf.init_guess_by_chkfile
[docs] class KROHF(khf.KRHF): '''UHF class with k-point sampling. ''' conv_tol_grad = getattr(__config__, 'pbc_scf_KSCF_conv_tol_grad', None) get_init_guess = kuhf.KUHF.get_init_guess init_guess_by_minao = pbcrohf.ROHF.init_guess_by_minao init_guess_by_atom = pbcrohf.ROHF.init_guess_by_atom init_guess_by_huckel = pbcrohf.ROHF.init_guess_by_huckel init_guess_by_mod_huckel = pbcrohf.ROHF.init_guess_by_mod_huckel get_fock = get_fock get_occ = get_occ energy_elec = energy_elec get_rho = get_rho analyze = khf.analyze spin_square = pbcrohf.ROHF.spin_square canonicalize = canonicalize to_gpu = lib.to_gpu def __init__(self, cell, kpts=np.zeros((1,3)), exxdiv=getattr(__config__, 'pbc_scf_SCF_exxdiv', 'ewald')): khf.KSCF.__init__(self, cell, kpts, exxdiv) self.nelec = None @property def nelec(self): if self._nelec is not None: return self._nelec else: cell = self.cell nkpts = len(self.kpts) ne = cell.tot_electrons(nkpts) nalpha = (ne + cell.spin) // 2 nbeta = nalpha - cell.spin if nalpha + nbeta != ne: raise RuntimeError('Electron number %d and spin %d are not consistent\n' 'Note cell.spin = 2S = Nalpha - Nbeta, not 2S+1' % (ne, cell.spin)) return nalpha, nbeta @nelec.setter def nelec(self, x): self._nelec = x
[docs] def dump_flags(self, verbose=None): khf.KSCF.dump_flags(self, verbose) logger.info(self, 'number of electrons per cell ' 'alpha = %d beta = %d', *self.nelec) return self
[docs] def get_veff(self, cell=None, dm_kpts=None, dm_last=0, vhf_last=0, hermi=1, kpts=None, kpts_band=None): if dm_kpts is None: dm_kpts = self.make_rdm1() if getattr(dm_kpts, 'mo_coeff', None) is not None: mo_coeff = dm_kpts.mo_coeff mo_occ_a = [(x > 0).astype(np.double) for x in dm_kpts.mo_occ] mo_occ_b = [(x ==2).astype(np.double) for x in dm_kpts.mo_occ] dm_kpts = lib.tag_array(dm_kpts, mo_coeff=(mo_coeff,mo_coeff), mo_occ=(mo_occ_a,mo_occ_b)) vj, vk = self.get_jk(cell, dm_kpts, hermi, kpts, kpts_band) vhf = vj[0] + vj[1] - vk return vhf
[docs] def get_grad(self, mo_coeff_kpts, mo_occ_kpts, fock=None): if fock is None: dm1 = self.make_rdm1(mo_coeff_kpts, mo_occ_kpts) fock = self.get_hcore(self.cell, self.kpts) + self.get_veff(self.cell, dm1) if getattr(fock, 'focka', None) is not None: focka = fock.focka fockb = fock.fockb elif getattr(fock, 'ndim', None) == 4: focka, fockb = fock else: focka = fockb = fock def grad(k): mo_occ = mo_occ_kpts[k] mo_coeff = mo_coeff_kpts[k] return pbcrohf.get_grad(mo_coeff, mo_occ, (focka[k], fockb[k])) nkpts = len(self.kpts) grad_kpts = np.hstack([grad(k) for k in range(nkpts)]) return grad_kpts
[docs] def eig(self, fock, s): e, c = khf.KSCF.eig(self, fock, s) if getattr(fock, 'focka', None) is not None: for k, mo in enumerate(c): fa, fb = fock.focka[k], fock.fockb[k] mo_ea = np.einsum('pi,pi->i', mo.conj(), fa.dot(mo)).real mo_eb = np.einsum('pi,pi->i', mo.conj(), fb.dot(mo)).real e[k] = lib.tag_array(e[k], mo_ea=mo_ea, mo_eb=mo_eb) return e, c
[docs] def make_rdm1(self, mo_coeff_kpts=None, mo_occ_kpts=None, **kwargs): if mo_coeff_kpts is None: mo_coeff_kpts = self.mo_coeff if mo_occ_kpts is None: mo_occ_kpts = self.mo_occ return make_rdm1(mo_coeff_kpts, mo_occ_kpts, **kwargs)
[docs] def init_guess_by_chkfile(self, chk=None, project=True, kpts=None): if chk is None: chk = self.chkfile if kpts is None: kpts = self.kpts return init_guess_by_chkfile(self.cell, chk, project, kpts)
[docs] def mulliken_meta(self, cell=None, dm=None, verbose=logger.DEBUG, pre_orth_method=PRE_ORTH_METHOD, s=None): if cell is None: cell = self.cell if dm is None: dm = self.make_rdm1() if s is None: s = self.get_ovlp(cell) return mulliken_meta(cell, dm, s=s, verbose=verbose, pre_orth_method=pre_orth_method)
[docs] def stability(self, internal=getattr(__config__, 'pbc_scf_KSCF_stability_internal', True), external=getattr(__config__, 'pbc_scf_KSCF_stability_external', False), verbose=None): raise NotImplementedError
[docs] def to_ks(self, xc='HF'): '''Convert to RKS object. ''' from pyscf.pbc import dft return self._transfer_attrs_(dft.KROKS(self.cell, self.kpts, xc=xc))