Source code for pyscf.scf.addons

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Qiming Sun <osirpt.sun@gmail.com>
#          Junzi Liu <latrix1247@gmail.com>
#          Susi Lehtola <susi.lehtola@gmail.com>

from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf.gto import mole
from pyscf.lib import logger
from pyscf.lib.scipy_helper import pivoted_cholesky
from pyscf import __config__

LINEAR_DEP_THRESHOLD = getattr(__config__, 'scf_addons_remove_linear_dep_threshold', 1e-8)
CHOLESKY_THRESHOLD = getattr(__config__, 'scf_addons_cholesky_threshold', 1e-10)
FORCE_PIVOTED_CHOLESKY = getattr(__config__, 'scf_addons_force_cholesky', False)
LINEAR_DEP_TRIGGER = getattr(__config__, 'scf_addons_remove_linear_dep_trigger', 1e-10)

SMEARING_METHOD = getattr(__config__, 'pbc_scf_addons_smearing_method', 'fermi')

[docs] def smearing(mf, sigma=None, method=SMEARING_METHOD, mu0=None, fix_spin=False): '''Fermi-Dirac or Gaussian smearing''' if isinstance(mf, _SmearingSCF): mf.sigma = sigma mf.method = method mf.mu0 = mu0 mf.fix_spin = fix_spin return mf assert not mf.istype('KSCF') return lib.set_class(_SmearingSCF(mf, sigma, method, mu0, fix_spin), (_SmearingSCF, mf.__class__))
[docs] def smearing_(mf, *args, **kwargs): mf1 = smearing(mf, *args, **kwargs) mf.__class__ = mf1.__class__ mf.__dict__ = mf1.__dict__ return mf
def _get_grad_tril(mo_coeff, mo_occ, fock): f_mo = reduce(numpy.dot, (mo_coeff.T.conj(), fock, mo_coeff)) return f_mo[numpy.tril_indices_from(f_mo, -1)] def _fermi_smearing_occ(mu, mo_energy, sigma): '''Fermi-Dirac smearing''' occ = numpy.zeros_like(mo_energy) de = (mo_energy - mu) / sigma occ[de<40] = 1./(numpy.exp(de[de<40])+1.) return occ def _gaussian_smearing_occ(mu, mo_energy, sigma): '''Gaussian smearing''' return 0.5 * scipy.special.erfc((mo_energy - mu) / sigma) def _smearing_optimize(f_occ, mo_es, nocc, sigma): def nelec_cost_fn(m, mo_es, nocc): mo_occ = f_occ(m, mo_es, sigma) return (mo_occ.sum() - nocc)**2 fermi = _get_fermi(mo_es, nocc) res = scipy.optimize.minimize( nelec_cost_fn, fermi, args=(mo_es, nocc), method='Powell', options={'xtol': 1e-5, 'ftol': 1e-5, 'maxiter': 10000}) mu = res.x mo_occs = f_occ(mu, mo_es, sigma) return mu, mo_occs def _get_fermi(mo_energy, nocc): mo_e_sorted = numpy.sort(mo_energy) return mo_e_sorted[nocc-1] class _SmearingSCF: __name_mixin__ = 'Smearing' _keys = { 'sigma', 'smearing_method', 'mu0', 'fix_spin', 'entropy', 'e_free', 'e_zero' } def __init__(self, mf, sigma, method, mu0, fix_spin): self.__dict__.update(mf.__dict__) self.sigma = sigma self.smearing_method = method self.mu0 = mu0 self.fix_spin = fix_spin self.entropy = None self.e_free = None self.e_zero = None def undo_smearing(self): obj = lib.view(self, lib.drop_class(self.__class__, _SmearingSCF)) del obj.sigma del obj.smearing_method del obj.fix_spin del obj.entropy del obj.e_free del obj.e_zero return obj def get_occ(self, mo_energy=None, mo_coeff=None): '''Label the occupancies for each orbital ''' from pyscf.pbc.tools import print_mo_energy_occ if (self.sigma == 0) or (not self.sigma) or (not self.smearing_method): mo_occ = super().get_occ(mo_energy, mo_coeff) return mo_occ is_uhf = self.istype('UHF') is_rhf = self.istype('RHF') is_rohf = self.istype('ROHF') sigma = self.sigma if self.smearing_method.lower() == 'fermi': f_occ = _fermi_smearing_occ else: f_occ = _gaussian_smearing_occ if self.fix_spin and (is_uhf or is_rohf): # spin separated fermi level if is_rohf: # treat rohf as uhf mo_es = (mo_energy, mo_energy) else: mo_es = mo_energy nocc = self.nelec if self.mu0 is None: mu_a, occa = _smearing_optimize(f_occ, mo_es[0], nocc[0], sigma) mu_b, occb = _smearing_optimize(f_occ, mo_es[1], nocc[1], sigma) else: if numpy.isscalar(self.mu0): mu_a = mu_b = self.mu0 elif len(self.mu0) == 2: mu_a, mu_b = self.mu0 else: raise TypeError(f'Unsupported mu0: {self.mu0}') occa = f_occ(mu_a, mo_es[0], sigma) occb = f_occ(mu_b, mo_es[1], sigma) mu = [mu_a, mu_b] mo_occs = [occa, occb] self.entropy = self._get_entropy(mo_es[0], mo_occs[0], mu[0]) self.entropy += self._get_entropy(mo_es[1], mo_occs[1], mu[1]) fermi = (_get_fermi(mo_es[0], nocc[0]), _get_fermi(mo_es[1], nocc[1])) logger.debug(self, ' Alpha-spin Fermi level %g Sum mo_occ = %s should equal nelec = %s', fermi[0], mo_occs[0].sum(), nocc[0]) logger.debug(self, ' Beta-spin Fermi level %g Sum mo_occ = %s should equal nelec = %s', fermi[1], mo_occs[1].sum(), nocc[1]) logger.info(self, ' sigma = %g Optimized mu_alpha = %.12g entropy = %.12g', sigma, mu[0], self.entropy) logger.info(self, ' sigma = %g Optimized mu_beta = %.12g entropy = %.12g', sigma, mu[1], self.entropy) if self.verbose >= logger.DEBUG: print_mo_energy_occ(self, mo_energy, mo_occs, True) if is_rohf: mo_occs = mo_occs[0] + mo_occs[1] else: # all orbitals treated with the same fermi level nocc = nelectron = self.mol.nelectron if is_uhf: mo_es = numpy.hstack(mo_energy) else: mo_es = mo_energy if is_rhf: nocc = (nelectron + 1) // 2 if self.mu0 is None: mu, mo_occs = _smearing_optimize(f_occ, mo_es, nocc, sigma) else: # If mu0 is given, fix mu instead of electron number. XXX -Chong Sun mu = self.mu0 assert numpy.isscalar(mu) mo_occs = f_occ(mu, mo_es, sigma) self.entropy = self._get_entropy(mo_es, mo_occs, mu) if is_rhf: mo_occs *= 2 self.entropy *= 2 fermi = _get_fermi(mo_es, nocc) logger.debug(self, ' Fermi level %g Sum mo_occ = %s should equal nelec = %s', fermi, mo_occs.sum(), nelectron) logger.info(self, ' sigma = %g Optimized mu = %.12g entropy = %.12g', sigma, mu, self.entropy) if is_uhf: mo_occs = mo_occs.reshape(2, -1) if self.verbose >= logger.DEBUG: print_mo_energy_occ(self, mo_energy, mo_occs, is_uhf) return mo_occs # See https://www.vasp.at/vasp-workshop/slides/k-points.pdf def _get_entropy(self, mo_energy, mo_occ, mu): if self.smearing_method.lower() == 'fermi': f = mo_occ f = f[(f>0) & (f<1)] entropy = -(f*numpy.log(f) + (1-f)*numpy.log(1-f)).sum() else: entropy = (numpy.exp(-((mo_energy-mu)/self.sigma)**2).sum() / (2*numpy.sqrt(numpy.pi))) return entropy def get_grad(self, mo_coeff, mo_occ, fock=None): if (self.sigma == 0) or (not self.sigma) or (not self.smearing_method): return super().get_grad(mo_coeff, mo_occ, fock) if fock is None: dm1 = self.make_rdm1(mo_coeff, mo_occ) fock = self.get_hcore() + self.get_veff(self.mol, dm1) if self.istype('UHF'): ga = _get_grad_tril(mo_coeff[0], mo_occ[0], fock[0]) gb = _get_grad_tril(mo_coeff[1], mo_occ[1], fock[1]) return numpy.hstack((ga,gb)) else: # rhf and ghf return _get_grad_tril(mo_coeff, mo_occ, fock) def energy_tot(self, dm=None, h1e=None, vhf=None): e_tot = self.energy_elec(dm, h1e, vhf)[0] + self.energy_nuc() if self.sigma and self.smearing_method and self.entropy is not None: self.e_free = e_tot - self.sigma * self.entropy self.e_zero = e_tot - self.sigma * self.entropy * .5 logger.info(self, ' Total E(T) = %.15g Free energy = %.15g E0 = %.15g', e_tot, self.e_free, self.e_zero) return e_tot
[docs] def frac_occ_(mf, tol=1e-3): ''' Addons for SCF methods to assign fractional occupancy for degenerated occupied HOMOs. Examples:: >>> mf = gto.M(atom='O 0 0 0; O 0 0 1', verbose=4).RHF() >>> mf = scf.addons.frac_occ(mf) >>> mf.run() ''' from pyscf.scf import uhf, rohf old_get_occ = mf.get_occ mol = mf.mol def guess_occ(mo_energy, nocc): mo_occ = numpy.zeros_like(mo_energy) if nocc: sorted_idx = numpy.argsort(mo_energy) homo = mo_energy[sorted_idx[nocc-1]] lumo = mo_energy[sorted_idx[nocc]] frac_occ_lst = abs(mo_energy - homo) < tol integer_occ_lst = (mo_energy <= homo) & (~frac_occ_lst) mo_occ[integer_occ_lst] = 1 degen = numpy.count_nonzero(frac_occ_lst) frac = nocc - numpy.count_nonzero(integer_occ_lst) mo_occ[frac_occ_lst] = float(frac) / degen else: homo = 0.0 lumo = 0.0 frac_occ_lst = numpy.zeros_like(mo_energy, dtype=bool) return mo_occ, numpy.where(frac_occ_lst)[0], homo, lumo if mf.istype('UHF'): def get_occ(mo_energy, mo_coeff=None): nocca, noccb = mol.nelec mo_occa, frac_lsta, homoa, lumoa = guess_occ(mo_energy[0], nocca) mo_occb, frac_lstb, homob, lumob = guess_occ(mo_energy[1], noccb) if abs(homoa - lumoa) < tol or abs(homob - lumob) < tol: mo_occ = numpy.array([mo_occa, mo_occb]) if len(frac_lstb): logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s ' '%6g for beta orbitals %s', mo_occa[frac_lsta[0]], frac_lsta, mo_occb[frac_lstb[0]], frac_lstb) logger.info(mf, ' alpha HOMO = %.12g LUMO = %.12g', homoa, lumoa) logger.info(mf, ' beta HOMO = %.12g LUMO = %.12g', homob, lumob) logger.debug(mf, ' alpha mo_energy = %s', mo_energy[0]) logger.debug(mf, ' beta mo_energy = %s', mo_energy[1]) else: logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s ', mo_occa[frac_lsta[0]], frac_lsta) logger.info(mf, ' alpha HOMO = %.12g LUMO = %.12g', homoa, lumoa) logger.debug(mf, ' alpha mo_energy = %s', mo_energy[0]) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ elif mf.istype('ROHF'): def get_occ(mo_energy, mo_coeff=None): nocca, noccb = mol.nelec mo_occa, frac_lsta, homoa, lumoa = guess_occ(mo_energy, nocca) mo_occb, frac_lstb, homob, lumob = guess_occ(mo_energy, noccb) if abs(homoa - lumoa) < tol or abs(homob - lumob) < tol: mo_occ = mo_occa + mo_occb if len(frac_lstb): logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s ' '%6g for beta orbitals %s', mo_occa[frac_lsta[0]], frac_lsta, mo_occb[frac_lstb[0]], frac_lstb) logger.info(mf, ' HOMO = %.12g LUMO = %.12g', homoa, lumoa) logger.debug(mf, ' mo_energy = %s', mo_energy) else: logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s ', mo_occa[frac_lsta[0]], frac_lsta) logger.info(mf, ' HOMO = %.12g LUMO = %.12g', homoa, lumoa) logger.debug(mf, ' mo_energy = %s', mo_energy) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ def get_grad(mo_coeff, mo_occ, fock): occidxa = mo_occ > 0 occidxb = mo_occ > 1 viridxa = ~occidxa viridxb = ~occidxb uniq_var_a = viridxa.reshape(-1,1) & occidxa uniq_var_b = viridxb.reshape(-1,1) & occidxb if getattr(fock, 'focka', None) is not None: focka = fock.focka fockb = fock.fockb elif getattr(fock, 'ndim', None) == 3: focka, fockb = fock else: focka = fockb = fock focka = reduce(numpy.dot, (mo_coeff.T.conj(), focka, mo_coeff)) fockb = reduce(numpy.dot, (mo_coeff.T.conj(), fockb, mo_coeff)) g = numpy.zeros_like(focka) g[uniq_var_a] = focka[uniq_var_a] g[uniq_var_b] += fockb[uniq_var_b] return g[uniq_var_a | uniq_var_b] elif mf.istype('RHF'): def get_occ(mo_energy, mo_coeff=None): nocc = (mol.nelectron+1) // 2 # n_docc + n_socc mo_occ, frac_lst, homo, lumo = guess_occ(mo_energy, nocc) n_docc = mol.nelectron // 2 n_socc = nocc - n_docc if abs(homo - lumo) < tol or n_socc: mo_occ *= 2 degen = len(frac_lst) mo_occ[frac_lst] -= float(n_socc) / degen logger.warn(mf, 'fraction occ = %6g for orbitals %s', mo_occ[frac_lst[0]], frac_lst) logger.info(mf, 'HOMO = %.12g LUMO = %.12g', homo, lumo) logger.debug(mf, ' mo_energy = %s', mo_energy) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ else: def get_occ(mo_energy, mo_coeff=None): nocc = mol.nelectron mo_occ, frac_lst, homo, lumo = guess_occ(mo_energy, nocc) if abs(homo - lumo) < tol: logger.warn(mf, 'fraction occ = %6g for orbitals %s', mo_occ[frac_lst[0]], frac_lst) logger.info(mf, 'HOMO = %.12g LUMO = %.12g', homo, lumo) logger.debug(mf, ' mo_energy = %s', mo_energy) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ mf.get_occ = get_occ try: mf.get_grad = get_grad except NameError: pass return mf
frac_occ = frac_occ_
[docs] def dynamic_occ_(mf, tol=1e-3): ''' Dynamically adjust the occupancy to avoid degeneracy between HOMO and LUMO ''' assert mf.istype('RHF') old_get_occ = mf.get_occ def get_occ(mo_energy, mo_coeff=None): mol = mf.mol nocc = mol.nelectron // 2 sort_mo_energy = numpy.sort(mo_energy) lumo = sort_mo_energy[nocc] if abs(sort_mo_energy[nocc-1] - lumo) < tol: mo_occ = numpy.zeros_like(mo_energy) mo_occ[mo_energy<lumo] = 2 lst = abs(mo_energy - lumo) < tol mo_occ[lst] = 0 logger.warn(mf, 'set charge = %d', mol.charge+int(lst.sum())*2) logger.info(mf, 'HOMO = %.12g LUMO = %.12g', sort_mo_energy[nocc-1], sort_mo_energy[nocc]) logger.debug(mf, ' mo_energy = %s', sort_mo_energy) else: mo_occ = old_get_occ(mo_energy, mo_coeff) return mo_occ mf.get_occ = get_occ return mf
dynamic_occ = dynamic_occ_
[docs] def dynamic_level_shift_(mf, factor=1.): '''Dynamically change the level shift in each SCF cycle. The level shift value is set to (HF energy change * factor) ''' old_get_fock = mf.get_fock mf._last_e = None def get_fock(h1e, s1e, vhf, dm, cycle=-1, diis=None, diis_start_cycle=None, level_shift_factor=None, damp_factor=None, fock_last=None): if cycle > 0 or diis is not None: if 'exc' in mf.scf_summary: # DFT e_tot = mf.scf_summary['e1'] + mf.scf_summary['coul'] + mf.scf_summary['exc'] else: e_tot = mf.scf_summary['e1'] + mf.scf_summary['e2'] if mf._last_e is not None: level_shift_factor = abs(e_tot-mf._last_e) * factor logger.info(mf, 'Set level shift to %g', level_shift_factor) mf._last_e = e_tot return old_get_fock(h1e, s1e, vhf, dm, cycle, diis, diis_start_cycle, level_shift_factor, damp_factor, fock_last=fock_last) mf.get_fock = get_fock return mf
dynamic_level_shift = dynamic_level_shift_
[docs] def float_occ_(mf): ''' For UHF, allowing the Sz value being changed during SCF iteration. Determine occupation of alpha and beta electrons based on energy spectrum ''' from pyscf.scf import uhf assert mf.istype('UHF') def get_occ(mo_energy, mo_coeff=None): mol = mf.mol ee = numpy.sort(numpy.hstack(mo_energy)) n_a = numpy.count_nonzero(mo_energy[0]<(ee[mol.nelectron-1]+1e-3)) n_b = mol.nelectron - n_a if mf.nelec is None: nelec = mf.mol.nelec else: nelec = mf.nelec if n_a != nelec[0]: logger.info(mf, 'change num. alpha/beta electrons ' ' %d / %d -> %d / %d', nelec[0], nelec[1], n_a, n_b) mf.nelec = (n_a, n_b) return uhf.UHF.get_occ(mf, mo_energy, mo_coeff) mf.get_occ = get_occ return mf
dynamic_sz_ = float_occ = float_occ_
[docs] def follow_state_(mf, occorb=None): occstat = [occorb] old_get_occ = mf.get_occ def get_occ(mo_energy, mo_coeff=None): if occstat[0] is None: mo_occ = old_get_occ(mo_energy, mo_coeff) else: mo_occ = numpy.zeros_like(mo_energy) s = reduce(numpy.dot, (occstat[0].T, mf.get_ovlp(), mo_coeff)) nocc = mf.mol.nelectron // 2 #choose a subset of mo_coeff, which maximizes <old|now> idx = numpy.argsort(numpy.einsum('ij,ij->j', s, s)) mo_occ[idx[-nocc:]] = 2 logger.debug(mf, ' mo_occ = %s', mo_occ) logger.debug(mf, ' mo_energy = %s', mo_energy) occstat[0] = mo_coeff[:,mo_occ>0] return mo_occ mf.get_occ = get_occ return mf
follow_state = follow_state_
[docs] def mom_occ_(mf, occorb, setocc): '''Use maximum overlap method to determine occupation number for each orbital in every iteration.''' from pyscf.scf import uhf, rohf log = logger.Logger(mf.stdout, mf.verbose) if mf.istype('UHF'): coef_occ_a = occorb[0][:, setocc[0]>0] coef_occ_b = occorb[1][:, setocc[1]>0] elif mf.istype('ROHF'): if mf.mol.spin != (numpy.sum(setocc[0]) - numpy.sum(setocc[1])): raise ValueError('Wrong occupation setting for restricted open-shell calculation.') coef_occ_a = occorb[:, setocc[0]>0] coef_occ_b = occorb[:, setocc[1]>0] else: # GHF, and DHF assert setocc.ndim == 1 if mf.istype('UHF') or mf.istype('ROHF'): def get_occ(mo_energy=None, mo_coeff=None): if mo_energy is None: mo_energy = mf.mo_energy if mo_coeff is None: mo_coeff = mf.mo_coeff if mf.istype('ROHF'): mo_coeff = numpy.array([mo_coeff, mo_coeff]) mo_occ = numpy.zeros_like(setocc) nocc_a = int(numpy.sum(setocc[0])) nocc_b = int(numpy.sum(setocc[1])) s_a = reduce(numpy.dot, (coef_occ_a.conj().T, mf.get_ovlp(), mo_coeff[0])) s_b = reduce(numpy.dot, (coef_occ_b.conj().T, mf.get_ovlp(), mo_coeff[1])) #choose a subset of mo_coeff, which maximizes <old|now> idx_a = numpy.argsort(numpy.einsum('ij,ij->j', s_a, s_a))[::-1] idx_b = numpy.argsort(numpy.einsum('ij,ij->j', s_b, s_b))[::-1] mo_occ[0,idx_a[:nocc_a]] = 1. mo_occ[1,idx_b[:nocc_b]] = 1. log.debug(' New alpha occ pattern: %s', mo_occ[0]) log.debug(' New beta occ pattern: %s', mo_occ[1]) if isinstance(mf.mo_energy, numpy.ndarray) and mf.mo_energy.ndim == 1: log.debug1(' Current mo_energy(sorted) = %s', mo_energy) else: log.debug1(' Current alpha mo_energy(sorted) = %s', mo_energy[0]) log.debug1(' Current beta mo_energy(sorted) = %s', mo_energy[1]) if (int(numpy.sum(mo_occ[0])) != nocc_a): log.error('mom alpha electron occupation numbers do not match: %d, %d', nocc_a, int(numpy.sum(mo_occ[0]))) if (int(numpy.sum(mo_occ[1])) != nocc_b): log.error('mom beta electron occupation numbers do not match: %d, %d', nocc_b, int(numpy.sum(mo_occ[1]))) #output 1-dimension occupation number for restricted open-shell if mf.istype('ROHF'): mo_occ = mo_occ[0, :] + mo_occ[1, :] return mo_occ else: def get_occ(mo_energy=None, mo_coeff=None): if mo_energy is None: mo_energy = mf.mo_energy if mo_coeff is None: mo_coeff = mf.mo_coeff mo_occ = numpy.zeros_like(setocc) nocc = int(setocc.sum()) s = occorb[:,setocc>0].conj().T.dot(mf.get_ovlp()).dot(mo_coeff) #choose a subset of mo_coeff, which maximizes <old|now> idx = numpy.argsort(numpy.einsum('ij,ij->j', s, s))[::-1] mo_occ[idx[:nocc]] = 1. return mo_occ mf.get_occ = get_occ return mf
mom_occ = mom_occ_
[docs] def project_mo_nr2nr(mol1, mo1, mol2): r''' Project orbital coefficients from basis set 1 (C1 for mol1) to basis set 2 (C2 for mol2). .. math:: |\psi1\rangle = |AO1\rangle C1 |\psi2\rangle = P |\psi1\rangle = |AO2\rangle S^{-1}\langle AO2| AO1\rangle> C1 = |AO2\rangle> C2 C2 = S^{-1}\langle AO2|AO1\rangle C1 There are three relevant functions: :func:`project_mo_nr2nr` is the projection for non-relativistic (scalar) basis. :func:`project_mo_nr2r` projects from non-relativistic to relativistic basis. :func:`project_mo_r2r` is the projection between relativistic (spinor) basis. ''' s22 = mol2.intor_symmetric('int1e_ovlp') s21 = mole.intor_cross('int1e_ovlp', mol2, mol1) if isinstance(mo1, numpy.ndarray) and mo1.ndim == 2: return lib.cho_solve(s22, numpy.dot(s21, mo1), strict_sym_pos=False) else: return [lib.cho_solve(s22, numpy.dot(s21, x), strict_sym_pos=False) for x in mo1]
[docs] @lib.with_doc(project_mo_nr2nr.__doc__) def project_mo_nr2r(mol1, mo1, mol2): assert (not mol1.cart) s22 = mol2.intor_symmetric('int1e_ovlp_spinor') s21 = mole.intor_cross('int1e_ovlp_sph', mol2, mol1) ua, ub = mol2.sph2spinor_coeff() s21 = numpy.dot(ua.T.conj(), s21) + numpy.dot(ub.T.conj(), s21) # (*) # mo2: alpha, beta have been summed in Eq. (*) # so DM = mo2[:,:nocc] * 1 * mo2[:,:nocc].H if isinstance(mo1, numpy.ndarray) and mo1.ndim == 2: mo2 = numpy.dot(s21, mo1) return lib.cho_solve(s22, mo2, strict_sym_pos=False) else: return [lib.cho_solve(s22, numpy.dot(s21, x), strict_sym_pos=False) for x in mo1]
[docs] @lib.with_doc(project_mo_nr2nr.__doc__) def project_mo_r2r(mol1, mo1, mol2): s22 = mol2.intor_symmetric('int1e_ovlp_spinor') t22 = mol2.intor_symmetric('int1e_spsp_spinor') s21 = mole.intor_cross('int1e_ovlp_spinor', mol2, mol1) t21 = mole.intor_cross('int1e_spsp_spinor', mol2, mol1) n2c = s21.shape[1] pl = lib.cho_solve(s22, s21, strict_sym_pos=False) ps = lib.cho_solve(t22, t21, strict_sym_pos=False) if isinstance(mo1, numpy.ndarray) and mo1.ndim == 2: return numpy.vstack((numpy.dot(pl, mo1[:n2c]), numpy.dot(ps, mo1[n2c:]))) else: return [numpy.vstack((numpy.dot(pl, x[:n2c]), numpy.dot(ps, x[n2c:]))) for x in mo1]
[docs] def project_dm_nr2nr(mol1, dm1, mol2): r''' Project density matrix representation from basis set 1 (mol1) to basis set 2 (mol2). .. math:: |AO2\rangle DM_AO2 \langle AO2| = |AO2\rangle P DM_AO1 P \langle AO2| DM_AO2 = P DM_AO1 P P = S_{AO2}^{-1}\langle AO2|AO1\rangle There are three relevant functions: :func:`project_dm_nr2nr` is the projection for non-relativistic (scalar) basis. :func:`project_dm_nr2r` projects from non-relativistic to relativistic basis. :func:`project_dm_r2r` is the projection between relativistic (spinor) basis. ''' s22 = mol2.intor_symmetric('int1e_ovlp') s21 = mole.intor_cross('int1e_ovlp', mol2, mol1) p21 = lib.cho_solve(s22, s21, strict_sym_pos=False) if isinstance(dm1, numpy.ndarray) and dm1.ndim == 2: return reduce(numpy.dot, (p21, dm1, p21.conj().T)) else: return lib.einsum('pi,nij,qj->npq', p21, dm1, p21.conj())
[docs] @lib.with_doc(project_dm_nr2nr.__doc__) def project_dm_nr2r(mol1, dm1, mol2): assert (not mol1.cart) s22 = mol2.intor_symmetric('int1e_ovlp_spinor') s21 = mole.intor_cross('int1e_ovlp_sph', mol2, mol1) ua, ub = mol2.sph2spinor_coeff() s21 = numpy.dot(ua.T.conj(), s21) + numpy.dot(ub.T.conj(), s21) # (*) # mo2: alpha, beta have been summed in Eq. (*) # so DM = mo2[:,:nocc] * 1 * mo2[:,:nocc].H p21 = lib.cho_solve(s22, s21, strict_sym_pos=False) if isinstance(dm1, numpy.ndarray) and dm1.ndim == 2: return reduce(numpy.dot, (p21, dm1, p21.conj().T)) else: return lib.einsum('pi,nij,qj->npq', p21, dm1, p21.conj())
[docs] @lib.with_doc(project_dm_nr2nr.__doc__) def project_dm_r2r(mol1, dm1, mol2): s22 = mol2.intor_symmetric('int1e_ovlp_spinor') t22 = mol2.intor_symmetric('int1e_spsp_spinor') s21 = mole.intor_cross('int1e_ovlp_spinor', mol2, mol1) t21 = mole.intor_cross('int1e_spsp_spinor', mol2, mol1) pl = lib.cho_solve(s22, s21, strict_sym_pos=False) ps = lib.cho_solve(t22, t21, strict_sym_pos=False) p21 = scipy.linalg.block_diag(pl, ps) if isinstance(dm1, numpy.ndarray) and dm1.ndim == 2: return reduce(numpy.dot, (p21, dm1, p21.conj().T)) else: return lib.einsum('pi,nij,qj->npq', p21, dm1, p21.conj())
[docs] def canonical_orth_(S, thr=1e-7): '''Löwdin's canonical orthogonalization''' # Ensure the basis functions are normalized (symmetry-adapted ones are not!) normlz = numpy.power(numpy.diag(S), -0.5) Snorm = numpy.dot(numpy.diag(normlz), numpy.dot(S, numpy.diag(normlz))) # Form vectors for normalized overlap matrix Sval, Svec = numpy.linalg.eigh(Snorm) X = Svec[:,Sval>=thr] / numpy.sqrt(Sval[Sval>=thr]) # Plug normalization back in X = numpy.dot(numpy.diag(normlz), X) return X
[docs] def partial_cholesky_orth_(S, canthr=1e-7, cholthr=1e-9): '''Partial Cholesky orthogonalization for curing overcompleteness. References: Susi Lehtola, Curing basis set overcompleteness with pivoted Cholesky decompositions, J. Chem. Phys. 151, 241102 (2019), doi:10.1063/1.5139948. Susi Lehtola, Accurate reproduction of strongly repulsive interatomic potentials, Phys. Rev. A 101, 032504 (2020), doi:10.1103/PhysRevA.101.032504. ''' # Ensure the basis functions are normalized normlz = numpy.power(numpy.diag(S), -0.5) Snorm = numpy.dot(numpy.diag(normlz), numpy.dot(S, numpy.diag(normlz))) # Sort the basis functions according to the Gershgorin circle # theorem so that the Cholesky routine is well-initialized odS = numpy.abs(Snorm) numpy.fill_diagonal(odS, 0.0) odSs = numpy.sum(odS, axis=0) sortidx = numpy.argsort(odSs, kind='stable') # Run the pivoted Cholesky decomposition Ssort = Snorm[numpy.ix_(sortidx, sortidx)].copy() c, piv, r_c = pivoted_cholesky(Ssort, tol=cholthr) # The functions we're going to use are given by the pivot as idx = sortidx[piv[:r_c]] # Get the (un-normalized) sub-basis Ssub = S[numpy.ix_(idx, idx)].copy() # Orthogonalize sub-basis Xsub = canonical_orth_(Ssub, thr=canthr) # Full X X = numpy.zeros((S.shape[0], Xsub.shape[1]), dtype=Xsub.dtype) X[idx,:] = Xsub return X
[docs] def remove_linear_dep_(mf, threshold=LINEAR_DEP_THRESHOLD, lindep=LINEAR_DEP_TRIGGER, cholesky_threshold=CHOLESKY_THRESHOLD, force_pivoted_cholesky=FORCE_PIVOTED_CHOLESKY): ''' Args: threshold : float The threshold under which the eigenvalues of the overlap matrix are discarded to avoid numerical instability. lindep : float The threshold that triggers the special treatment of the linear dependence issue. ''' s = mf.get_ovlp() cond = numpy.max(lib.cond(s)) if cond < 1./lindep and not force_pivoted_cholesky: return mf logger.info(mf, 'Applying remove_linear_dep_ on SCF object.') logger.debug(mf, 'Overlap condition number %g', cond) if (cond < 1./numpy.finfo(s.dtype).eps and not force_pivoted_cholesky): logger.info(mf, 'Using canonical orthogonalization with threshold {}'.format(threshold)) mf._eigh = _eigh_with_canonical_orth(threshold) else: logger.info(mf, 'Using partial Cholesky orthogonalization ' '(doi:10.1063/1.5139948, doi:10.1103/PhysRevA.101.032504)') logger.info(mf, 'Using threshold {} for pivoted Cholesky'.format(cholesky_threshold)) logger.info(mf, 'Using threshold {} to orthogonalize the subbasis'.format(threshold)) mf._eigh = _eigh_with_pivot_cholesky(threshold, cholesky_threshold) return mf
remove_linear_dep = remove_linear_dep_ def _eigh_with_canonical_orth(threshold=LINEAR_DEP_THRESHOLD): def eigh(h, s): x = canonical_orth_(s, threshold) xhx = reduce(lib.dot, (x.conj().T, h, x)) e, c = scipy.linalg.eigh(xhx) c = numpy.dot(x, c) return e, c return eigh def _eigh_with_pivot_cholesky(threshold=LINEAR_DEP_THRESHOLD, cholesky_threshold=CHOLESKY_THRESHOLD): def eigh(h, s): x = partial_cholesky_orth_(s, canthr=threshold, cholthr=cholesky_threshold) xhx = reduce(lib.dot, (x.conj().T, h, x)) e, c = scipy.linalg.eigh(xhx) c = numpy.dot(x, c) return e, c return eigh
[docs] def convert_to_uhf(mf, out=None, remove_df=False): '''Convert the given mean-field object to the unrestricted HF/KS object Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mf object. If mf is an second order SCF (SOSCF) object, the SOSCF layer will be discarded. Its underlying SCF object mf._scf will be converted. Args: mf : SCF object Kwargs remove_df : bool Whether to convert the DF-SCF object to the normal SCF object. This conversion is not applied by default. Returns: An unrestricted SCF object ''' from pyscf import scf from pyscf import dft assert (isinstance(mf, scf.hf.SCF)) logger.debug(mf, 'Converting %s to UHF', mf.__class__) if mf.istype('GHF'): raise NotImplementedError elif out is not None: assert out.istype('UHF') out = _update_mf_without_soscf(mf, out, remove_df) elif mf.istype('UHF'): # Remove with_df for SOSCF method because the post-HF code checks the # attribute .with_df to identify whether an SCF object is DF-SCF method. # with_df in SOSCF is used in orbital hessian approximation only. For the # returned SCF object, whether with_df exists in SOSCF has no effects on the # mean-field energy and other properties. if getattr(mf, '_scf', None): return _update_mf_without_soscf(mf, mf._scf.copy(), remove_df) else: return mf.copy() else: known_cls = { dft.rks_symm.ROKS : dft.uks_symm.UKS, dft.rks_symm.RKS : dft.uks_symm.UKS, dft.roks.ROKS : dft.uks.UKS, dft.rks.RKS : dft.uks.UKS, scf.hf_symm.ROHF : scf.uhf_symm.UHF, scf.hf_symm.RHF : scf.uhf_symm.UHF, scf.rohf.ROHF : scf.uhf.UHF, scf.hf.RHF : scf.uhf.UHF, } out = _object_without_soscf(mf, known_cls, remove_df) return _update_mo_to_uhf_(mf, out)
def _object_without_soscf(mf, known_class, remove_df=False): '''Create a new SCF object, excluding the SOSCF base class''' from pyscf.soscf import newton_ah from pyscf.df.df_jk import _DFHF if isinstance(mf, newton_ah._CIAH_SOSCF): mf = mf.undo_soscf() if remove_df and isinstance(mf, _DFHF): mf = mf.undo_df() for old_cls in mf.__class__.__mro__: if old_cls in known_class: break else: raise NotImplementedError( "Incompatible object types. Mean-field `mf` class not found in " "`known_class` type.\n\nmf = '%s'\n\nknown_class = '%s'" % (mf.__class__, known_class)) new_cls = known_class[old_cls] out = new_cls(mf.mol) out.__dict__.update(mf.__dict__) out.__class__ = lib.replace_class(mf.__class__, old_cls, new_cls) return out def _update_mf_without_soscf(mf, out, remove_df=False): '''Update an SCF object, excluding the SOSCF base class''' from pyscf.soscf import newton_ah mf_dic = dict(mf.__dict__) # if mf is SOSCF object, avoid to overwrite the with_df method # FIXME: it causes bug when converting pbc-SOSCF. if isinstance(mf, newton_ah._CIAH_SOSCF): mf_dic.pop('_scf') if not hasattr(mf._scf, 'with_df'): mf_dic.pop('with_df', None) if remove_df: mf_dic.pop('with_df', None) out.__dict__.update(mf_dic) return out
[docs] def convert_to_rhf(mf, out=None, remove_df=False): '''Convert the given mean-field object to the restricted HF/KS object Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mf object. If mf is an second order SCF (SOSCF) object, the SOSCF layer will be discarded. Its underlying SCF object mf._scf will be converted. Args: mf : SCF object Kwargs remove_df : bool Whether to convert the DF-SCF object to the normal SCF object. This conversion is not applied by default. Returns: An unrestricted SCF object ''' from pyscf import scf from pyscf import dft assert (isinstance(mf, scf.hf.SCF)) logger.debug(mf, 'Converting %s to RHF', mf.__class__) if getattr(mf, 'nelec', None) is None: nelec = mf.mol.nelec else: nelec = mf.nelec if mf.istype('GHF'): raise NotImplementedError elif out is not None: assert out.istype('RHF') out = _update_mf_without_soscf(mf, out, remove_df) elif (mf.istype('RHF') or (nelec[0] != nelec[1] and mf.istype('ROHF'))): if getattr(mf, '_scf', None): return _update_mf_without_soscf(mf, mf._scf.copy(), remove_df) else: return mf.copy() else: if nelec[0] == nelec[1]: known_cls = { dft.rks_symm.ROKS: dft.rks_symm.RKS, dft.roks.ROKS : dft.rks.RKS , dft.uks_symm.UKS : dft.rks_symm.RKS, dft.uks.UKS : dft.rks.RKS , scf.hf_symm.ROHF : scf.hf_symm.RHF , scf.rohf.ROHF : scf.hf.RHF , scf.uhf_symm.UHF : scf.hf_symm.RHF , scf.uhf.UHF : scf.hf.RHF , } else: known_cls = { dft.uks_symm.UKS : dft.rks_symm.ROKS, dft.uks.UKS : dft.roks.ROKS , scf.uhf_symm.UHF : scf.hf_symm.ROHF , scf.uhf.UHF : scf.rohf.ROHF , } out = _object_without_soscf(mf, known_cls, remove_df) return _update_mo_to_rhf_(mf, out)
[docs] def convert_to_ghf(mf, out=None, remove_df=False): '''Convert the given mean-field object to the generalized HF/KS object Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mf object. If mf is an second order SCF (SOSCF) object, the SOSCF layer will be discarded. Its underlying SCF object mf._scf will be converted. Args: mf : SCF object Kwargs remove_df : bool Whether to convert the DF-SCF object to the normal SCF object. This conversion is not applied by default. Returns: An generalized SCF object ''' from pyscf import scf from pyscf import dft assert (isinstance(mf, scf.hf.SCF)) logger.debug(mf, 'Converting %s to GHF', mf.__class__) if out is not None: assert out.istype('GHF') out = _update_mf_without_soscf(mf, out, remove_df) elif mf.istype('GHF'): if getattr(mf, '_scf', None): return _update_mf_without_soscf(mf, mf._scf.copy(), remove_df) else: return mf.copy() else: known_cls = { dft.rks_symm.ROKS : dft.gks_symm.GKS, dft.rks_symm.RKS : dft.gks_symm.GKS, dft.uks_symm.UKS : dft.gks_symm.GKS, dft.roks.ROKS : dft.gks.GKS, dft.rks.RKS : dft.gks.GKS, dft.uks.UKS : dft.gks.GKS, scf.hf_symm.ROHF : scf.ghf_symm.GHF, scf.hf_symm.RHF : scf.ghf_symm.GHF, scf.uhf_symm.UHF : scf.ghf_symm.GHF, scf.rohf.ROHF : scf.ghf.GHF, scf.hf.RHF : scf.ghf.GHF, scf.uhf.UHF : scf.ghf.GHF, } out = _object_without_soscf(mf, known_cls, remove_df) return _update_mo_to_ghf_(mf, out)
def _update_mo_to_uhf_(mf, mf1): if mf.mo_energy is None: return mf1 if mf.istype('UHF') or mf.istype('KUHF'): mf1.mo_occ = mf.mo_occ mf1.mo_coeff = mf.mo_coeff mf1.mo_energy = mf.mo_energy elif getattr(mf, 'kpts', None) is None: # RHF/ROHF mf1.mo_occ = numpy.array((mf.mo_occ>0, mf.mo_occ==2), dtype=numpy.double) # ROHF orbital energies, not canonical UHF orbital energies mo_ea = getattr(mf.mo_energy, 'mo_ea', mf.mo_energy) mo_eb = getattr(mf.mo_energy, 'mo_eb', mf.mo_energy) mf1.mo_energy = numpy.array((mo_ea, mo_eb)) mf1.mo_coeff = numpy.array((mf.mo_coeff, mf.mo_coeff)) else: # This to handle KRHF object mf1.mo_occ = numpy.array([ [numpy.asarray(occ> 0, dtype=numpy.double) for occ in mf.mo_occ], [numpy.asarray(occ==2, dtype=numpy.double) for occ in mf.mo_occ]]) mo_ea = getattr(mf.mo_energy, 'mo_ea', mf.mo_energy) mo_eb = getattr(mf.mo_energy, 'mo_eb', mf.mo_energy) mf1.mo_energy = numpy.array((mo_ea, mo_eb)) mf1.mo_coeff = numpy.array((mf.mo_coeff, mf.mo_coeff)) return mf1 def _update_mo_to_rhf_(mf, mf1): if mf.mo_energy is None: return mf1 if mf.istype('RHF') or mf.istype('KRHF'): # RHF/ROHF/KRHF/KROHF mf1.mo_occ = mf.mo_occ mf1.mo_coeff = mf.mo_coeff mf1.mo_energy = mf.mo_energy elif getattr(mf, 'kpts', None) is None: # UHF mf1.mo_occ = mf.mo_occ[0] + mf.mo_occ[1] mf1.mo_energy = mf.mo_energy[0] mf1.mo_coeff = mf.mo_coeff[0] if getattr(mf.mo_coeff[0], 'orbsym', None) is not None: mf1.mo_coeff = lib.tag_array(mf1.mo_coeff, orbsym=mf.mo_coeff[0].orbsym) mf1.converged = False else: # KUHF mf1.mo_occ = [occa+occb for occa, occb in zip(*mf.mo_occ)] mf1.mo_energy = mf.mo_energy[0] mf1.mo_coeff = mf.mo_coeff[0] mf1.converged = False return mf1 def _update_mo_to_ghf_(mf, mf1): if mf.mo_energy is None: return mf1 if mf.istype('KSCF'): raise NotImplementedError('KSCF') elif mf.istype('RHF'): nao, nmo = mf.mo_coeff.shape orbspin = get_ghf_orbspin(mf.mo_energy, mf.mo_occ, True) mf1.mo_energy = numpy.empty(nmo*2) mf1.mo_energy[orbspin==0] = mf.mo_energy mf1.mo_energy[orbspin==1] = mf.mo_energy mf1.mo_occ = numpy.empty(nmo*2) mf1.mo_occ[orbspin==0] = mf.mo_occ > 0 mf1.mo_occ[orbspin==1] = mf.mo_occ == 2 mo_coeff = numpy.zeros((nao*2,nmo*2), dtype=mf.mo_coeff.dtype) mo_coeff[:nao,orbspin==0] = mf.mo_coeff mo_coeff[nao:,orbspin==1] = mf.mo_coeff if getattr(mf.mo_coeff, 'orbsym', None) is not None: orbsym = numpy.zeros_like(orbspin) orbsym[orbspin==0] = mf.mo_coeff.orbsym orbsym[orbspin==1] = mf.mo_coeff.orbsym mo_coeff = lib.tag_array(mo_coeff, orbsym=orbsym) mf1.mo_coeff = lib.tag_array(mo_coeff, orbspin=orbspin) else: # UHF nao, nmo = mf.mo_coeff[0].shape orbspin = get_ghf_orbspin(mf.mo_energy, mf.mo_occ, False) mf1.mo_energy = numpy.empty(nmo*2) mf1.mo_energy[orbspin==0] = mf.mo_energy[0] mf1.mo_energy[orbspin==1] = mf.mo_energy[1] mf1.mo_occ = numpy.empty(nmo*2) mf1.mo_occ[orbspin==0] = mf.mo_occ[0] mf1.mo_occ[orbspin==1] = mf.mo_occ[1] mo_coeff = numpy.zeros((nao*2,nmo*2), dtype=mf.mo_coeff[0].dtype) mo_coeff[:nao,orbspin==0] = mf.mo_coeff[0] mo_coeff[nao:,orbspin==1] = mf.mo_coeff[1] if getattr(mf.mo_coeff[0], 'orbsym', None) is not None: orbsym = numpy.zeros_like(orbspin) orbsym[orbspin==0] = mf.mo_coeff[0].orbsym orbsym[orbspin==1] = mf.mo_coeff[1].orbsym mo_coeff = lib.tag_array(mo_coeff, orbsym=orbsym) mf1.mo_coeff = lib.tag_array(mo_coeff, orbspin=orbspin) return mf1
[docs] def get_ghf_orbspin(mo_energy, mo_occ, is_rhf=None): '''Spin of each GHF orbital when the GHF orbitals are converted from RHF/UHF orbitals For RHF orbitals, the orbspin corresponds to first occupied orbitals then unoccupied orbitals. In the occupied orbital space, if degenerated, first alpha then beta, last the (open-shell) singly occupied (alpha) orbitals. In the unoccupied orbital space, first the (open-shell) unoccupied (beta) orbitals if applicable, then alpha and beta orbitals For UHF orbitals, the orbspin corresponds to first occupied orbitals then unoccupied orbitals. ''' if is_rhf is None: # guess whether the orbitals are RHF orbitals is_rhf = mo_energy[0].ndim == 0 if is_rhf: nmo = mo_energy.size nocc = numpy.count_nonzero(mo_occ >0) nvir = nmo - nocc ndocc = numpy.count_nonzero(mo_occ==2) nsocc = nocc - ndocc orbspin = numpy.array([0,1]*ndocc + [0]*nsocc + [1]*nsocc + [0,1]*nvir) else: nmo = mo_energy[0].size nocca = numpy.count_nonzero(mo_occ[0]>0) nvira = nmo - nocca noccb = numpy.count_nonzero(mo_occ[1]>0) nvirb = nmo - noccb # round(6) to avoid numerical uncertainty in degeneracy es = numpy.append(mo_energy[0][mo_occ[0] >0], mo_energy[1][mo_occ[1] >0]) oidx = numpy.argsort(es.round(6), kind='stable') es = numpy.append(mo_energy[0][mo_occ[0]==0], mo_energy[1][mo_occ[1]==0]) vidx = numpy.argsort(es.round(6), kind='stable') orbspin = numpy.append(numpy.array([0]*nocca+[1]*noccb)[oidx], numpy.array([0]*nvira+[1]*nvirb)[vidx]) return orbspin
del (LINEAR_DEP_THRESHOLD, LINEAR_DEP_TRIGGER)
[docs] def fast_newton(mf, mo_coeff=None, mo_occ=None, dm0=None, auxbasis=None, dual_basis=None, **newton_kwargs): '''This is a wrap function which combines several operations. This function first setup the initial guess from density fitting calculation then use for Newton solver and call Newton solver. Newton solver attributes [max_cycle_inner, max_stepsize, ah_start_tol, ah_conv_tol, ah_grad_trust_region, ...] can be passed through ``**newton_kwargs``. ''' from pyscf.lib import logger from pyscf import df from pyscf.soscf import newton_ah if auxbasis is None: auxbasis = df.addons.aug_etb_for_dfbasis(mf.mol, 'ahlrichs', beta=2.5) if dual_basis: mf1 = mf.newton() pmol = mf1.mol = newton_ah.project_mol(mf.mol, dual_basis) mf1 = mf1.density_fit(auxbasis) else: mf1 = mf.newton().density_fit(auxbasis) mf1.with_df._compatible_format = False mf1.direct_scf_tol = 1e-7 if getattr(mf, 'grids', None): from pyscf.dft import gen_grid approx_grids = gen_grid.Grids(mf.mol) approx_grids.verbose = 0 approx_grids.level = max(0, mf.grids.level-3) mf1.grids = approx_grids approx_numint = mf._numint.copy() mf1._numint = approx_numint for key in newton_kwargs: setattr(mf1, key, newton_kwargs[key]) if mo_coeff is None or mo_occ is None: mo_coeff, mo_occ = mf.mo_coeff, mf.mo_occ if dm0 is not None: mo_coeff, mo_occ = mf1.from_dm(dm0) elif mo_coeff is None or mo_occ is None: logger.note(mf, '========================================================') logger.note(mf, 'Generating initial guess with DIIS-SCF for newton solver') logger.note(mf, '========================================================') if dual_basis: mf0 = mf.copy() mf0.mol = pmol mf0 = mf0.density_fit(auxbasis) else: mf0 = mf.density_fit(auxbasis) mf0.direct_scf_tol = 1e-7 mf0.conv_tol = 3. mf0.conv_tol_grad = 1. if mf0.level_shift == 0: mf0.level_shift = .2 if getattr(mf, 'grids', None): mf0.grids = approx_grids mf0._numint = approx_numint # Note: by setting small_rho_cutoff, dft.get_veff function may overwrite # approx_grids and approx_numint. It will further changes the corresponding # mf1 grids and _numint. If initial guess dm0 or mo_coeff/mo_occ were given, # dft.get_veff are not executed so that more grid points may be found in # approx_grids. mf0.small_rho_cutoff = mf.small_rho_cutoff * 10 mf0.kernel() mf1.with_df = mf0.with_df mo_coeff, mo_occ = mf0.mo_coeff, mf0.mo_occ if dual_basis: if mo_occ.ndim == 2: mo_coeff =(project_mo_nr2nr(pmol, mo_coeff[0], mf.mol), project_mo_nr2nr(pmol, mo_coeff[1], mf.mol)) else: mo_coeff = project_mo_nr2nr(pmol, mo_coeff, mf.mol) mo_coeff, mo_occ = mf1.from_dm(mf.make_rdm1(mo_coeff,mo_occ)) mf0 = None logger.note(mf, '============================') logger.note(mf, 'Generating initial guess end') logger.note(mf, '============================') mf1.kernel(mo_coeff, mo_occ) mf.converged = mf1.converged mf.e_tot = mf1.e_tot mf.mo_energy = mf1.mo_energy mf.mo_coeff = mf1.mo_coeff mf.mo_occ = mf1.mo_occ # mf = copy.copy(mf) # def mf_kernel(*args, **kwargs): # logger.warn(mf, "fast_newton is a wrap function to quickly setup and call Newton solver. " # "There's no need to call kernel function again for fast_newton.") # del (mf.kernel) # warn once and remove circular dependence # return mf.e_tot # mf.kernel = mf_kernel return mf