#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Qiming Sun <osirpt.sun@gmail.com>
# Junzi Liu <latrix1247@gmail.com>
# Susi Lehtola <susi.lehtola@gmail.com>
from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf.gto import mole
from pyscf.lib import logger
from pyscf.lib.scipy_helper import pivoted_cholesky
from pyscf import __config__
LINEAR_DEP_THRESHOLD = getattr(__config__, 'scf_addons_remove_linear_dep_threshold', 1e-8)
CHOLESKY_THRESHOLD = getattr(__config__, 'scf_addons_cholesky_threshold', 1e-10)
FORCE_PIVOTED_CHOLESKY = getattr(__config__, 'scf_addons_force_cholesky', False)
LINEAR_DEP_TRIGGER = getattr(__config__, 'scf_addons_remove_linear_dep_trigger', 1e-10)
SMEARING_METHOD = getattr(__config__, 'pbc_scf_addons_smearing_method', 'fermi')
[docs]
def smearing(mf, sigma=None, method=SMEARING_METHOD, mu0=None, fix_spin=False):
'''Fermi-Dirac or Gaussian smearing'''
if isinstance(mf, _SmearingSCF):
mf.sigma = sigma
mf.method = method
mf.mu0 = mu0
mf.fix_spin = fix_spin
return mf
assert not mf.istype('KSCF')
return lib.set_class(_SmearingSCF(mf, sigma, method, mu0, fix_spin),
(_SmearingSCF, mf.__class__))
[docs]
def smearing_(mf, *args, **kwargs):
mf1 = smearing(mf, *args, **kwargs)
mf.__class__ = mf1.__class__
mf.__dict__ = mf1.__dict__
return mf
def _get_grad_tril(mo_coeff, mo_occ, fock):
f_mo = reduce(numpy.dot, (mo_coeff.T.conj(), fock, mo_coeff))
return f_mo[numpy.tril_indices_from(f_mo, -1)]
def _fermi_smearing_occ(mu, mo_energy, sigma):
'''Fermi-Dirac smearing'''
occ = numpy.zeros_like(mo_energy)
de = (mo_energy - mu) / sigma
occ[de<40] = 1./(numpy.exp(de[de<40])+1.)
return occ
def _gaussian_smearing_occ(mu, mo_energy, sigma):
'''Gaussian smearing'''
return 0.5 * scipy.special.erfc((mo_energy - mu) / sigma)
def _smearing_optimize(f_occ, mo_es, nocc, sigma):
def nelec_cost_fn(m, mo_es, nocc):
mo_occ = f_occ(m, mo_es, sigma)
return (mo_occ.sum() - nocc)**2
fermi = _get_fermi(mo_es, nocc)
res = scipy.optimize.minimize(
nelec_cost_fn, fermi, args=(mo_es, nocc), method='Powell',
options={'xtol': 1e-5, 'ftol': 1e-5, 'maxiter': 10000})
mu = res.x
mo_occs = f_occ(mu, mo_es, sigma)
return mu, mo_occs
def _get_fermi(mo_energy, nocc):
mo_e_sorted = numpy.sort(mo_energy)
return mo_e_sorted[nocc-1]
class _SmearingSCF:
__name_mixin__ = 'Smearing'
_keys = {
'sigma', 'smearing_method', 'mu0', 'fix_spin', 'entropy', 'e_free', 'e_zero'
}
def __init__(self, mf, sigma, method, mu0, fix_spin):
self.__dict__.update(mf.__dict__)
self.sigma = sigma
self.smearing_method = method
self.mu0 = mu0
self.fix_spin = fix_spin
self.entropy = None
self.e_free = None
self.e_zero = None
def undo_smearing(self):
obj = lib.view(self, lib.drop_class(self.__class__, _SmearingSCF))
del obj.sigma
del obj.smearing_method
del obj.fix_spin
del obj.entropy
del obj.e_free
del obj.e_zero
return obj
def get_occ(self, mo_energy=None, mo_coeff=None):
'''Label the occupancies for each orbital
'''
from pyscf.pbc.tools import print_mo_energy_occ
if (self.sigma == 0) or (not self.sigma) or (not self.smearing_method):
mo_occ = super().get_occ(mo_energy, mo_coeff)
return mo_occ
is_uhf = self.istype('UHF')
is_rhf = self.istype('RHF')
is_rohf = self.istype('ROHF')
sigma = self.sigma
if self.smearing_method.lower() == 'fermi':
f_occ = _fermi_smearing_occ
else:
f_occ = _gaussian_smearing_occ
if self.fix_spin and (is_uhf or is_rohf): # spin separated fermi level
if is_rohf: # treat rohf as uhf
mo_es = (mo_energy, mo_energy)
else:
mo_es = mo_energy
nocc = self.nelec
if self.mu0 is None:
mu_a, occa = _smearing_optimize(f_occ, mo_es[0], nocc[0], sigma)
mu_b, occb = _smearing_optimize(f_occ, mo_es[1], nocc[1], sigma)
else:
if numpy.isscalar(self.mu0):
mu_a = mu_b = self.mu0
elif len(self.mu0) == 2:
mu_a, mu_b = self.mu0
else:
raise TypeError(f'Unsupported mu0: {self.mu0}')
occa = f_occ(mu_a, mo_es[0], sigma)
occb = f_occ(mu_b, mo_es[1], sigma)
mu = [mu_a, mu_b]
mo_occs = [occa, occb]
self.entropy = self._get_entropy(mo_es[0], mo_occs[0], mu[0])
self.entropy += self._get_entropy(mo_es[1], mo_occs[1], mu[1])
fermi = (_get_fermi(mo_es[0], nocc[0]), _get_fermi(mo_es[1], nocc[1]))
logger.debug(self, ' Alpha-spin Fermi level %g Sum mo_occ = %s should equal nelec = %s',
fermi[0], mo_occs[0].sum(), nocc[0])
logger.debug(self, ' Beta-spin Fermi level %g Sum mo_occ = %s should equal nelec = %s',
fermi[1], mo_occs[1].sum(), nocc[1])
logger.info(self, ' sigma = %g Optimized mu_alpha = %.12g entropy = %.12g',
sigma, mu[0], self.entropy)
logger.info(self, ' sigma = %g Optimized mu_beta = %.12g entropy = %.12g',
sigma, mu[1], self.entropy)
if self.verbose >= logger.DEBUG:
print_mo_energy_occ(self, mo_energy, mo_occs, True)
if is_rohf:
mo_occs = mo_occs[0] + mo_occs[1]
else: # all orbitals treated with the same fermi level
nocc = nelectron = self.mol.nelectron
if is_uhf:
mo_es = numpy.hstack(mo_energy)
else:
mo_es = mo_energy
if is_rhf:
nocc = (nelectron + 1) // 2
if self.mu0 is None:
mu, mo_occs = _smearing_optimize(f_occ, mo_es, nocc, sigma)
else:
# If mu0 is given, fix mu instead of electron number. XXX -Chong Sun
mu = self.mu0
assert numpy.isscalar(mu)
mo_occs = f_occ(mu, mo_es, sigma)
self.entropy = self._get_entropy(mo_es, mo_occs, mu)
if is_rhf:
mo_occs *= 2
self.entropy *= 2
fermi = _get_fermi(mo_es, nocc)
logger.debug(self, ' Fermi level %g Sum mo_occ = %s should equal nelec = %s',
fermi, mo_occs.sum(), nelectron)
logger.info(self, ' sigma = %g Optimized mu = %.12g entropy = %.12g',
sigma, mu, self.entropy)
if is_uhf:
mo_occs = mo_occs.reshape(2, -1)
if self.verbose >= logger.DEBUG:
print_mo_energy_occ(self, mo_energy, mo_occs, is_uhf)
return mo_occs
# See https://www.vasp.at/vasp-workshop/slides/k-points.pdf
def _get_entropy(self, mo_energy, mo_occ, mu):
if self.smearing_method.lower() == 'fermi':
f = mo_occ
f = f[(f>0) & (f<1)]
entropy = -(f*numpy.log(f) + (1-f)*numpy.log(1-f)).sum()
else:
entropy = (numpy.exp(-((mo_energy-mu)/self.sigma)**2).sum()
/ (2*numpy.sqrt(numpy.pi)))
return entropy
def get_grad(self, mo_coeff, mo_occ, fock=None):
if (self.sigma == 0) or (not self.sigma) or (not self.smearing_method):
return super().get_grad(mo_coeff, mo_occ, fock)
if fock is None:
dm1 = self.make_rdm1(mo_coeff, mo_occ)
fock = self.get_hcore() + self.get_veff(self.mol, dm1)
if self.istype('UHF'):
ga = _get_grad_tril(mo_coeff[0], mo_occ[0], fock[0])
gb = _get_grad_tril(mo_coeff[1], mo_occ[1], fock[1])
return numpy.hstack((ga,gb))
else: # rhf and ghf
return _get_grad_tril(mo_coeff, mo_occ, fock)
def energy_tot(self, dm=None, h1e=None, vhf=None):
e_tot = self.energy_elec(dm, h1e, vhf)[0] + self.energy_nuc()
if self.sigma and self.smearing_method and self.entropy is not None:
self.e_free = e_tot - self.sigma * self.entropy
self.e_zero = e_tot - self.sigma * self.entropy * .5
logger.info(self, ' Total E(T) = %.15g Free energy = %.15g E0 = %.15g',
e_tot, self.e_free, self.e_zero)
return e_tot
[docs]
def frac_occ_(mf, tol=1e-3):
'''
Addons for SCF methods to assign fractional occupancy for degenerated
occupied HOMOs.
Examples::
>>> mf = gto.M(atom='O 0 0 0; O 0 0 1', verbose=4).RHF()
>>> mf = scf.addons.frac_occ(mf)
>>> mf.run()
'''
from pyscf.scf import uhf, rohf
old_get_occ = mf.get_occ
mol = mf.mol
def guess_occ(mo_energy, nocc):
mo_occ = numpy.zeros_like(mo_energy)
if nocc:
sorted_idx = numpy.argsort(mo_energy)
homo = mo_energy[sorted_idx[nocc-1]]
lumo = mo_energy[sorted_idx[nocc]]
frac_occ_lst = abs(mo_energy - homo) < tol
integer_occ_lst = (mo_energy <= homo) & (~frac_occ_lst)
mo_occ[integer_occ_lst] = 1
degen = numpy.count_nonzero(frac_occ_lst)
frac = nocc - numpy.count_nonzero(integer_occ_lst)
mo_occ[frac_occ_lst] = float(frac) / degen
else:
homo = 0.0
lumo = 0.0
frac_occ_lst = numpy.zeros_like(mo_energy, dtype=bool)
return mo_occ, numpy.where(frac_occ_lst)[0], homo, lumo
if mf.istype('UHF'):
def get_occ(mo_energy, mo_coeff=None):
nocca, noccb = mol.nelec
mo_occa, frac_lsta, homoa, lumoa = guess_occ(mo_energy[0], nocca)
mo_occb, frac_lstb, homob, lumob = guess_occ(mo_energy[1], noccb)
if abs(homoa - lumoa) < tol or abs(homob - lumob) < tol:
mo_occ = numpy.array([mo_occa, mo_occb])
if len(frac_lstb):
logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s '
'%6g for beta orbitals %s',
mo_occa[frac_lsta[0]], frac_lsta,
mo_occb[frac_lstb[0]], frac_lstb)
logger.info(mf, ' alpha HOMO = %.12g LUMO = %.12g', homoa, lumoa)
logger.info(mf, ' beta HOMO = %.12g LUMO = %.12g', homob, lumob)
logger.debug(mf, ' alpha mo_energy = %s', mo_energy[0])
logger.debug(mf, ' beta mo_energy = %s', mo_energy[1])
else:
logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s ',
mo_occa[frac_lsta[0]], frac_lsta)
logger.info(mf, ' alpha HOMO = %.12g LUMO = %.12g', homoa, lumoa)
logger.debug(mf, ' alpha mo_energy = %s', mo_energy[0])
else:
mo_occ = old_get_occ(mo_energy, mo_coeff)
return mo_occ
elif mf.istype('ROHF'):
def get_occ(mo_energy, mo_coeff=None):
nocca, noccb = mol.nelec
mo_occa, frac_lsta, homoa, lumoa = guess_occ(mo_energy, nocca)
mo_occb, frac_lstb, homob, lumob = guess_occ(mo_energy, noccb)
if abs(homoa - lumoa) < tol or abs(homob - lumob) < tol:
mo_occ = mo_occa + mo_occb
if len(frac_lstb):
logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s '
'%6g for beta orbitals %s',
mo_occa[frac_lsta[0]], frac_lsta,
mo_occb[frac_lstb[0]], frac_lstb)
logger.info(mf, ' HOMO = %.12g LUMO = %.12g', homoa, lumoa)
logger.debug(mf, ' mo_energy = %s', mo_energy)
else:
logger.warn(mf, 'fraction occ = %6g for alpha orbitals %s ',
mo_occa[frac_lsta[0]], frac_lsta)
logger.info(mf, ' HOMO = %.12g LUMO = %.12g', homoa, lumoa)
logger.debug(mf, ' mo_energy = %s', mo_energy)
else:
mo_occ = old_get_occ(mo_energy, mo_coeff)
return mo_occ
def get_grad(mo_coeff, mo_occ, fock):
occidxa = mo_occ > 0
occidxb = mo_occ > 1
viridxa = ~occidxa
viridxb = ~occidxb
uniq_var_a = viridxa.reshape(-1,1) & occidxa
uniq_var_b = viridxb.reshape(-1,1) & occidxb
if getattr(fock, 'focka', None) is not None:
focka = fock.focka
fockb = fock.fockb
elif getattr(fock, 'ndim', None) == 3:
focka, fockb = fock
else:
focka = fockb = fock
focka = reduce(numpy.dot, (mo_coeff.T.conj(), focka, mo_coeff))
fockb = reduce(numpy.dot, (mo_coeff.T.conj(), fockb, mo_coeff))
g = numpy.zeros_like(focka)
g[uniq_var_a] = focka[uniq_var_a]
g[uniq_var_b] += fockb[uniq_var_b]
return g[uniq_var_a | uniq_var_b]
elif mf.istype('RHF'):
def get_occ(mo_energy, mo_coeff=None):
nocc = (mol.nelectron+1) // 2 # n_docc + n_socc
mo_occ, frac_lst, homo, lumo = guess_occ(mo_energy, nocc)
n_docc = mol.nelectron // 2
n_socc = nocc - n_docc
if abs(homo - lumo) < tol or n_socc:
mo_occ *= 2
degen = len(frac_lst)
mo_occ[frac_lst] -= float(n_socc) / degen
logger.warn(mf, 'fraction occ = %6g for orbitals %s',
mo_occ[frac_lst[0]], frac_lst)
logger.info(mf, 'HOMO = %.12g LUMO = %.12g', homo, lumo)
logger.debug(mf, ' mo_energy = %s', mo_energy)
else:
mo_occ = old_get_occ(mo_energy, mo_coeff)
return mo_occ
else:
def get_occ(mo_energy, mo_coeff=None):
nocc = mol.nelectron
mo_occ, frac_lst, homo, lumo = guess_occ(mo_energy, nocc)
if abs(homo - lumo) < tol:
logger.warn(mf, 'fraction occ = %6g for orbitals %s',
mo_occ[frac_lst[0]], frac_lst)
logger.info(mf, 'HOMO = %.12g LUMO = %.12g', homo, lumo)
logger.debug(mf, ' mo_energy = %s', mo_energy)
else:
mo_occ = old_get_occ(mo_energy, mo_coeff)
return mo_occ
mf.get_occ = get_occ
try:
mf.get_grad = get_grad
except NameError:
pass
return mf
frac_occ = frac_occ_
[docs]
def dynamic_occ_(mf, tol=1e-3):
'''
Dynamically adjust the occupancy to avoid degeneracy between HOMO and LUMO
'''
assert mf.istype('RHF')
old_get_occ = mf.get_occ
def get_occ(mo_energy, mo_coeff=None):
mol = mf.mol
nocc = mol.nelectron // 2
sort_mo_energy = numpy.sort(mo_energy)
lumo = sort_mo_energy[nocc]
if abs(sort_mo_energy[nocc-1] - lumo) < tol:
mo_occ = numpy.zeros_like(mo_energy)
mo_occ[mo_energy<lumo] = 2
lst = abs(mo_energy - lumo) < tol
mo_occ[lst] = 0
logger.warn(mf, 'set charge = %d', mol.charge+int(lst.sum())*2)
logger.info(mf, 'HOMO = %.12g LUMO = %.12g',
sort_mo_energy[nocc-1], sort_mo_energy[nocc])
logger.debug(mf, ' mo_energy = %s', sort_mo_energy)
else:
mo_occ = old_get_occ(mo_energy, mo_coeff)
return mo_occ
mf.get_occ = get_occ
return mf
dynamic_occ = dynamic_occ_
[docs]
def dynamic_level_shift_(mf, factor=1.):
'''Dynamically change the level shift in each SCF cycle. The level shift
value is set to (HF energy change * factor)
'''
old_get_fock = mf.get_fock
mf._last_e = None
def get_fock(h1e, s1e, vhf, dm, cycle=-1, diis=None,
diis_start_cycle=None, level_shift_factor=None, damp_factor=None,
fock_last=None):
if cycle > 0 or diis is not None:
if 'exc' in mf.scf_summary: # DFT
e_tot = mf.scf_summary['e1'] + mf.scf_summary['coul'] + mf.scf_summary['exc']
else:
e_tot = mf.scf_summary['e1'] + mf.scf_summary['e2']
if mf._last_e is not None:
level_shift_factor = abs(e_tot-mf._last_e) * factor
logger.info(mf, 'Set level shift to %g', level_shift_factor)
mf._last_e = e_tot
return old_get_fock(h1e, s1e, vhf, dm, cycle, diis, diis_start_cycle,
level_shift_factor, damp_factor, fock_last=fock_last)
mf.get_fock = get_fock
return mf
dynamic_level_shift = dynamic_level_shift_
[docs]
def float_occ_(mf):
'''
For UHF, allowing the Sz value being changed during SCF iteration.
Determine occupation of alpha and beta electrons based on energy spectrum
'''
from pyscf.scf import uhf
assert mf.istype('UHF')
def get_occ(mo_energy, mo_coeff=None):
mol = mf.mol
ee = numpy.sort(numpy.hstack(mo_energy))
n_a = numpy.count_nonzero(mo_energy[0]<(ee[mol.nelectron-1]+1e-3))
n_b = mol.nelectron - n_a
if mf.nelec is None:
nelec = mf.mol.nelec
else:
nelec = mf.nelec
if n_a != nelec[0]:
logger.info(mf, 'change num. alpha/beta electrons '
' %d / %d -> %d / %d',
nelec[0], nelec[1], n_a, n_b)
mf.nelec = (n_a, n_b)
return uhf.UHF.get_occ(mf, mo_energy, mo_coeff)
mf.get_occ = get_occ
return mf
dynamic_sz_ = float_occ = float_occ_
[docs]
def follow_state_(mf, occorb=None):
occstat = [occorb]
old_get_occ = mf.get_occ
def get_occ(mo_energy, mo_coeff=None):
if occstat[0] is None:
mo_occ = old_get_occ(mo_energy, mo_coeff)
else:
mo_occ = numpy.zeros_like(mo_energy)
s = reduce(numpy.dot, (occstat[0].T, mf.get_ovlp(), mo_coeff))
nocc = mf.mol.nelectron // 2
#choose a subset of mo_coeff, which maximizes <old|now>
idx = numpy.argsort(numpy.einsum('ij,ij->j', s, s))
mo_occ[idx[-nocc:]] = 2
logger.debug(mf, ' mo_occ = %s', mo_occ)
logger.debug(mf, ' mo_energy = %s', mo_energy)
occstat[0] = mo_coeff[:,mo_occ>0]
return mo_occ
mf.get_occ = get_occ
return mf
follow_state = follow_state_
[docs]
def mom_occ_(mf, occorb, setocc):
'''Use maximum overlap method to determine occupation number for each orbital in every
iteration.'''
from pyscf.scf import uhf, rohf
log = logger.Logger(mf.stdout, mf.verbose)
if mf.istype('UHF'):
coef_occ_a = occorb[0][:, setocc[0]>0]
coef_occ_b = occorb[1][:, setocc[1]>0]
elif mf.istype('ROHF'):
if mf.mol.spin != (numpy.sum(setocc[0]) - numpy.sum(setocc[1])):
raise ValueError('Wrong occupation setting for restricted open-shell calculation.')
coef_occ_a = occorb[:, setocc[0]>0]
coef_occ_b = occorb[:, setocc[1]>0]
else: # GHF, and DHF
assert setocc.ndim == 1
if mf.istype('UHF') or mf.istype('ROHF'):
def get_occ(mo_energy=None, mo_coeff=None):
if mo_energy is None: mo_energy = mf.mo_energy
if mo_coeff is None: mo_coeff = mf.mo_coeff
if mf.istype('ROHF'):
mo_coeff = numpy.array([mo_coeff, mo_coeff])
mo_occ = numpy.zeros_like(setocc)
nocc_a = int(numpy.sum(setocc[0]))
nocc_b = int(numpy.sum(setocc[1]))
s_a = reduce(numpy.dot, (coef_occ_a.conj().T, mf.get_ovlp(), mo_coeff[0]))
s_b = reduce(numpy.dot, (coef_occ_b.conj().T, mf.get_ovlp(), mo_coeff[1]))
#choose a subset of mo_coeff, which maximizes <old|now>
idx_a = numpy.argsort(numpy.einsum('ij,ij->j', s_a, s_a))[::-1]
idx_b = numpy.argsort(numpy.einsum('ij,ij->j', s_b, s_b))[::-1]
mo_occ[0,idx_a[:nocc_a]] = 1.
mo_occ[1,idx_b[:nocc_b]] = 1.
log.debug(' New alpha occ pattern: %s', mo_occ[0])
log.debug(' New beta occ pattern: %s', mo_occ[1])
if isinstance(mf.mo_energy, numpy.ndarray) and mf.mo_energy.ndim == 1:
log.debug1(' Current mo_energy(sorted) = %s', mo_energy)
else:
log.debug1(' Current alpha mo_energy(sorted) = %s', mo_energy[0])
log.debug1(' Current beta mo_energy(sorted) = %s', mo_energy[1])
if (int(numpy.sum(mo_occ[0])) != nocc_a):
log.error('mom alpha electron occupation numbers do not match: %d, %d',
nocc_a, int(numpy.sum(mo_occ[0])))
if (int(numpy.sum(mo_occ[1])) != nocc_b):
log.error('mom beta electron occupation numbers do not match: %d, %d',
nocc_b, int(numpy.sum(mo_occ[1])))
#output 1-dimension occupation number for restricted open-shell
if mf.istype('ROHF'): mo_occ = mo_occ[0, :] + mo_occ[1, :]
return mo_occ
else:
def get_occ(mo_energy=None, mo_coeff=None):
if mo_energy is None: mo_energy = mf.mo_energy
if mo_coeff is None: mo_coeff = mf.mo_coeff
mo_occ = numpy.zeros_like(setocc)
nocc = int(setocc.sum())
s = occorb[:,setocc>0].conj().T.dot(mf.get_ovlp()).dot(mo_coeff)
#choose a subset of mo_coeff, which maximizes <old|now>
idx = numpy.argsort(numpy.einsum('ij,ij->j', s, s))[::-1]
mo_occ[idx[:nocc]] = 1.
return mo_occ
mf.get_occ = get_occ
return mf
mom_occ = mom_occ_
[docs]
def project_mo_nr2nr(mol1, mo1, mol2):
r''' Project orbital coefficients from basis set 1 (C1 for mol1) to basis
set 2 (C2 for mol2).
.. math::
|\psi1\rangle = |AO1\rangle C1
|\psi2\rangle = P |\psi1\rangle = |AO2\rangle S^{-1}\langle AO2| AO1\rangle> C1 = |AO2\rangle> C2
C2 = S^{-1}\langle AO2|AO1\rangle C1
There are three relevant functions:
:func:`project_mo_nr2nr` is the projection for non-relativistic (scalar) basis.
:func:`project_mo_nr2r` projects from non-relativistic to relativistic basis.
:func:`project_mo_r2r` is the projection between relativistic (spinor) basis.
'''
s22 = mol2.intor_symmetric('int1e_ovlp')
s21 = mole.intor_cross('int1e_ovlp', mol2, mol1)
if isinstance(mo1, numpy.ndarray) and mo1.ndim == 2:
return lib.cho_solve(s22, numpy.dot(s21, mo1), strict_sym_pos=False)
else:
return [lib.cho_solve(s22, numpy.dot(s21, x), strict_sym_pos=False)
for x in mo1]
[docs]
@lib.with_doc(project_mo_nr2nr.__doc__)
def project_mo_nr2r(mol1, mo1, mol2):
assert (not mol1.cart)
s22 = mol2.intor_symmetric('int1e_ovlp_spinor')
s21 = mole.intor_cross('int1e_ovlp_sph', mol2, mol1)
ua, ub = mol2.sph2spinor_coeff()
s21 = numpy.dot(ua.T.conj(), s21) + numpy.dot(ub.T.conj(), s21) # (*)
# mo2: alpha, beta have been summed in Eq. (*)
# so DM = mo2[:,:nocc] * 1 * mo2[:,:nocc].H
if isinstance(mo1, numpy.ndarray) and mo1.ndim == 2:
mo2 = numpy.dot(s21, mo1)
return lib.cho_solve(s22, mo2, strict_sym_pos=False)
else:
return [lib.cho_solve(s22, numpy.dot(s21, x), strict_sym_pos=False)
for x in mo1]
[docs]
@lib.with_doc(project_mo_nr2nr.__doc__)
def project_mo_r2r(mol1, mo1, mol2):
s22 = mol2.intor_symmetric('int1e_ovlp_spinor')
t22 = mol2.intor_symmetric('int1e_spsp_spinor')
s21 = mole.intor_cross('int1e_ovlp_spinor', mol2, mol1)
t21 = mole.intor_cross('int1e_spsp_spinor', mol2, mol1)
n2c = s21.shape[1]
pl = lib.cho_solve(s22, s21, strict_sym_pos=False)
ps = lib.cho_solve(t22, t21, strict_sym_pos=False)
if isinstance(mo1, numpy.ndarray) and mo1.ndim == 2:
return numpy.vstack((numpy.dot(pl, mo1[:n2c]),
numpy.dot(ps, mo1[n2c:])))
else:
return [numpy.vstack((numpy.dot(pl, x[:n2c]),
numpy.dot(ps, x[n2c:]))) for x in mo1]
[docs]
def project_dm_nr2nr(mol1, dm1, mol2):
r''' Project density matrix representation from basis set 1 (mol1) to basis
set 2 (mol2).
.. math::
|AO2\rangle DM_AO2 \langle AO2|
= |AO2\rangle P DM_AO1 P \langle AO2|
DM_AO2 = P DM_AO1 P
P = S_{AO2}^{-1}\langle AO2|AO1\rangle
There are three relevant functions:
:func:`project_dm_nr2nr` is the projection for non-relativistic (scalar) basis.
:func:`project_dm_nr2r` projects from non-relativistic to relativistic basis.
:func:`project_dm_r2r` is the projection between relativistic (spinor) basis.
'''
s22 = mol2.intor_symmetric('int1e_ovlp')
s21 = mole.intor_cross('int1e_ovlp', mol2, mol1)
p21 = lib.cho_solve(s22, s21, strict_sym_pos=False)
if isinstance(dm1, numpy.ndarray) and dm1.ndim == 2:
return reduce(numpy.dot, (p21, dm1, p21.conj().T))
else:
return lib.einsum('pi,nij,qj->npq', p21, dm1, p21.conj())
[docs]
@lib.with_doc(project_dm_nr2nr.__doc__)
def project_dm_nr2r(mol1, dm1, mol2):
assert (not mol1.cart)
s22 = mol2.intor_symmetric('int1e_ovlp_spinor')
s21 = mole.intor_cross('int1e_ovlp_sph', mol2, mol1)
ua, ub = mol2.sph2spinor_coeff()
s21 = numpy.dot(ua.T.conj(), s21) + numpy.dot(ub.T.conj(), s21) # (*)
# mo2: alpha, beta have been summed in Eq. (*)
# so DM = mo2[:,:nocc] * 1 * mo2[:,:nocc].H
p21 = lib.cho_solve(s22, s21, strict_sym_pos=False)
if isinstance(dm1, numpy.ndarray) and dm1.ndim == 2:
return reduce(numpy.dot, (p21, dm1, p21.conj().T))
else:
return lib.einsum('pi,nij,qj->npq', p21, dm1, p21.conj())
[docs]
@lib.with_doc(project_dm_nr2nr.__doc__)
def project_dm_r2r(mol1, dm1, mol2):
s22 = mol2.intor_symmetric('int1e_ovlp_spinor')
t22 = mol2.intor_symmetric('int1e_spsp_spinor')
s21 = mole.intor_cross('int1e_ovlp_spinor', mol2, mol1)
t21 = mole.intor_cross('int1e_spsp_spinor', mol2, mol1)
pl = lib.cho_solve(s22, s21, strict_sym_pos=False)
ps = lib.cho_solve(t22, t21, strict_sym_pos=False)
p21 = scipy.linalg.block_diag(pl, ps)
if isinstance(dm1, numpy.ndarray) and dm1.ndim == 2:
return reduce(numpy.dot, (p21, dm1, p21.conj().T))
else:
return lib.einsum('pi,nij,qj->npq', p21, dm1, p21.conj())
[docs]
def canonical_orth_(S, thr=1e-7):
'''Löwdin's canonical orthogonalization'''
# Ensure the basis functions are normalized (symmetry-adapted ones are not!)
normlz = numpy.power(numpy.diag(S), -0.5)
Snorm = numpy.dot(numpy.diag(normlz), numpy.dot(S, numpy.diag(normlz)))
# Form vectors for normalized overlap matrix
Sval, Svec = numpy.linalg.eigh(Snorm)
X = Svec[:,Sval>=thr] / numpy.sqrt(Sval[Sval>=thr])
# Plug normalization back in
X = numpy.dot(numpy.diag(normlz), X)
return X
[docs]
def partial_cholesky_orth_(S, canthr=1e-7, cholthr=1e-9):
'''Partial Cholesky orthogonalization for curing overcompleteness.
References:
Susi Lehtola, Curing basis set overcompleteness with pivoted
Cholesky decompositions, J. Chem. Phys. 151, 241102 (2019),
doi:10.1063/1.5139948.
Susi Lehtola, Accurate reproduction of strongly repulsive
interatomic potentials, Phys. Rev. A 101, 032504 (2020),
doi:10.1103/PhysRevA.101.032504.
'''
# Ensure the basis functions are normalized
normlz = numpy.power(numpy.diag(S), -0.5)
Snorm = numpy.dot(numpy.diag(normlz), numpy.dot(S, numpy.diag(normlz)))
# Sort the basis functions according to the Gershgorin circle
# theorem so that the Cholesky routine is well-initialized
odS = numpy.abs(Snorm)
numpy.fill_diagonal(odS, 0.0)
odSs = numpy.sum(odS, axis=0)
sortidx = numpy.argsort(odSs, kind='stable')
# Run the pivoted Cholesky decomposition
Ssort = Snorm[numpy.ix_(sortidx, sortidx)].copy()
c, piv, r_c = pivoted_cholesky(Ssort, tol=cholthr)
# The functions we're going to use are given by the pivot as
idx = sortidx[piv[:r_c]]
# Get the (un-normalized) sub-basis
Ssub = S[numpy.ix_(idx, idx)].copy()
# Orthogonalize sub-basis
Xsub = canonical_orth_(Ssub, thr=canthr)
# Full X
X = numpy.zeros((S.shape[0], Xsub.shape[1]), dtype=Xsub.dtype)
X[idx,:] = Xsub
return X
[docs]
def remove_linear_dep_(mf, threshold=LINEAR_DEP_THRESHOLD,
lindep=LINEAR_DEP_TRIGGER,
cholesky_threshold=CHOLESKY_THRESHOLD,
force_pivoted_cholesky=FORCE_PIVOTED_CHOLESKY):
'''
Args:
threshold : float
The threshold under which the eigenvalues of the overlap matrix are
discarded to avoid numerical instability.
lindep : float
The threshold that triggers the special treatment of the linear
dependence issue.
'''
s = mf.get_ovlp()
cond = numpy.max(lib.cond(s))
if cond < 1./lindep and not force_pivoted_cholesky:
return mf
logger.info(mf, 'Applying remove_linear_dep_ on SCF object.')
logger.debug(mf, 'Overlap condition number %g', cond)
if (cond < 1./numpy.finfo(s.dtype).eps and not force_pivoted_cholesky):
logger.info(mf, 'Using canonical orthogonalization with threshold {}'.format(threshold))
mf._eigh = _eigh_with_canonical_orth(threshold)
else:
logger.info(mf, 'Using partial Cholesky orthogonalization '
'(doi:10.1063/1.5139948, doi:10.1103/PhysRevA.101.032504)')
logger.info(mf, 'Using threshold {} for pivoted Cholesky'.format(cholesky_threshold))
logger.info(mf, 'Using threshold {} to orthogonalize the subbasis'.format(threshold))
mf._eigh = _eigh_with_pivot_cholesky(threshold, cholesky_threshold)
return mf
remove_linear_dep = remove_linear_dep_
def _eigh_with_canonical_orth(threshold=LINEAR_DEP_THRESHOLD):
def eigh(h, s):
x = canonical_orth_(s, threshold)
xhx = reduce(lib.dot, (x.conj().T, h, x))
e, c = scipy.linalg.eigh(xhx)
c = numpy.dot(x, c)
return e, c
return eigh
def _eigh_with_pivot_cholesky(threshold=LINEAR_DEP_THRESHOLD,
cholesky_threshold=CHOLESKY_THRESHOLD):
def eigh(h, s):
x = partial_cholesky_orth_(s, canthr=threshold, cholthr=cholesky_threshold)
xhx = reduce(lib.dot, (x.conj().T, h, x))
e, c = scipy.linalg.eigh(xhx)
c = numpy.dot(x, c)
return e, c
return eigh
[docs]
def convert_to_uhf(mf, out=None, remove_df=False):
'''Convert the given mean-field object to the unrestricted HF/KS object
Note this conversion only changes the class of the mean-field object.
The total energy and wave-function are the same as them in the input
mf object. If mf is an second order SCF (SOSCF) object, the SOSCF layer
will be discarded. Its underlying SCF object mf._scf will be converted.
Args:
mf : SCF object
Kwargs
remove_df : bool
Whether to convert the DF-SCF object to the normal SCF object.
This conversion is not applied by default.
Returns:
An unrestricted SCF object
'''
from pyscf import scf
from pyscf import dft
assert (isinstance(mf, scf.hf.SCF))
logger.debug(mf, 'Converting %s to UHF', mf.__class__)
if mf.istype('GHF'):
raise NotImplementedError
elif out is not None:
assert out.istype('UHF')
out = _update_mf_without_soscf(mf, out, remove_df)
elif mf.istype('UHF'):
# Remove with_df for SOSCF method because the post-HF code checks the
# attribute .with_df to identify whether an SCF object is DF-SCF method.
# with_df in SOSCF is used in orbital hessian approximation only. For the
# returned SCF object, whether with_df exists in SOSCF has no effects on the
# mean-field energy and other properties.
if getattr(mf, '_scf', None):
return _update_mf_without_soscf(mf, mf._scf.copy(), remove_df)
else:
return mf.copy()
else:
known_cls = {
dft.rks_symm.ROKS : dft.uks_symm.UKS,
dft.rks_symm.RKS : dft.uks_symm.UKS,
dft.roks.ROKS : dft.uks.UKS,
dft.rks.RKS : dft.uks.UKS,
scf.hf_symm.ROHF : scf.uhf_symm.UHF,
scf.hf_symm.RHF : scf.uhf_symm.UHF,
scf.rohf.ROHF : scf.uhf.UHF,
scf.hf.RHF : scf.uhf.UHF,
}
out = _object_without_soscf(mf, known_cls, remove_df)
return _update_mo_to_uhf_(mf, out)
def _object_without_soscf(mf, known_class, remove_df=False):
'''Create a new SCF object, excluding the SOSCF base class'''
from pyscf.soscf import newton_ah
from pyscf.df.df_jk import _DFHF
if isinstance(mf, newton_ah._CIAH_SOSCF):
mf = mf.undo_soscf()
if remove_df and isinstance(mf, _DFHF):
mf = mf.undo_df()
for old_cls in mf.__class__.__mro__:
if old_cls in known_class:
break
else:
raise NotImplementedError(
"Incompatible object types. Mean-field `mf` class not found in "
"`known_class` type.\n\nmf = '%s'\n\nknown_class = '%s'" %
(mf.__class__, known_class))
new_cls = known_class[old_cls]
out = new_cls(mf.mol)
out.__dict__.update(mf.__dict__)
out.__class__ = lib.replace_class(mf.__class__, old_cls, new_cls)
return out
def _update_mf_without_soscf(mf, out, remove_df=False):
'''Update an SCF object, excluding the SOSCF base class'''
from pyscf.soscf import newton_ah
mf_dic = dict(mf.__dict__)
# if mf is SOSCF object, avoid to overwrite the with_df method
# FIXME: it causes bug when converting pbc-SOSCF.
if isinstance(mf, newton_ah._CIAH_SOSCF):
mf_dic.pop('_scf')
if not hasattr(mf._scf, 'with_df'):
mf_dic.pop('with_df', None)
if remove_df:
mf_dic.pop('with_df', None)
out.__dict__.update(mf_dic)
return out
[docs]
def convert_to_rhf(mf, out=None, remove_df=False):
'''Convert the given mean-field object to the restricted HF/KS object
Note this conversion only changes the class of the mean-field object.
The total energy and wave-function are the same as them in the input
mf object. If mf is an second order SCF (SOSCF) object, the SOSCF layer
will be discarded. Its underlying SCF object mf._scf will be converted.
Args:
mf : SCF object
Kwargs
remove_df : bool
Whether to convert the DF-SCF object to the normal SCF object.
This conversion is not applied by default.
Returns:
An unrestricted SCF object
'''
from pyscf import scf
from pyscf import dft
assert (isinstance(mf, scf.hf.SCF))
logger.debug(mf, 'Converting %s to RHF', mf.__class__)
if getattr(mf, 'nelec', None) is None:
nelec = mf.mol.nelec
else:
nelec = mf.nelec
if mf.istype('GHF'):
raise NotImplementedError
elif out is not None:
assert out.istype('RHF')
out = _update_mf_without_soscf(mf, out, remove_df)
elif (mf.istype('RHF') or
(nelec[0] != nelec[1] and mf.istype('ROHF'))):
if getattr(mf, '_scf', None):
return _update_mf_without_soscf(mf, mf._scf.copy(), remove_df)
else:
return mf.copy()
else:
if nelec[0] == nelec[1]:
known_cls = {
dft.rks_symm.ROKS: dft.rks_symm.RKS,
dft.roks.ROKS : dft.rks.RKS ,
dft.uks_symm.UKS : dft.rks_symm.RKS,
dft.uks.UKS : dft.rks.RKS ,
scf.hf_symm.ROHF : scf.hf_symm.RHF ,
scf.rohf.ROHF : scf.hf.RHF ,
scf.uhf_symm.UHF : scf.hf_symm.RHF ,
scf.uhf.UHF : scf.hf.RHF ,
}
else:
known_cls = {
dft.uks_symm.UKS : dft.rks_symm.ROKS,
dft.uks.UKS : dft.roks.ROKS ,
scf.uhf_symm.UHF : scf.hf_symm.ROHF ,
scf.uhf.UHF : scf.rohf.ROHF ,
}
out = _object_without_soscf(mf, known_cls, remove_df)
return _update_mo_to_rhf_(mf, out)
[docs]
def convert_to_ghf(mf, out=None, remove_df=False):
'''Convert the given mean-field object to the generalized HF/KS object
Note this conversion only changes the class of the mean-field object.
The total energy and wave-function are the same as them in the input
mf object. If mf is an second order SCF (SOSCF) object, the SOSCF layer
will be discarded. Its underlying SCF object mf._scf will be converted.
Args:
mf : SCF object
Kwargs
remove_df : bool
Whether to convert the DF-SCF object to the normal SCF object.
This conversion is not applied by default.
Returns:
An generalized SCF object
'''
from pyscf import scf
from pyscf import dft
assert (isinstance(mf, scf.hf.SCF))
logger.debug(mf, 'Converting %s to GHF', mf.__class__)
if out is not None:
assert out.istype('GHF')
out = _update_mf_without_soscf(mf, out, remove_df)
elif mf.istype('GHF'):
if getattr(mf, '_scf', None):
return _update_mf_without_soscf(mf, mf._scf.copy(), remove_df)
else:
return mf.copy()
else:
known_cls = {
dft.rks_symm.ROKS : dft.gks_symm.GKS,
dft.rks_symm.RKS : dft.gks_symm.GKS,
dft.uks_symm.UKS : dft.gks_symm.GKS,
dft.roks.ROKS : dft.gks.GKS,
dft.rks.RKS : dft.gks.GKS,
dft.uks.UKS : dft.gks.GKS,
scf.hf_symm.ROHF : scf.ghf_symm.GHF,
scf.hf_symm.RHF : scf.ghf_symm.GHF,
scf.uhf_symm.UHF : scf.ghf_symm.GHF,
scf.rohf.ROHF : scf.ghf.GHF,
scf.hf.RHF : scf.ghf.GHF,
scf.uhf.UHF : scf.ghf.GHF,
}
out = _object_without_soscf(mf, known_cls, remove_df)
return _update_mo_to_ghf_(mf, out)
def _update_mo_to_uhf_(mf, mf1):
if mf.mo_energy is None:
return mf1
if mf.istype('UHF') or mf.istype('KUHF'):
mf1.mo_occ = mf.mo_occ
mf1.mo_coeff = mf.mo_coeff
mf1.mo_energy = mf.mo_energy
elif getattr(mf, 'kpts', None) is None: # RHF/ROHF
mf1.mo_occ = numpy.array((mf.mo_occ>0, mf.mo_occ==2), dtype=numpy.double)
# ROHF orbital energies, not canonical UHF orbital energies
mo_ea = getattr(mf.mo_energy, 'mo_ea', mf.mo_energy)
mo_eb = getattr(mf.mo_energy, 'mo_eb', mf.mo_energy)
mf1.mo_energy = numpy.array((mo_ea, mo_eb))
mf1.mo_coeff = numpy.array((mf.mo_coeff, mf.mo_coeff))
else: # This to handle KRHF object
mf1.mo_occ = numpy.array([
[numpy.asarray(occ> 0, dtype=numpy.double) for occ in mf.mo_occ],
[numpy.asarray(occ==2, dtype=numpy.double) for occ in mf.mo_occ]])
mo_ea = getattr(mf.mo_energy, 'mo_ea', mf.mo_energy)
mo_eb = getattr(mf.mo_energy, 'mo_eb', mf.mo_energy)
mf1.mo_energy = numpy.array((mo_ea, mo_eb))
mf1.mo_coeff = numpy.array((mf.mo_coeff, mf.mo_coeff))
return mf1
def _update_mo_to_rhf_(mf, mf1):
if mf.mo_energy is None:
return mf1
if mf.istype('RHF') or mf.istype('KRHF'): # RHF/ROHF/KRHF/KROHF
mf1.mo_occ = mf.mo_occ
mf1.mo_coeff = mf.mo_coeff
mf1.mo_energy = mf.mo_energy
elif getattr(mf, 'kpts', None) is None: # UHF
mf1.mo_occ = mf.mo_occ[0] + mf.mo_occ[1]
mf1.mo_energy = mf.mo_energy[0]
mf1.mo_coeff = mf.mo_coeff[0]
if getattr(mf.mo_coeff[0], 'orbsym', None) is not None:
mf1.mo_coeff = lib.tag_array(mf1.mo_coeff, orbsym=mf.mo_coeff[0].orbsym)
mf1.converged = False
else: # KUHF
mf1.mo_occ = [occa+occb for occa, occb in zip(*mf.mo_occ)]
mf1.mo_energy = mf.mo_energy[0]
mf1.mo_coeff = mf.mo_coeff[0]
mf1.converged = False
return mf1
def _update_mo_to_ghf_(mf, mf1):
if mf.mo_energy is None:
return mf1
if mf.istype('KSCF'):
raise NotImplementedError('KSCF')
elif mf.istype('RHF'):
nao, nmo = mf.mo_coeff.shape
orbspin = get_ghf_orbspin(mf.mo_energy, mf.mo_occ, True)
mf1.mo_energy = numpy.empty(nmo*2)
mf1.mo_energy[orbspin==0] = mf.mo_energy
mf1.mo_energy[orbspin==1] = mf.mo_energy
mf1.mo_occ = numpy.empty(nmo*2)
mf1.mo_occ[orbspin==0] = mf.mo_occ > 0
mf1.mo_occ[orbspin==1] = mf.mo_occ == 2
mo_coeff = numpy.zeros((nao*2,nmo*2), dtype=mf.mo_coeff.dtype)
mo_coeff[:nao,orbspin==0] = mf.mo_coeff
mo_coeff[nao:,orbspin==1] = mf.mo_coeff
if getattr(mf.mo_coeff, 'orbsym', None) is not None:
orbsym = numpy.zeros_like(orbspin)
orbsym[orbspin==0] = mf.mo_coeff.orbsym
orbsym[orbspin==1] = mf.mo_coeff.orbsym
mo_coeff = lib.tag_array(mo_coeff, orbsym=orbsym)
mf1.mo_coeff = lib.tag_array(mo_coeff, orbspin=orbspin)
else: # UHF
nao, nmo = mf.mo_coeff[0].shape
orbspin = get_ghf_orbspin(mf.mo_energy, mf.mo_occ, False)
mf1.mo_energy = numpy.empty(nmo*2)
mf1.mo_energy[orbspin==0] = mf.mo_energy[0]
mf1.mo_energy[orbspin==1] = mf.mo_energy[1]
mf1.mo_occ = numpy.empty(nmo*2)
mf1.mo_occ[orbspin==0] = mf.mo_occ[0]
mf1.mo_occ[orbspin==1] = mf.mo_occ[1]
mo_coeff = numpy.zeros((nao*2,nmo*2), dtype=mf.mo_coeff[0].dtype)
mo_coeff[:nao,orbspin==0] = mf.mo_coeff[0]
mo_coeff[nao:,orbspin==1] = mf.mo_coeff[1]
if getattr(mf.mo_coeff[0], 'orbsym', None) is not None:
orbsym = numpy.zeros_like(orbspin)
orbsym[orbspin==0] = mf.mo_coeff[0].orbsym
orbsym[orbspin==1] = mf.mo_coeff[1].orbsym
mo_coeff = lib.tag_array(mo_coeff, orbsym=orbsym)
mf1.mo_coeff = lib.tag_array(mo_coeff, orbspin=orbspin)
return mf1
[docs]
def get_ghf_orbspin(mo_energy, mo_occ, is_rhf=None):
'''Spin of each GHF orbital when the GHF orbitals are converted from
RHF/UHF orbitals
For RHF orbitals, the orbspin corresponds to first occupied orbitals then
unoccupied orbitals. In the occupied orbital space, if degenerated, first
alpha then beta, last the (open-shell) singly occupied (alpha) orbitals. In
the unoccupied orbital space, first the (open-shell) unoccupied (beta)
orbitals if applicable, then alpha and beta orbitals
For UHF orbitals, the orbspin corresponds to first occupied orbitals then
unoccupied orbitals.
'''
if is_rhf is None: # guess whether the orbitals are RHF orbitals
is_rhf = mo_energy[0].ndim == 0
if is_rhf:
nmo = mo_energy.size
nocc = numpy.count_nonzero(mo_occ >0)
nvir = nmo - nocc
ndocc = numpy.count_nonzero(mo_occ==2)
nsocc = nocc - ndocc
orbspin = numpy.array([0,1]*ndocc + [0]*nsocc + [1]*nsocc + [0,1]*nvir)
else:
nmo = mo_energy[0].size
nocca = numpy.count_nonzero(mo_occ[0]>0)
nvira = nmo - nocca
noccb = numpy.count_nonzero(mo_occ[1]>0)
nvirb = nmo - noccb
# round(6) to avoid numerical uncertainty in degeneracy
es = numpy.append(mo_energy[0][mo_occ[0] >0],
mo_energy[1][mo_occ[1] >0])
oidx = numpy.argsort(es.round(6), kind='stable')
es = numpy.append(mo_energy[0][mo_occ[0]==0],
mo_energy[1][mo_occ[1]==0])
vidx = numpy.argsort(es.round(6), kind='stable')
orbspin = numpy.append(numpy.array([0]*nocca+[1]*noccb)[oidx],
numpy.array([0]*nvira+[1]*nvirb)[vidx])
return orbspin
del (LINEAR_DEP_THRESHOLD, LINEAR_DEP_TRIGGER)
[docs]
def fast_newton(mf, mo_coeff=None, mo_occ=None, dm0=None,
auxbasis=None, dual_basis=None, **newton_kwargs):
'''This is a wrap function which combines several operations. This
function first setup the initial guess
from density fitting calculation then use for
Newton solver and call Newton solver.
Newton solver attributes [max_cycle_inner, max_stepsize, ah_start_tol,
ah_conv_tol, ah_grad_trust_region, ...] can be passed through ``**newton_kwargs``.
'''
from pyscf.lib import logger
from pyscf import df
from pyscf.soscf import newton_ah
if auxbasis is None:
auxbasis = df.addons.aug_etb_for_dfbasis(mf.mol, 'ahlrichs', beta=2.5)
if dual_basis:
mf1 = mf.newton()
pmol = mf1.mol = newton_ah.project_mol(mf.mol, dual_basis)
mf1 = mf1.density_fit(auxbasis)
else:
mf1 = mf.newton().density_fit(auxbasis)
mf1.with_df._compatible_format = False
mf1.direct_scf_tol = 1e-7
if getattr(mf, 'grids', None):
from pyscf.dft import gen_grid
approx_grids = gen_grid.Grids(mf.mol)
approx_grids.verbose = 0
approx_grids.level = max(0, mf.grids.level-3)
mf1.grids = approx_grids
approx_numint = mf._numint.copy()
mf1._numint = approx_numint
for key in newton_kwargs:
setattr(mf1, key, newton_kwargs[key])
if mo_coeff is None or mo_occ is None:
mo_coeff, mo_occ = mf.mo_coeff, mf.mo_occ
if dm0 is not None:
mo_coeff, mo_occ = mf1.from_dm(dm0)
elif mo_coeff is None or mo_occ is None:
logger.note(mf, '========================================================')
logger.note(mf, 'Generating initial guess with DIIS-SCF for newton solver')
logger.note(mf, '========================================================')
if dual_basis:
mf0 = mf.copy()
mf0.mol = pmol
mf0 = mf0.density_fit(auxbasis)
else:
mf0 = mf.density_fit(auxbasis)
mf0.direct_scf_tol = 1e-7
mf0.conv_tol = 3.
mf0.conv_tol_grad = 1.
if mf0.level_shift == 0:
mf0.level_shift = .2
if getattr(mf, 'grids', None):
mf0.grids = approx_grids
mf0._numint = approx_numint
# Note: by setting small_rho_cutoff, dft.get_veff function may overwrite
# approx_grids and approx_numint. It will further changes the corresponding
# mf1 grids and _numint. If initial guess dm0 or mo_coeff/mo_occ were given,
# dft.get_veff are not executed so that more grid points may be found in
# approx_grids.
mf0.small_rho_cutoff = mf.small_rho_cutoff * 10
mf0.kernel()
mf1.with_df = mf0.with_df
mo_coeff, mo_occ = mf0.mo_coeff, mf0.mo_occ
if dual_basis:
if mo_occ.ndim == 2:
mo_coeff =(project_mo_nr2nr(pmol, mo_coeff[0], mf.mol),
project_mo_nr2nr(pmol, mo_coeff[1], mf.mol))
else:
mo_coeff = project_mo_nr2nr(pmol, mo_coeff, mf.mol)
mo_coeff, mo_occ = mf1.from_dm(mf.make_rdm1(mo_coeff,mo_occ))
mf0 = None
logger.note(mf, '============================')
logger.note(mf, 'Generating initial guess end')
logger.note(mf, '============================')
mf1.kernel(mo_coeff, mo_occ)
mf.converged = mf1.converged
mf.e_tot = mf1.e_tot
mf.mo_energy = mf1.mo_energy
mf.mo_coeff = mf1.mo_coeff
mf.mo_occ = mf1.mo_occ
# mf = copy.copy(mf)
# def mf_kernel(*args, **kwargs):
# logger.warn(mf, "fast_newton is a wrap function to quickly setup and call Newton solver. "
# "There's no need to call kernel function again for fast_newton.")
# del (mf.kernel) # warn once and remove circular dependence
# return mf.e_tot
# mf.kernel = mf_kernel
return mf