Source code for pyscf.pbc.symm.symmetry

#!/usr/bin/env python
# Copyright 2020-2023 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Xing Zhang <zhangxing.nju@gmail.com>
#

import sys
import copy
from functools import reduce
import numpy as np
from numpy.linalg import inv, det
from pyscf import lib
from pyscf.lib import logger
from pyscf.symm import param
from pyscf.symm.Dmatrix import Dmatrix, get_euler_angles
from pyscf.pbc.symm import space_group
from pyscf.pbc.symm.space_group import SYMPREC, XYZ
from pyscf.pbc.tools import pbc as pbctools

[docs] def get_Dmat(op, l): ''' Get Wigner D-matrix Args: op : (3,3) ndarray rotation operator in (x,y,z) system l : int angular momentum ''' fac = 1 det_op = det(op) if det_op < 0: # improper rotation has |R| = -1 assert abs(det_op + 1) < 1e-9 op = -1 * op fac = (-1) ** l c1 = XYZ c2 = np.dot(op, c1.T).T alpha, beta, gamma = get_euler_angles(c1, c2) D = fac * Dmatrix(l, alpha, beta, gamma, reorder_p=True) return D.round(15)
[docs] def get_Dmat_cart(op,l_max): pp = get_Dmat(op, 1) Ds = [np.ones((1,1))] for l in range(1, l_max+1): # All possible x,y,z combinations cidx = np.sort(lib.cartesian_prod([(0, 1, 2)] * l), axis=1) addr = 0 affine = np.ones((1,1)) for i in range(l): nd = affine.shape[0] * 3 affine = np.einsum('ik,jl->ijkl', affine, pp).reshape(nd, nd) addr = addr * 3 + cidx[:,i] uniq_addr, rev_addr = np.unique(addr, return_inverse=True) ncart = (l + 1) * (l + 2) // 2 assert ncart == uniq_addr.size trans = np.zeros((ncart,ncart)) for i, k in enumerate(rev_addr): trans[k] += affine[i,uniq_addr] Ds.append(trans) return Ds
[docs] def make_Dmats(cell, ops, l_max=None): ''' Computes < m | R | m' > ''' if l_max is None: l_max = np.max(cell._bas[:,1]) else: l_max = max(l_max, np.max(cell._bas[:,1])) Dmats = [] for op in ops: if not cell.cart: Dmats.append([get_Dmat(op, l) for l in range(l_max+1)]) else: Dmats.append(get_Dmat_cart(op, l_max)) return Dmats, l_max
[docs] def check_mesh_symmetry(cell, ops, mesh=None, tol=SYMPREC, return_mesh=False): if mesh is None: mesh = cell.mesh ft = [] rm_list = [] for i, op in enumerate(ops): if not op.trans_is_zero: ft.append(op.trans) tmp = op.trans * np.asarray(mesh) if (abs(tmp - tmp.round()) > tol).any(): rm_list.append(i) if len(rm_list) == 0: mesh1 = mesh else: ft = np.reshape(np.asarray(ft), (-1,3)) mesh1 = copy.deepcopy(mesh) for x in range(3): while True: tmp = ft[:,x] * mesh1[x] if (abs(tmp - tmp.round()) > tol).any(): mesh1[x] = mesh1[x] + 1 else: break if not return_mesh: logger.warn(cell, 'Input mesh %s has lower symmetry than the lattice.\n' 'Some of the symmetry operations will be removed.\n' 'Recommended mesh is %s.', mesh, mesh1) if return_mesh: return rm_list, mesh1 else: return rm_list
[docs] class Symmetry(): ''' Symmetry info of a crystal. Attributes: cell : :class:`Cell` object spacegroup : :class:`SpaceGroup` object symmorphic : bool Whether space group is symmorphic has_inversion : bool Whether space group contains inversion operation ops : list of :class:`SPGElement` object Symmetry operators (may be a subset of the operators in the space group) nop : int Length of `ops`. Dmats : list of 2d arrays Wigner D-matries l_max : int Maximum angular momentum considered in `Dmats` ''' def __init__(self, cell): self.cell = cell self.spacegroup = None self.symmorphic = True self.ops = [space_group.SPGElement(),] self.nop = len(self.ops) self.has_inversion = False self.Dmats = None self.l_max = None self._built = False
[docs] def build(self, space_group_symmetry=True, symmorphic=True, check_mesh_symmetry=True, *args, **kwargs): cell = self.cell if cell is None: self._built = True return self if not space_group_symmetry: self.ops = [space_group.SPGElement(),] else: if not cell._built: sys.stderr.write('Warning: %s must be initialized before calling Symmetry.\n' 'Initialize %s in %s\n' % (cell, cell, self)) cell.build() self.spacegroup = space_group.SpaceGroup(cell).build(dump_info=False) self.symmorphic = symmorphic if cell.dimension < 3: if not self.symmorphic: sys.stderr.write('Warning: setting symmorphic=True for low-dimensional system.\n') self.symmorphic = True ops = self.spacegroup.ops if self.symmorphic: self.ops = [op for op in ops if op.trans_is_zero] elif check_mesh_symmetry: rm_list = self.check_mesh_symmetry(ops=ops) self.ops = [op for i, op in enumerate(ops) if i not in rm_list] else: self.ops = ops self.nop = len(self.ops) self.has_inversion = any([op.rot_is_inversion for op in self.ops]) l_max = None if 'auxcell' in kwargs: auxcell = kwargs['auxcell'] if getattr(auxcell, '_bas', None) is not None: l_max = np.max(auxcell._bas[:,1]) op_rot = [op.a2r(self.cell).rot for op in self.ops] self.Dmats, self.l_max = make_Dmats(self.cell, op_rot, l_max) self._built = True return self
[docs] def check_mesh_symmetry(self, cell=None, ops=None, mesh=None, tol=SYMPREC, return_mesh=False): if cell is None: cell = self.cell if ops is None: ops = self.ops return check_mesh_symmetry(cell, ops, mesh, tol, return_mesh)
[docs] def dump_info(self): self.spacegroup.dump_info(ops=self.ops)
def _get_phase(cell, op, kpt_scaled, ignore_phase=False, tol=SYMPREC): kpt_scaled = op.a2b(cell).dot_rot(kpt_scaled) coords_scaled = cell.get_scaled_atom_coords().reshape(-1,3) natm = coords_scaled.shape[0] phase = np.ones((natm,), dtype=np.complex128) atm_map = np.arange(natm) coords0 = pbctools.round_to_cell0(coords_scaled, tol=tol) for iatm in range(natm): r = coords_scaled[iatm] op_dot_r = op.dot_rot(r) + op.trans op_dot_r_0 = pbctools.round_to_cell0(op_dot_r, tol=tol) equiv_atm = np.where(abs(op_dot_r_0 - coords0).sum(axis=1) < tol)[0] assert len(equiv_atm) == 1 equiv_atm = equiv_atm[0] atm_map[iatm] = equiv_atm Lshift = coords_scaled[equiv_atm] - op_dot_r # Lshift is a lattice vector assert abs(Lshift - Lshift.round()).sum() < tol # remove numerical noise, important for symmetry adaptation Lshift = Lshift.round() if not ignore_phase: phase[iatm] = np.exp(1j * np.dot(kpt_scaled, Lshift) * 2.0 * np.pi) return atm_map, phase def _get_rotation_mat(cell, kpt_scaled_ibz, mo_coeff_or_dm, op, Dmats, ignore_phase=False, tol=SYMPREC): atm_map, phases = _get_phase(cell, op, kpt_scaled_ibz, ignore_phase, tol) dim = mo_coeff_or_dm.shape[0] mat = np.zeros([dim, dim], dtype=np.complex128) aoslice = cell.aoslice_by_atom() for iatm in range(cell.natm): jatm = atm_map[iatm] if iatm != jatm: #sanity check nao_i = aoslice[iatm][3] - aoslice[iatm][2] nao_j = aoslice[jatm][3] - aoslice[jatm][2] assert(nao_i == nao_j) nshl_i = aoslice[iatm][1] - aoslice[iatm][0] nshl_j = aoslice[jatm][1] - aoslice[jatm][0] assert(nshl_i == nshl_j) for ishl in range(nshl_i): shl_i = ishl + aoslice[iatm][0] shl_j = ishl + aoslice[jatm][0] l_i = cell._bas[shl_i,1] l_j = cell._bas[shl_j,1] assert(l_i == l_j) phase = phases[iatm] ao_off_i = aoslice[iatm][2] ao_off_j = aoslice[jatm][2] shlid_0 = aoslice[iatm][0] shlid_1 = aoslice[iatm][1] for ishl in range(shlid_0, shlid_1): l = cell.bas_angular(ishl) Dmat = Dmats[l] * phase if not cell.cart: nao = 2 * l + 1 else: nao = (l+1) * (l+2) // 2 nc = cell.bas_nctr(ishl) for _ in range(nc): mat[ao_off_j:ao_off_j+nao, ao_off_i:ao_off_i+nao] = Dmat ao_off_i += nao ao_off_j += nao assert ao_off_i == aoslice[iatm][3] assert ao_off_j == aoslice[jatm][3] return mat
[docs] def transform_mo_coeff(cell, kpt_scaled, mo_coeff, op, Dmats): ''' Get MO coefficients at a symmetry-related k-point Args: cell : :class:`Cell` object kpt_scaled : (3,) array scaled k-point mo_coeff : (nao, nmo) array MO coefficients at the input k-point op : :class:`SPGElement` object Space group operation that connects the two k-points Dmats: list of arrays Wigner D-matrices for op Returns: MO coefficients at the symmetry-related k-point ''' mat = _get_rotation_mat(cell, kpt_scaled, mo_coeff, op, Dmats) return np.dot(mat, mo_coeff)
[docs] def transform_dm(cell, kpt_scaled, dm, op, Dmats): ''' Get density matrix for a symmetry-related k-point ''' mat = _get_rotation_mat(cell, kpt_scaled, dm, op, Dmats) return reduce(np.dot, (mat, dm, mat.T.conj()))
[docs] def transform_1e_operator(cell, kpt_scaled, fock, op, Dmats): ''' Get 1-electron operator for a symmetry-related k-point ''' mat = _get_rotation_mat(cell, kpt_scaled, fock, op, Dmats) return reduce(np.dot, (mat, fock, mat.T.conj()))
[docs] def make_rot_loc(l_max, key): l = np.arange(l_max+1) if 'cart' in key: dims = ((l+1)*(l+2)//2)**2 elif 'sph' in key: dims = (l*2+1)**2 else: # spinor raise NotImplementedError rot_loc = np.empty(len(dims)+1, dtype=np.int32) rot_loc[0] = 0 dims.cumsum(dtype=np.int32, out=rot_loc[1:]) return rot_loc
[docs] def is_eye(op): raise NotImplementedError
[docs] def is_inversion(op): raise NotImplementedError