Source code for pyscf.pbc.tdscf.krhf

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
# Ref:
# Chem Phys Lett, 256, 454
# J. Mol. Struct. THEOCHEM, 914, 3
#

from functools import reduce
import numpy
from pyscf import lib
from pyscf.lib import linalg_helper
from pyscf.lib import logger
from pyscf.tdscf import rhf
from pyscf.pbc import scf
from pyscf.pbc.tdscf.rhf import TDBase
from pyscf.pbc.scf import _response_functions  # noqa
from pyscf.pbc.lib.kpts_helper import gamma_point, get_kconserv_ria
from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
from pyscf.pbc import df as pbcdf
from pyscf.data import nist
from pyscf import __config__

REAL_EIG_THRESHOLD = getattr(__config__, 'pbc_tdscf_rhf_TDDFT_pick_eig_threshold', 1e-3)

[docs] class KTDBase(TDBase): _keys = {'kconserv', 'kshift_lst'} def __init__(self, mf, kshift_lst=None): assert isinstance(mf, scf.khf.KSCF) TDBase.__init__(self, mf) warn_pbc2d_eri(mf) if kshift_lst is None: kshift_lst = [0] self.kconserv = get_kconserv_ria(mf.cell, mf.kpts) self.kshift_lst = kshift_lst
[docs] def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info('\n') log.info('******** %s for %s ********', self.__class__, self._scf.__class__) if self.singlet is None: log.info('nstates = %d', self.nstates) elif self.singlet: log.info('nstates = %d singlet', self.nstates) else: log.info('nstates = %d triplet', self.nstates) log.info('deg_eia_thresh = %.3e', self.deg_eia_thresh) log.info('kshift_lst = %s', self.kshift_lst) log.info('wfnsym = %s', self.wfnsym) log.info('conv_tol = %g', self.conv_tol) log.info('eigh lindep = %g', self.lindep) log.info('eigh level_shift = %g', self.level_shift) log.info('eigh max_space = %d', self.max_space) log.info('eigh max_cycle = %d', self.max_cycle) log.info('chkfile = %s', self.chkfile) log.info('max_memory %d MB (current use %d MB)', self.max_memory, lib.current_memory()[0]) if not self._scf.converged: log.warn('Ground state SCF is not converged') log.info('\n')
[docs] def check_sanity(self): TDBase.check_sanity(self) mf = self._scf if any([k != 0 for k in self.kshift_lst]): if mf.rsjk is not None or not isinstance(mf.with_df, pbcdf.df.DF): logger.error(self, 'Solutions with non-zero kshift for %s are ' 'only supported by GDF/RSDF') raise NotImplementedError
def _finalize(self): '''Hook for dumping results and clearing up the object.''' for k,kshift in enumerate(self.kshift_lst): if not all(self.converged[k]): logger.note(self, 'kshift = %d TD-SCF states %s not converged.', kshift, [i for i, x in enumerate(self.converged[k]) if not x]) logger.note(self, 'kshift = %d Excited State energies (eV)\n%s', kshift, self.e[k] * nist.HARTREE2EV) return self get_nto = lib.invalid_method('get_nto')
[docs] class TDA(KTDBase): conv_tol = getattr(__config__, 'pbc_tdscf_rhf_TDA_conv_tol', 1e-6)
[docs] def gen_vind(self, mf, kshift): # exxdiv corrections are kept in hdiag while excluding them when calling # the contractions between two-electron integrals and X/Y amplitudes. # See also the relevant comments in function pbc.tdscf.rhf.TDA.gen_vind singlet = self.singlet kconserv = self.kconserv[kshift] mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ nkpts = len(mo_occ) nao, nmo = mo_coeff[0].shape occidx = [numpy.where(mo_occ[k]==2)[0] for k in range(nkpts)] viridx = [numpy.where(mo_occ[k]==0)[0] for k in range(nkpts)] orbo = [mo_coeff[k][:,occidx[k]] for k in range(nkpts)] orbv = [mo_coeff[kconserv[k]][:,viridx[kconserv[k]]] for k in range(nkpts)] e_ia = _get_e_ia(scf.addons.mo_energy_with_exxdiv_none(mf), mo_occ, kconserv) hdiag = numpy.hstack([x.ravel() for x in e_ia]) mem_now = lib.current_memory()[0] max_memory = max(2000, self.max_memory*.8-mem_now) vresp = mf.gen_response(singlet=singlet, hermi=0, max_memory=max_memory) def vind(zs): nz = len(zs) z1s = [_unpack(z, mo_occ, kconserv) for z in zs] dmov = numpy.empty((nz,nkpts,nao,nao), dtype=numpy.complex128) for i in range(nz): for k in range(nkpts): # *2 for double occupancy dm1 = z1s[i][k] * 2 dmov[i,k] = reduce(numpy.dot, (orbo[k], dm1, orbv[k].conj().T)) with lib.temporary_env(mf, exxdiv=None): v1ao = vresp(dmov, kshift) v1s = [] for i in range(nz): dm1 = z1s[i] v1 = [] for k in range(nkpts): v1vo = reduce(numpy.dot, (orbo[k].conj().T, v1ao[i,k], orbv[k])) v1vo += e_ia[k] * dm1[k] v1.append(v1vo.ravel()) v1s.append( numpy.concatenate(v1) ) return lib.asarray(v1s).reshape(nz,-1) return vind, hdiag
[docs] def init_guess(self, mf, kshift, nstates=None): if nstates is None: nstates = self.nstates mo_energy = mf.mo_energy mo_occ = mf.mo_occ kconserv = self.kconserv[kshift] e_ia = numpy.concatenate( [x.reshape(-1) for x in _get_e_ia(mo_energy, mo_occ, kconserv)] ) nov = e_ia.size nstates = min(nstates, nov) e_threshold = numpy.sort(e_ia)[nstates-1] e_threshold += self.deg_eia_thresh idx = numpy.where(e_ia <= e_threshold)[0] x0 = numpy.zeros((idx.size, nov)) for i, j in enumerate(idx): x0[i, j] = 1 # Koopmans' excitations return x0
[docs] def kernel(self, x0=None): '''TDA diagonalization solver Args: x0: list of init guess arrays for each k-shift specified in :attr:`self.kshift_lst` [x0_1, x0_2, ..., x0_nshift] x0_i ~ (nstates, nkpts*nocc*nvir) ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() log = logger.new_logger(self) mf = self._scf mo_occ = mf.mo_occ def pickeig(w, v, nroots, envs): idx = numpy.where(w > self.positive_eig_threshold)[0] return w[idx], v[:,idx], idx log = logger.Logger(self.stdout, self.verbose) precision = self.cell.precision * 1e-2 self.converged = [] self.e = [] self.xy = [] for i,kshift in enumerate(self.kshift_lst): kconserv = self.kconserv[kshift] vind, hdiag = self.gen_vind(self._scf, kshift) precond = self.get_precond(hdiag) if x0 is None: x0k = self.init_guess(self._scf, kshift, self.nstates) else: x0k = x0[i] converged, e, x1 = \ lib.davidson1(vind, x0k, precond, tol=self.conv_tol, max_cycle=self.max_cycle, nroots=self.nstates, lindep=self.lindep, max_space=self.max_space, pick=pickeig, fill_heff=purify_krlyov_heff(precision, 0, log), verbose=self.verbose) self.converged.append( converged ) self.e.append( e ) # 1/sqrt(2) because self.x is for alpha excitation amplitude and 2(X^+*X) = 1 self.xy.append( [(_unpack(xi*numpy.sqrt(.5), mo_occ, kconserv), 0) for xi in x1] ) log.timer(self.__class__.__name__, *cpu0) self._finalize() return self.e, self.xy
CIS = KTDA = TDA
[docs] class TDHF(TDA):
[docs] def gen_vind(self, mf, kshift): ''' [ A B ][X] [-B* -A*][Y] ''' singlet = self.singlet kconserv = self.kconserv[kshift] mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ nkpts = len(mo_occ) nao, nmo = mo_coeff[0].shape occidx = [numpy.where(mo_occ[k]==2)[0] for k in range(nkpts)] viridx = [numpy.where(mo_occ[k]==0)[0] for k in range(nkpts)] orbo = [mo_coeff[k][:,occidx[k]] for k in range(nkpts)] orbv = [mo_coeff[kconserv[k]][:,viridx[kconserv[k]]] for k in range(nkpts)] e_ia = _get_e_ia(scf.addons.mo_energy_with_exxdiv_none(mf), mo_occ, kconserv) hdiag = numpy.hstack([x.ravel() for x in e_ia]) tot_x = hdiag.size hdiag = numpy.hstack((hdiag, -hdiag)) mem_now = lib.current_memory()[0] max_memory = max(2000, self.max_memory*.8-mem_now) vresp = mf.gen_response(singlet=singlet, hermi=0, max_memory=max_memory) def vind(xys): nz = len(xys) z1xs = [_unpack(xy[:tot_x], mo_occ, kconserv) for xy in xys] z1ys = [_unpack(xy[tot_x:], mo_occ, kconserv) for xy in xys] dmov = numpy.empty((nz,nkpts,nao,nao), dtype=numpy.complex128) for i in range(nz): for k in range(nkpts): # *2 for double occupancy dmx = z1xs[i][k] * 2 dmy = z1ys[i][k] * 2 dmov[i,k] = reduce(numpy.dot, (orbo[k], dmx, orbv[k].T.conj())) dmov[i,k]+= reduce(numpy.dot, (orbv[k], dmy.T, orbo[k].T.conj())) with lib.temporary_env(mf, exxdiv=None): v1ao = vresp(dmov, kshift) v1s = [] for i in range(nz): dmx = z1xs[i] dmy = z1ys[i] v1xs = [] v1ys = [] for k in range(nkpts): v1x = reduce(numpy.dot, (orbo[k].T.conj(), v1ao[i,k], orbv[k])) v1y = reduce(numpy.dot, (orbv[k].T.conj(), v1ao[i,k], orbo[k])).T v1x+= e_ia[k] * dmx[k] v1y+= e_ia[k] * dmy[k] v1xs.append(v1x.ravel()) v1ys.append(-v1y.ravel()) # v1s += v1xs + v1ys v1s.append( numpy.concatenate(v1xs + v1ys) ) return lib.asarray(v1s).reshape(nz,-1) return vind, hdiag
[docs] def init_guess(self, mf, kshift, nstates=None): x0 = TDA.init_guess(self, mf, kshift, nstates) y0 = numpy.zeros_like(x0) return numpy.asarray(numpy.block([[x0, y0], [y0, x0.conj()]]))
[docs] def kernel(self, x0=None): '''TDHF diagonalization with non-Hermitian eigenvalue solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() log = logger.new_logger(self) mf = self._scf mo_occ = mf.mo_occ real_system = (gamma_point(self._scf.kpts) and self._scf.mo_coeff[0].dtype == numpy.double) # We only need positive eigenvalues def pickeig(w, v, nroots, envs): realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) & (w.real > self.positive_eig_threshold))[0] return lib.linalg_helper._eigs_cmplx2real(w, v, realidx, real_system) log = logger.Logger(self.stdout, self.verbose) precision = self.cell.precision * 1e-2 hermi = 0 def norm_xy(z, kconserv): x, y = z.reshape(2,-1) norm = 2*(lib.norm(x)**2 - lib.norm(y)**2) norm = 1/numpy.sqrt(norm) x *= norm y *= norm return _unpack(x, mo_occ, kconserv), _unpack(y, mo_occ, kconserv) self.converged = [] self.e = [] self.xy = [] for i,kshift in enumerate(self.kshift_lst): kconserv = self.kconserv[kshift] vind, hdiag = self.gen_vind(self._scf, kshift) precond = self.get_precond(hdiag) if x0 is None: x0k = self.init_guess(self._scf, kshift, self.nstates) else: x0k = x0[i] converged, e, x1 = \ lib.davidson_nosym1(vind, x0k, precond, tol=self.conv_tol, max_cycle=self.max_cycle, nroots=self.nstates, lindep=self.lindep, max_space=self.max_space, pick=pickeig, fill_heff=purify_krlyov_heff(precision, hermi, log), verbose=self.verbose) self.converged.append( converged ) self.e.append( e ) self.xy.append( [norm_xy(z, kconserv) for z in x1] ) log.timer(self.__class__.__name__, *cpu0) self._finalize() return self.e, self.xy
RPA = KTDHF = TDHF def _get_e_ia(mo_energy, mo_occ, kconserv=None): e_ia = [] nkpts = len(mo_occ) if kconserv is None: kconserv = numpy.arange(nkpts) for k in range(nkpts): kp = kconserv[k] moeocc = mo_energy[k][mo_occ[k] > 1e-6] moevir = mo_energy[kp][mo_occ[kp] < 1e-6] e_ia.append( -moeocc[:,None] + moevir ) return e_ia def _unpack(vo, mo_occ, kconserv): z = [] p1 = 0 for k, occ in enumerate(mo_occ): no = numpy.count_nonzero(occ > 0) no1 = numpy.count_nonzero(mo_occ[kconserv[k]] > 0) nv = occ.size - no1 p0, p1 = p1, p1 + no * nv z.append(vo[p0:p1].reshape(no,nv)) return z
[docs] def purify_krlyov_heff(precision, hermi, log): def fill_heff(heff, xs, ax, xt, axt, dot): if hermi == 1: heff = linalg_helper._fill_heff_hermitian(heff, xs, ax, xt, axt, dot) else: heff = linalg_helper._fill_heff(heff, xs, ax, xt, axt, dot) space = len(axt) # TODO: PBC integrals has larger errors than molecule systems. # purify the effective Hamiltonian with symmetry and other # possible conditions. if abs(heff[:space,:space].imag).max() < precision: log.debug('Remove imaginary part of the Krylov space effective Hamiltonian') heff[:space,:space].imag = 0 return heff return fill_heff
scf.khf.KRHF.TDA = lib.class_as_method(KTDA) scf.khf.KRHF.TDHF = lib.class_as_method(KTDHF) scf.krohf.KROHF.TDA = None scf.krohf.KROHF.TDHF = None if __name__ == '__main__': from pyscf.pbc import gto from pyscf.pbc import scf from pyscf.pbc import df cell = gto.Cell() cell.unit = 'B' cell.atom = ''' C 0. 0. 0. C 1.68506879 1.68506879 1.68506879 ''' cell.a = ''' 0. 3.37013758 3.37013758 3.37013758 0. 3.37013758 3.37013758 3.37013758 0. ''' cell.basis = 'gth-szv' cell.pseudo = 'gth-pade' cell.mesh = [25]*3 cell.build() mf = scf.KRHF(cell, cell.make_kpts([2,1,1])).set(exxdiv=None) #mf.with_df = df.MDF(cell, cell.make_kpts([2,1,1])) #mf.with_df.auxbasis = 'weigend' #mf.with_df._cderi = 'eri3d-mdf.h5' #mf.with_df.build(with_j3c=False) mf.run() #mesh=9 -8.65192427146353 #mesh=12 -8.65192352289817 #mesh=15 -8.6519235231529 #MDF mesh=5 -8.6519301815144 td = TDA(mf) td.verbose = 5 print(td.kernel()[0][0] * 27.2114) #mesh=9 [ 6.0073749 6.09315355 6.3479901 ] #mesh=12 [ 6.00253282 6.09317929 6.34799109] #mesh=15 [ 6.00253396 6.09317949 6.34799109] #MDF mesh=5 [ 6.09317489 6.09318265 6.34798637] #from pyscf.pbc import tools #scell = tools.super_cell(cell, [2,1,1]) #mf = scf.RHF(scell).run() #td = rhf.TDA(mf) #td.verbose = 5 #print(td.kernel()[0] * 27.2114) td = TDHF(mf) td.verbose = 5 print(td.kernel()[0][0] * 27.2114) #mesh=9 [ 6.03860914 6.21664545 8.20305225] #mesh=12 [ 6.03868259 6.03860343 6.2167623 ] #mesh=15 [ 6.03861321 6.03861324 6.21675868] #MDF mesh=5 [ 6.03861693 6.03861775 6.21675694]