Source code for pyscf.pbc.scf.stability

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''Wave Function Stability Analysis

Ref.
JCP 66, 3045 (1977); DOI:10.1063/1.434318
JCP 104, 9047 (1996); DOI:10.1063/1.471637

See also tddft/rhf.py and scf/newton_ah.py
'''

from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf.lib import logger
from pyscf.pbc.scf import newton_ah
from pyscf.pbc.scf import _response_functions  # noqa

[docs] def rhf_stability(mf, internal=True, external=False, verbose=None): mo_i = mo_e = None if internal: mo_i = rhf_internal(mf, verbose=verbose) if external: mo_e = rhf_external(mf, verbose=verbose) return mo_i, mo_e
[docs] def uhf_stability(mf, internal=True, external=False, verbose=None): mo_i = mo_e = None if internal: mo_i = uhf_internal(mf, verbose=verbose) if external: mo_e = uhf_external(mf, verbose=verbose) return mo_i, mo_e
[docs] def rhf_internal(mf, verbose=None): log = logger.new_logger(mf, verbose) g, hop, hdiag = newton_ah.gen_g_hop_rhf(mf, mf.mo_coeff, mf.mo_occ) def precond(dx, e, x0): hdiagd = hdiag*2 - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd # The results of hop(x) corresponds to a displacement that reduces # gradients g. It is the vir-occ block of the matrix vector product # (Hessian*x). The occ-vir block equals to x2.T.conj(). The overall # Hessian for internal reotation is x2 + x2.T.conj(). This is # the reason we apply (.real * 2) below def hessian_x(x): return hop(x).real * 2 x0 = numpy.zeros_like(g) x0[g!=0] = 1. / hdiag[g!=0] e, v = lib.davidson(hessian_x, x0, precond, tol=1e-4, verbose=log) if e < -1e-5: log.log('KRHF/KRKS wavefunction has an internal instability') mo = _rotate_mo(mf.mo_coeff, mf.mo_occ, v) else: log.log('KRHF/KRKS wavefunction is stable in the internal stability analysis') mo = mf.mo_coeff return mo
def _rotate_mo(mo_coeff, mo_occ, dx): mo = [] p1 = 0 dtype = numpy.result_type(dx, *mo_coeff) for k, occ in enumerate(mo_occ): nmo = occ.size no = numpy.count_nonzero(occ > 0) nv = nmo - no p0, p1 = p1, p1 + nv * no dr = numpy.zeros((nmo,nmo), dtype=dtype) dr[no:,:no] = dx[p0:p1].reshape(nv,no) dr[:no,no:] =-dx[p0:p1].reshape(nv,no).conj().T mo.append(numpy.dot(mo_coeff[k], scipy.linalg.expm(dr))) return mo #FIXME: numerically unstable with small mesh? #TODO: Add a warning message for small mesh. def _gen_hop_rhf_external(mf, verbose=None): from pyscf.pbc.scf.newton_ah import _unpack cell = mf.cell mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ nkpts = len(mo_occ) occidx = [numpy.where(mo_occ[k]==2)[0] for k in range(nkpts)] viridx = [numpy.where(mo_occ[k]==0)[0] for k in range(nkpts)] orbo = [mo_coeff[k][:,occidx[k]] for k in range(nkpts)] orbv = [mo_coeff[k][:,viridx[k]] for k in range(nkpts)] h1e = mf.get_hcore() dm0 = mf.make_rdm1(mo_coeff, mo_occ) fock_ao = h1e + mf.get_veff(cell, dm0) fock = [reduce(numpy.dot, (mo_coeff[k].T.conj(), fock_ao[k], mo_coeff[k])) for k in range(nkpts)] foo = [fock[k][occidx[k][:,None],occidx[k]] for k in range(nkpts)] fvv = [fock[k][viridx[k][:,None],viridx[k]] for k in range(nkpts)] hdiag = [(fvv[k].diagonal().real[:,None]-foo[k].diagonal().real) * 2 for k in range(nkpts)] hdiag = numpy.hstack([x.ravel() for x in hdiag]) vresp1 = mf.gen_response(singlet=False, hermi=1) def hop_rhf2uhf(x1): x1 = _unpack(x1, mo_occ) dmvo = [] for k in range(nkpts): # *2 for double occupancy dm1 = reduce(numpy.dot, (orbv[k], x1[k]*2, orbo[k].T.conj())) dmvo.append(dm1 + dm1.T.conj()) dmvo = lib.asarray(dmvo) v1ao = vresp1(dmvo) x2 = [0] * nkpts for k in range(nkpts): x2[k] = numpy.einsum('ps,sq->pq', fvv[k], x1[k]) x2[k]-= numpy.einsum('ps,rp->rs', foo[k], x1[k]) x2[k]+= reduce(numpy.dot, (orbv[k].T.conj(), v1ao[k], orbo[k])) # The displacement x2 corresponds to the response of rotation for bra. # Hessian*x also provides the rotation for ket which equals to # x2.T.conj(). The overall displacement is x2 + x2.T.conj(). This is # the reason of x2.real below return numpy.hstack([x.real.ravel() for x in x2]) return hop_rhf2uhf, hdiag
[docs] def rhf_external(mf, verbose=None): log = logger.new_logger(mf, verbose) hop2, hdiag2 = _gen_hop_rhf_external(mf) def precond(dx, e, x0): hdiagd = hdiag2 - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd x0 = numpy.zeros_like(hdiag2) x0[hdiag2>1e-5] = 1. / hdiag2[hdiag2>1e-5] e3, v3 = lib.davidson(hop2, x0, precond, tol=1e-4, verbose=log) if e3 < -1e-5: log.log('KRHF/KRKS wavefunction has an KRHF/KRKS -> KUHF/KUKS instability.') mo = (_rotate_mo(mf.mo_coeff, mf.mo_occ, v3), mf.mo_coeff) else: log.log('KRHF/KRKS wavefunction is stable in the KRHF/KRKS -> KUHF/KUKS stability analysis') mo = (mf.mo_coeff, mf.mo_coeff) return mo
[docs] def uhf_internal(mf, verbose=None): log = logger.new_logger(mf, verbose) g, hop, hdiag = newton_ah.gen_g_hop_uhf(mf, mf.mo_coeff, mf.mo_occ) def precond(dx, e, x0): hdiagd = hdiag*2 - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd def hessian_x(x): # See comments in function rhf_internal return hop(x).real * 2 x0 = numpy.zeros_like(g) x0[g!=0] = 1. / hdiag[g!=0] e, v = lib.davidson(hessian_x, x0, precond, tol=1e-4, verbose=log) if e < -1e-5: log.log('KUHF/KUKS wavefunction has an internal instability.') tot_x_a = sum((occ>0).sum()*(occ==0).sum() for occ in mf.mo_occ[0]) mo = (_rotate_mo(mf.mo_coeff[0], mf.mo_occ[0], v[:tot_x_a]), _rotate_mo(mf.mo_coeff[1], mf.mo_occ[1], v[tot_x_a:])) else: log.log('KUHF/KUKS wavefunction is stable in the internal stability analysis') mo = mf.mo_coeff return mo
def _gen_hop_uhf_external(mf, verbose=None): cell = mf.cell mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ nkpts = len(mo_occ[0]) occidxa = [numpy.where(mo_occ[0][k]>0)[0] for k in range(nkpts)] occidxb = [numpy.where(mo_occ[1][k]>0)[0] for k in range(nkpts)] viridxa = [numpy.where(mo_occ[0][k]==0)[0] for k in range(nkpts)] viridxb = [numpy.where(mo_occ[1][k]==0)[0] for k in range(nkpts)] nocca = [len(occidxa[k]) for k in range(nkpts)] noccb = [len(occidxb[k]) for k in range(nkpts)] nvira = [len(viridxa[k]) for k in range(nkpts)] nvirb = [len(viridxb[k]) for k in range(nkpts)] moa, mob = mo_coeff orboa = [moa[k][:,occidxa[k]] for k in range(nkpts)] orbva = [moa[k][:,viridxa[k]] for k in range(nkpts)] orbob = [mob[k][:,occidxb[k]] for k in range(nkpts)] orbvb = [mob[k][:,viridxb[k]] for k in range(nkpts)] h1e = mf.get_hcore() dm0 = mf.make_rdm1(mo_coeff, mo_occ) fock_ao = h1e + mf.get_veff(cell, dm0) focka = [reduce(numpy.dot, (moa[k].T.conj(), fock_ao[0][k], moa[k])) for k in range(nkpts)] fockb = [reduce(numpy.dot, (mob[k].T.conj(), fock_ao[1][k], mob[k])) for k in range(nkpts)] fooa = [focka[k][occidxa[k][:,None],occidxa[k]] for k in range(nkpts)] fvva = [focka[k][viridxa[k][:,None],viridxa[k]] for k in range(nkpts)] foob = [fockb[k][occidxb[k][:,None],occidxb[k]] for k in range(nkpts)] fvvb = [fockb[k][viridxb[k][:,None],viridxb[k]] for k in range(nkpts)] hdiagab = [fvva[k].diagonal().real[:,None] - foob[k].diagonal().real for k in range(nkpts)] hdiagba = [fvvb[k].diagonal().real[:,None] - fooa[k].diagonal().real for k in range(nkpts)] hdiag2 = numpy.hstack([x.ravel() for x in (hdiagab + hdiagba)]) vresp1 = mf.gen_response(with_j=False, hermi=0) def hop_uhf2ghf(x1): x1ab = [] x1ba = [] ip = 0 for k in range(nkpts): nv = nvira[k] no = noccb[k] x1ab.append(x1[ip:ip+nv*no].reshape(nv,no)) ip += nv * no for k in range(nkpts): nv = nvirb[k] no = nocca[k] x1ba.append(x1[ip:ip+nv*no].reshape(nv,no)) ip += nv * no dm1ab = [] dm1ba = [] for k in range(nkpts): d1ab = reduce(numpy.dot, (orbva[k], x1ab[k], orbob[k].T.conj())) d1ba = reduce(numpy.dot, (orbvb[k], x1ba[k], orboa[k].T.conj())) dm1ab.append(d1ab+d1ba.T.conj()) dm1ba.append(d1ba+d1ab.T.conj()) v1ao = vresp1(lib.asarray([dm1ab,dm1ba])) x2ab = [0] * nkpts x2ba = [0] * nkpts for k in range(nkpts): x2ab[k] = numpy.einsum('pr,rq->pq', fvva[k], x1ab[k]) x2ab[k]-= numpy.einsum('sq,ps->pq', foob[k], x1ab[k]) x2ba[k] = numpy.einsum('pr,rq->pq', fvvb[k], x1ba[k]) x2ba[k]-= numpy.einsum('qs,ps->pq', fooa[k], x1ba[k]) x2ab[k] += reduce(numpy.dot, (orbva[k].T.conj(), v1ao[0][k], orbob[k])) x2ba[k] += reduce(numpy.dot, (orbvb[k].T.conj(), v1ao[1][k], orboa[k])) return numpy.hstack([x.real.ravel() for x in (x2ab+x2ba)]) return hop_uhf2ghf, hdiag2
[docs] def uhf_external(mf, verbose=None): log = logger.new_logger(mf, verbose) hop2, hdiag2 = _gen_hop_uhf_external(mf) def precond(dx, e, x0): hdiagd = hdiag2 - e hdiagd[abs(hdiagd)<1e-8] = 1e-8 return dx/hdiagd x0 = numpy.zeros_like(hdiag2) x0[hdiag2>1e-5] = 1. / hdiag2[hdiag2>1e-5] e3, v = lib.davidson(hop2, x0, precond, tol=1e-4, verbose=log) log.debug('uhf_external: lowest eigs of H = %s', e3) mo = None if e3 < -1e-5: log.log('KUHF/KUKS wavefunction has an KUHF/KUKS -> KGHF/KGKS instability.') else: log.log('KUHF/KUKS wavefunction is stable in the KUHF/KUKS -> KGHF/KGKS stability analysis') return mo
if __name__ == '__main__': from pyscf.pbc import gto from pyscf.pbc import scf, dft from pyscf.pbc import df cell = gto.Cell() cell.unit = 'B' cell.atom = ''' C 0. 0. 0. C 1.68506879 1.68506879 1.68506879 ''' cell.a = ''' 0. 3.37013758 3.37013758 3.37013758 0. 3.37013758 3.37013758 3.37013758 0. ''' cell.basis = 'gth-szv' cell.pseudo = 'gth-pade' cell.mesh = [25]*3 cell.build() kpts = cell.make_kpts([2,1,1]) mf = scf.KRHF(cell, kpts[1:]).set(exxdiv=None).run() #mf.with_df = df.DF(cell, kpts) #mf.with_df.auxbasis = 'weigend' #mf.with_df._cderi = 'eri3d-df.h5' #mf.with_df.build(with_j3c=False) rhf_stability(mf, True, True, verbose=5) mf = scf.KUHF(cell, kpts).set(exxdiv=None).run() uhf_stability(mf, True, True, verbose=5) mf = dft.KRKS(cell, kpts).set(xc='bp86').run() rhf_stability(mf, True, True, verbose=5) mf = dft.KUKS(cell, kpts).set(xc='bp86').run() uhf_stability(mf, True, True, verbose=5)