Source code for pyscf.scf.dhf

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Dirac Hartree-Fock
'''


from functools import reduce
import ctypes
import numpy
from pyscf import lib
from pyscf import gto
from pyscf.lib import logger
from pyscf.scf import hf
from pyscf.scf import _vhf
from pyscf.scf import chkfile
from pyscf.data import nist
from pyscf import __config__

zquatev = None
if getattr(__config__, 'scf_dhf_SCF_zquatev', True):
    try:
        # Install zquatev with
        # pip install git+https://github.com/sunqm/zquatev
        import zquatev
    except ImportError:
        pass

DEBUG = False


[docs] def kernel(mf, conv_tol=1e-9, conv_tol_grad=None, dump_chk=True, dm0=None, callback=None, conv_check=True): '''the modified SCF kernel for Dirac-Hartree-Fock. In this kernel, the SCF is carried out in three steps. First the 2-electron part is approximated by large component integrals (LL|LL); Next, (SS|LL) the interaction between large and small components are added; Finally, converge the SCF with the small component contributions (SS|SS) ''' if conv_tol_grad is None: conv_tol_grad = numpy.sqrt(conv_tol) logger.info(mf, 'Set gradient conv threshold to %g', conv_tol_grad) if dm0 is None: dm = mf.get_init_guess(mf.mol, mf.init_guess) else: dm = dm0 mf._coulomb_level = 'LLLL' if dm0 is None and mf._coulomb_level.upper() == 'LLLL': scf_conv, e_tot, mo_energy, mo_coeff, mo_occ \ = hf.kernel(mf, 1e-2, 1e-1, dump_chk, dm0=dm, callback=callback, conv_check=False) dm = mf.make_rdm1(mo_coeff, mo_occ) mf._coulomb_level = 'SSLL' if mf.with_ssss: if dm0 is None and (mf._coulomb_level.upper() == 'SSLL' or mf._coulomb_level.upper() == 'LLSS'): scf_conv, e_tot, mo_energy, mo_coeff, mo_occ \ = hf.kernel(mf, 1e-3, 1e-1, dump_chk, dm0=dm, callback=callback, conv_check=False) dm = mf.make_rdm1(mo_coeff, mo_occ) mf._coulomb_level = 'SSSS' else: mf._coulomb_level = 'SSLL' return hf.kernel(mf, conv_tol, conv_tol_grad, dump_chk, dm0=dm, callback=callback, conv_check=conv_check)
[docs] def energy_elec(mf, dm=None, h1e=None, vhf=None): r'''Electronic part of Dirac-Hartree-Fock energy Args: mf : an instance of SCF class Kwargs: dm : 2D ndarray one-partical density matrix h1e : 2D ndarray Core hamiltonian vhf : 2D ndarray HF potential Returns: Hartree-Fock electronic energy and the Coulomb energy ''' if dm is None: dm = mf.make_rdm1() if h1e is None: h1e = mf.get_hcore() if vhf is None: vhf = mf.get_veff(mf.mol, dm) e1 = numpy.einsum('ij,ji->', h1e, dm).real e_coul = numpy.einsum('ij,ji->', vhf, dm).real * .5 logger.debug(mf, 'E1 = %.14g E_coul = %.14g', e1, e_coul) if not mf.with_ssss and mf.ssss_approx == 'Visscher': e_coul += _visscher_ssss_correction(mf, dm) mf.scf_summary['e1'] = e1 mf.scf_summary['e2'] = e_coul return e1+e_coul, e_coul
def _visscher_ssss_correction(mf, dm): ''' Visscher point charge corrections for small component, TCA, 98, 68 Note there is a small difference to Visscher's work. The model charges in Visscher's work are obtained from atomic calculations. Charges here are Mulliken charges on small components. ''' aoslice = mf.mol.aoslice_2c_by_atom() n2c = dm[0].shape[0] // 2 s = mf.get_ovlp() ss_mul_charges = [] for p0, p1 in aoslice[:,2:] + n2c: mul_charge = numpy.einsum('ij,ji->', s[n2c:,p0:p1], dm[p0:p1,n2c:]) ss_mul_charges.append(mul_charge.real) ss_mul_charges = numpy.array(ss_mul_charges) e_coul_ss = gto.classical_coulomb_energy(mf.mol, ss_mul_charges) mf.scf_summary['e_coul_ss'] = e_coul_ss logger.debug(mf, 'Visscher corrections for small component = %.14g', e_coul_ss) return e_coul_ss
[docs] def get_jk_coulomb(mol, dm, hermi=1, coulomb_allow='SSSS', opt_llll=None, opt_ssll=None, opt_ssss=None, omega=None, verbose=None): log = logger.new_logger(mol, verbose) if hermi == 0 and DEBUG: # J matrix is symmetrized in this function which is only true for # density matrix with time reversal symmetry _ensure_time_reversal_symmetry(mol, dm) with mol.with_range_coulomb(omega): if coulomb_allow.upper() == 'LLLL': log.debug('Coulomb integral: (LL|LL)') j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll) n2c = j1.shape[1] vj = numpy.zeros_like(dm) vk = numpy.zeros_like(dm) vj[...,:n2c,:n2c] = j1 vk[...,:n2c,:n2c] = k1 elif coulomb_allow.upper() == 'SSLL' \ or coulomb_allow.upper() == 'LLSS': log.debug('Coulomb integral: (LL|LL) + (SS|LL)') vj, vk = _call_veff_ssll(mol, dm, hermi, opt_ssll) j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll) n2c = j1.shape[1] vj[...,:n2c,:n2c] += j1 vk[...,:n2c,:n2c] += k1 else: # coulomb_allow == 'SSSS' log.debug('Coulomb integral: (LL|LL) + (SS|LL) + (SS|SS)') vj, vk = _call_veff_ssll(mol, dm, hermi, opt_ssll) j1, k1 = _call_veff_llll(mol, dm, hermi, opt_llll) n2c = j1.shape[1] vj[...,:n2c,:n2c] += j1 vk[...,:n2c,:n2c] += k1 j1, k1 = _call_veff_ssss(mol, dm, hermi, opt_ssss) vj[...,n2c:,n2c:] += j1 vk[...,n2c:,n2c:] += k1 return vj, vk
get_jk = get_jk_coulomb
[docs] def get_hcore(mol): n2c = mol.nao_2c() n4c = n2c * 2 c = lib.param.LIGHT_SPEED t = mol.intor_symmetric('int1e_spsp_spinor') * .5 vn = mol.intor_symmetric('int1e_nuc_spinor') wn = mol.intor_symmetric('int1e_spnucsp_spinor') h1e = numpy.empty((n4c, n4c), numpy.complex128) h1e[:n2c,:n2c] = vn h1e[n2c:,:n2c] = t h1e[:n2c,n2c:] = t h1e[n2c:,n2c:] = wn * (.25/c**2) - t return h1e
[docs] def get_ovlp(mol): n2c = mol.nao_2c() n4c = n2c * 2 c = lib.param.LIGHT_SPEED s = mol.intor_symmetric('int1e_ovlp_spinor') t = mol.intor_symmetric('int1e_spsp_spinor') s1e = numpy.zeros((n4c, n4c), numpy.complex128) s1e[:n2c,:n2c] = s s1e[n2c:,n2c:] = t * (.5/c)**2 return s1e
make_rdm1 = hf.make_rdm1
[docs] def init_guess_by_minao(mol): '''Initial guess in terms of the overlap to minimal basis.''' dm = hf.init_guess_by_minao(mol) return _proj_dmll(mol, dm, mol)
[docs] def init_guess_by_1e(mol): '''Initial guess from one electron system.''' return UHF(mol).init_guess_by_1e(mol)
[docs] def init_guess_by_atom(mol): '''Initial guess from atom calculation.''' dm = hf.init_guess_by_atom(mol) return _proj_dmll(mol, dm, mol)
[docs] def init_guess_by_huckel(mol): '''Initial guess from on-the-fly Huckel, doi:10.1021/acs.jctc.8b01089.''' dm = hf.init_guess_by_huckel(mol) return _proj_dmll(mol, dm, mol)
[docs] def init_guess_by_mod_huckel(mol): '''Initial guess from on-the-fly Huckel, doi:10.1021/acs.jctc.8b01089, employing the updated GWH rule from doi:10.1021/ja00480a005.''' dm = hf.init_guess_by_mod_huckel(mol) return _proj_dmll(mol, dm, mol)
[docs] def init_guess_by_chkfile(mol, chkfile_name, project=None): '''Read SCF chkfile and make the density matrix for 4C-DHF initial guess. Kwargs: project : None or bool Whether to project chkfile's orbitals to the new basis. Note when the geometry of the chkfile and the given molecule are very different, this projection can produce very poor initial guess. In PES scanning, it is recommended to switch off project. If project is set to None, the projection is only applied when the basis sets of the chkfile's molecule are different to the basis sets of the given molecule (regardless whether the geometry of the two molecules are different). Note the basis sets are considered to be different if the two molecules are derived from the same molecule with different ordering of atoms. ''' from pyscf.scf import addons chk_mol, scf_rec = chkfile.load_scf(chkfile_name) if project is None: project = not gto.same_basis_set(chk_mol, mol) # Check whether the two molecules are similar if abs(mol.inertia_moment() - chk_mol.inertia_moment()).sum() > 0.5: logger.warn(mol, "Large deviations found between the input " "molecule and the molecule from chkfile\n" "Initial guess density matrix may have large error.") if project: s = get_ovlp(mol) def fproj(mo): #TODO: check if mo is GHF orbital if project: mo = addons.project_mo_r2r(chk_mol, mo, mol) norm = numpy.einsum('pi,pi->i', mo.conj(), s.dot(mo)) mo /= numpy.sqrt(norm) return mo mo = scf_rec['mo_coeff'] mo_occ = scf_rec['mo_occ'] if numpy.iscomplexobj(mo[0]): # DHF dm = make_rdm1(fproj(mo), mo_occ) else: if mo[0].ndim == 1: # nr-RHF dm = reduce(numpy.dot, (mo*mo_occ, mo.T)) else: # nr-UHF dm = (reduce(numpy.dot, (mo[0]*mo_occ[0], mo[0].T)) + reduce(numpy.dot, (mo[1]*mo_occ[1], mo[1].T))) dm = _proj_dmll(chk_mol, dm, mol) return dm
[docs] def get_init_guess(mol, key='minao', **kwargs): '''Generate density matrix for initial guess Kwargs: key : str One of 'minao', 'atom', 'huckel', 'mod_huckel', 'hcore', '1e', 'chkfile'. ''' return UHF(mol).get_init_guess(mol, key, **kwargs)
[docs] def time_reversal_matrix(mol, mat): ''' T(A_ij) = A[T(i),T(j)]^* ''' tao = numpy.asarray(mol.time_reversal_map()) n2c = tao.size # tao(i) = -j means T(f_i) = -f_j # tao(i) = j means T(f_i) = f_j idx = abs(tao) - 1 # -1 for C indexing convention #:signL = [(1 if x>0 else -1) for x in tao] #:sign = numpy.hstack((signL, signL)) #:tmat = numpy.empty_like(mat) #:for j in range(mat.__len__()): #: for i in range(mat.__len__()): #: tmat[idx[i],idx[j]] = mat[j,i] * sign[i]*sign[j] #:return tmat.conjugate() sign_mask = tao < 0 if mat.shape[0] == n2c * 2: idx = numpy.hstack((idx, idx+n2c)) sign_mask = numpy.hstack((sign_mask, sign_mask)) tmat = mat[idx[:,None], idx] tmat[sign_mask,:] *= -1 tmat[:,sign_mask] *= -1 return tmat.conj()
[docs] def analyze(mf, verbose=logger.DEBUG, **kwargs): from pyscf.tools import dump_mat log = logger.new_logger(mf, verbose) mo_energy = mf.mo_energy mo_occ = mf.mo_occ mo_coeff = mf.mo_coeff mf.dump_scf_summary(log) log.info('**** MO energy ****') for i in range(len(mo_energy)): if mo_occ[i] > 0: log.info('occupied MO #%d energy= %.15g occ= %g', i+1, mo_energy[i], mo_occ[i]) else: log.info('virtual MO #%d energy= %.15g occ= %g', i+1, mo_energy[i], mo_occ[i]) mol = mf.mol if mf.verbose >= logger.DEBUG1: log.debug(' ** MO coefficients of large component of positive state (real part) **') label = mol.spinor_labels() n2c = mo_coeff.shape[0] // 2 dump_mat.dump_rec(mf.stdout, mo_coeff[n2c:,:n2c].real, label, start=1) dm = mf.make_rdm1(mo_coeff, mo_occ) pop_chg = mf.mulliken_pop(mol, dm, mf.get_ovlp(), log) dip = mf.dip_moment(mol, dm, verbose=log) return pop_chg, dip
[docs] def mulliken_pop(mol, dm, s=None, verbose=logger.DEBUG): r'''Mulliken population analysis .. math:: M_{ij} = D_{ij} S_{ji} Mulliken charges .. math:: \delta_i = \sum_j M_{ij} ''' if s is None: s = get_ovlp(mol) log = logger.new_logger(mol, verbose) pop = numpy.einsum('ij,ji->i', dm, s).real log.info(' ** Mulliken pop **') for i, s in enumerate(mol.spinor_labels()): log.info('pop of %s %10.5f', s, pop[i]) log.note(' ** Mulliken atomic charges **') chg = numpy.zeros(mol.natm) for i, s in enumerate(mol.spinor_labels(fmt=None)): chg[s[0]] += pop[i] chg = mol.atom_charges() - chg for ia in range(mol.natm): symb = mol.atom_symbol(ia) log.note('charge of %d%s = %10.5f', ia, symb, chg[ia]) return pop, chg
[docs] def dip_moment(mol, dm, unit='Debye', verbose=logger.NOTE, **kwargs): r''' Dipole moment calculation .. math:: \mu_x = -\sum_{\mu}\sum_{\nu} P_{\mu\nu}(\nu|x|\mu) + \sum_A Q_A X_A\\ \mu_y = -\sum_{\mu}\sum_{\nu} P_{\mu\nu}(\nu|y|\mu) + \sum_A Q_A Y_A\\ \mu_z = -\sum_{\mu}\sum_{\nu} P_{\mu\nu}(\nu|z|\mu) + \sum_A Q_A Z_A where :math:`\mu_x, \mu_y, \mu_z` are the x, y and z components of dipole moment Args: mol: an instance of :class:`Mole` dm : a 2D ndarrays density matrices Return: A list: the dipole moment on x, y and z component ''' log = logger.new_logger(mol, verbose) charges = mol.atom_charges() coords = mol.atom_coords() charge_center = numpy.einsum('i,ix->x', charges, coords) with mol.with_common_orig(charge_center): ll_dip = mol.intor_symmetric('int1e_r_spinor', comp=3) ss_dip = mol.intor_symmetric('int1e_sprsp_spinor', comp=3) n2c = mol.nao_2c() c = lib.param.LIGHT_SPEED dip = numpy.einsum('xij,ji->x', ll_dip, dm[:n2c,:n2c]).real dip+= numpy.einsum('xij,ji->x', ss_dip, dm[n2c:,n2c:]).real * (.5/c**2) if unit.upper() == 'DEBYE': dip *= nist.AU2DEBYE log.note('Dipole moment(X, Y, Z, Debye): %8.5f, %8.5f, %8.5f', *dip) else: log.note('Dipole moment(X, Y, Z, A.U.): %8.5f, %8.5f, %8.5f', *dip) return dip
[docs] def get_grad(mo_coeff, mo_occ, fock_ao): '''DHF Gradients''' occidx = mo_occ > 0 viridx = ~occidx g = reduce(numpy.dot, (mo_coeff[:,viridx].T.conj(), fock_ao, mo_coeff[:,occidx])) return g.ravel()
# Kramers unrestricted Dirac-Hartree-Fock
[docs] class DHF(hf.SCF): __doc__ = hf.SCF.__doc__ + ''' Attributes for Dirac-Hartree-Fock with_ssss : bool or string, for Dirac-Hartree-Fock only If False, ignore small component integrals (SS|SS). Default is True. with_gaunt : bool, for Dirac-Hartree-Fock only Default is False. with_breit : bool, for Dirac-Hartree-Fock only Gaunt + gauge term. Default is False. Examples: >>> mol = gto.M(atom='H 0 0 0; H 0 0 1', basis='ccpvdz', verbose=0) >>> mf = scf.RHF(mol) >>> e0 = mf.scf() >>> mf = scf.DHF(mol) >>> e1 = mf.scf() >>> print('Relativistic effects = %.12f' % (e1-e0)) Relativistic effects = -0.000008854205 ''' conv_tol = getattr(__config__, 'scf_dhf_SCF_conv_tol', 1e-8) with_ssss = getattr(__config__, 'scf_dhf_SCF_with_ssss', True) with_gaunt = getattr(__config__, 'scf_dhf_SCF_with_gaunt', False) with_breit = getattr(__config__, 'scf_dhf_SCF_with_breit', False) # corrections for small component when with_ssss is set to False ssss_approx = getattr(__config__, 'scf_dhf_SCF_ssss_approx', 'Visscher') _keys = {'conv_tol', 'with_ssss', 'with_gaunt', 'with_breit', 'ssss_approx'} def __init__(self, mol): hf.SCF.__init__(self, mol) self._coulomb_level = 'SSSS' # 'SSSS' ~ LLLL+LLSS+SSSS
[docs] def dump_flags(self, verbose=None): hf.SCF.dump_flags(self, verbose) log = logger.new_logger(self, verbose) log.info('with_ssss %s, with_gaunt %s, with_breit %s', self.with_ssss, self.with_gaunt, self.with_breit) if not self.with_ssss: log.info('ssss_approx: %s', self.ssss_approx) log.info('light speed = %s', lib.param.LIGHT_SPEED) return self
[docs] @lib.with_doc(get_hcore.__doc__) def get_hcore(self, mol=None): if mol is None: mol = self.mol return get_hcore(mol)
[docs] @lib.with_doc(get_ovlp.__doc__) def get_ovlp(self, mol=None): if mol is None: mol = self.mol return get_ovlp(mol)
[docs] def get_grad(self, mo_coeff, mo_occ, fock=None): if fock is None: dm1 = self.make_rdm1(mo_coeff, mo_occ) fock = self.get_hcore(self.mol) + self.get_veff(self.mol, dm1) return get_grad(mo_coeff, mo_occ, fock)
[docs] def init_guess_by_minao(self, mol=None): '''Initial guess in terms of the overlap to minimal basis.''' if mol is None: mol = self.mol return init_guess_by_minao(mol)
[docs] def init_guess_by_atom(self, mol=None): if mol is None: mol = self.mol return init_guess_by_atom(mol)
[docs] @lib.with_doc(hf.SCF.init_guess_by_huckel.__doc__) def init_guess_by_huckel(self, mol=None): if mol is None: mol = self.mol logger.info(self, 'Initial guess from on-the-fly Huckel, doi:10.1021/acs.jctc.8b01089.') return init_guess_by_huckel(mol)
[docs] @lib.with_doc(hf.SCF.init_guess_by_mod_huckel.__doc__) def init_guess_by_mod_huckel(self, mol=None): if mol is None: mol = self.mol logger.info(self, '''Initial guess from on-the-fly Huckel, doi:10.1021/acs.jctc.8b01089, employing the updated GWH rule from doi:10.1021/ja00480a005.''') return init_guess_by_mod_huckel(mol)
[docs] def init_guess_by_chkfile(self, chkfile=None, project=None): if chkfile is None: chkfile = self.chkfile return init_guess_by_chkfile(self.mol, chkfile, project=project)
[docs] def build(self, mol=None): if self.verbose >= logger.WARN: self.check_sanity() return self
[docs] def get_occ(self, mo_energy=None, mo_coeff=None): if mo_energy is None: mo_energy = self.mo_energy mol = self.mol c = lib.param.LIGHT_SPEED n4c = len(mo_energy) n2c = n4c // 2 mo_occ = numpy.zeros(n2c * 2) nocc = mol.nelectron if mo_energy[n2c] > -1.999 * c**2: mo_occ[n2c:n2c+nocc] = 1 else: logger.warn(self, 'Variational collapse. PES mo_energy %g < -2c^2', mo_energy[n2c]) lumo = mo_energy[mo_energy > -1.999 * c**2][nocc] mo_occ[mo_energy > -1.999 * c**2] = 1 mo_occ[mo_energy >= lumo] = 0 if self.verbose >= logger.INFO: if mo_energy[n2c+nocc-1]+1e-3 > mo_energy[n2c+nocc]: logger.warn(self, 'HOMO %.15g == LUMO %.15g', mo_energy[n2c+nocc-1], mo_energy[n2c+nocc]) else: logger.info(self, 'HOMO %d = %.12g LUMO %d = %.12g', nocc, mo_energy[n2c+nocc-1], nocc+1, mo_energy[n2c+nocc]) logger.debug1(self, 'NES mo_energy = %s', mo_energy[:n2c]) logger.debug(self, 'PES mo_energy = %s', mo_energy[n2c:]) return mo_occ
make_rdm1 = lib.module_method(make_rdm1, absences=['mo_coeff', 'mo_occ']) energy_elec = energy_elec
[docs] def init_direct_scf(self, mol=None): if mol is None: mol = self.mol def set_vkscreen(opt, name): opt._this.r_vkscreen = _vhf._fpointer(name) cpu0 = (logger.process_clock(), logger.perf_counter()) opt_llll = _VHFOpt(mol, 'int2e_spinor', 'CVHFrkbllll_prescreen', 'CVHFrkb_q_cond', 'CVHFrkb_dm_cond', direct_scf_tol=self.direct_scf_tol) set_vkscreen(opt_llll, 'CVHFrkbllll_vkscreen') c1 = .5 / lib.param.LIGHT_SPEED opt_ssss = _VHFOpt(mol, 'int2e_spsp1spsp2_spinor', 'CVHFrkbllll_prescreen', 'CVHFrkb_q_cond', 'CVHFrkb_dm_cond', direct_scf_tol=self.direct_scf_tol/c1**4) opt_ssss.direct_scf_tol = self.direct_scf_tol opt_ssss.q_cond *= c1**2 set_vkscreen(opt_ssss, 'CVHFrkbllll_vkscreen') opt_ssll = _VHFOpt(mol, 'int2e_spsp1_spinor', 'CVHFrkbssll_prescreen', dmcondname='CVHFrkbssll_dm_cond', direct_scf_tol=self.direct_scf_tol) opt_ssll.q_cond = numpy.array([opt_llll.q_cond, opt_ssss.q_cond]) set_vkscreen(opt_ssll, 'CVHFrkbssll_vkscreen') #TODO: prescreen for gaunt opt_gaunt = None logger.timer(self, 'init_direct_scf', *cpu0) return opt_llll, opt_ssll, opt_ssss, opt_gaunt
[docs] def get_jk(self, mol=None, dm=None, hermi=1, with_j=True, with_k=True, omega=None): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() t0 = (logger.process_clock(), logger.perf_counter()) log = logger.new_logger(self) if self.direct_scf and self._opt.get(omega) is None: with mol.with_range_coulomb(omega): self._opt[omega] = self.init_direct_scf(mol) vhfopt = self._opt.get(omega) if vhfopt is None: opt_llll = opt_ssll = opt_ssss = opt_gaunt = None else: opt_llll, opt_ssll, opt_ssss, opt_gaunt = vhfopt vj, vk = get_jk_coulomb(mol, dm, hermi, self._coulomb_level, opt_llll, opt_ssll, opt_ssss, omega, log) if self.with_breit: assert omega is None if ('SSSS' in self._coulomb_level.upper() or # for the case both with_breit and with_ssss are set (not self.with_ssss and 'SSLL' in self._coulomb_level.upper())): vj1, vk1 = _call_veff_gaunt_breit(mol, dm, hermi, opt_gaunt, True) log.debug('Add Breit term') vj += vj1 vk += vk1 elif self.with_gaunt and 'SS' in self._coulomb_level.upper(): assert omega is None log.debug('Add Gaunt term') vj1, vk1 = _call_veff_gaunt_breit(mol, dm, hermi, opt_gaunt, False) vj += vj1 vk += vk1 log.timer('vj and vk', *t0) return vj, vk
[docs] def get_veff(self, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): '''Dirac-Coulomb''' if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if self.direct_scf: ddm = numpy.array(dm) - numpy.array(dm_last) vj, vk = self.get_jk(mol, ddm, hermi=hermi) return numpy.array(vhf_last) + vj - vk else: vj, vk = self.get_jk(mol, dm, hermi=hermi) return vj - vk
[docs] def scf(self, dm0=None): cput0 = (logger.process_clock(), logger.perf_counter()) self.build() self.dump_flags() self.converged, self.e_tot, \ self.mo_energy, self.mo_coeff, self.mo_occ \ = kernel(self, self.conv_tol, self.conv_tol_grad, dm0=dm0, callback=self.callback, conv_check=self.conv_check) logger.timer(self, 'SCF', *cput0) self._finalize() return self.e_tot
[docs] def analyze(self, verbose=None): if verbose is None: verbose = self.verbose return analyze(self, verbose)
[docs] @lib.with_doc(mulliken_pop.__doc__) def mulliken_pop(self, mol=None, dm=None, s=None, verbose=logger.DEBUG): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if s is None: s = self.get_ovlp(mol) return mulliken_pop(mol, dm, s=s, verbose=verbose)
[docs] @lib.with_doc(dip_moment.__doc__) def dip_moment(self, mol=None, dm=None, unit='Debye', verbose=logger.NOTE, **kwargs): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() return dip_moment(mol, dm, unit, verbose=verbose, **kwargs)
[docs] def sfx2c1e(self): raise NotImplementedError
[docs] def x2c1e(self): from pyscf.x2c import x2c x2chf = x2c.UHF(self.mol) x2chf.__dict__.update(self.__dict__) return x2chf
x2c = x2c1e
[docs] def nuc_grad_method(self): from pyscf.grad import dhf return dhf.Gradients(self)
[docs] def reset(self, mol=None): '''Reset mol and clean up relevant attributes for scanner mode''' if mol is not None: self.mol = mol self._coulomb_level = 'SSSS' # 'SSSS' ~ LLLL+LLSS+SSSS self._opt = {None: None} return self
[docs] def stability(self, internal=None, external=None, verbose=None, return_status=False): ''' DHF/DKS stability analysis. See also pyscf.scf.stability.rhf_stability function. Kwargs: return_status: bool Whether to return `stable_i` and `stable_e` Returns: If return_status is False (default), the return value includes two set of orbitals, which are more close to the stable condition. The first corresponds to the internal stability and the second corresponds to the external stability. Else, another two boolean variables (indicating current status: stable or unstable) are returned. The first corresponds to the internal stability and the second corresponds to the external stability. ''' from pyscf.scf.stability import dhf_stability return dhf_stability(self, verbose, return_status)
[docs] def to_rhf(self): raise RuntimeError
[docs] def to_uhf(self): raise RuntimeError
[docs] def to_ghf(self): raise RuntimeError
[docs] def to_rks(self, xc=None): raise RuntimeError
[docs] def to_uks(self, xc=None): raise RuntimeError
[docs] def to_gks(self, xc=None): raise RuntimeError
[docs] def to_dhf(self): return self
[docs] def to_dks(self, xc='HF'): '''Convert the input mean-field object to a DKS object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf.dft import dks mf = self.view(dks.UDKS) mf.xc = xc mf.converged = False return mf
to_ks = to_dks to_gpu = lib.to_gpu
UHF = UDHF = DHF
[docs] class HF1e(DHF): scf = hf._hf1e_scf def _eigh(self, h, s): if zquatev: return zquatev.solve_KR_FCSCE(self.mol, h, s) else: return DHF._eigh(self, h, s)
[docs] class RDHF(DHF): '''Kramers restricted Dirac-Hartree-Fock''' def __init__(self, mol): if mol.nelectron.__mod__(2) != 0: raise ValueError('Invalid electron number %i.' % mol.nelectron) if zquatev is None: raise RuntimeError('zquatev library is required to perform Kramers-restricted DHF') UHF.__init__(self, mol) def _eigh(self, h, s): return zquatev.solve_KR_FCSCE(self.mol, h, s)
[docs] def x2c1e(self): from pyscf.x2c import x2c x2chf = x2c.RHF(self.mol) x2chf.__dict__.update(self.__dict__) return x2chf
x2c = x2c1e
[docs] def to_dks(self, xc='HF'): '''Convert the input mean-field object to a DKS object. Note this conversion only changes the class of the mean-field object. The total energy and wave-function are the same as them in the input mean-field object. ''' from pyscf.dft import dks mf = self.view(dks.RDKS) mf.xc = xc mf.converged = False return mf
RHF = RDHF def _ensure_time_reversal_symmetry(mol, mat): if mat.ndim == 2: mat = [mat] for m in mat: if abs(m - time_reversal_matrix(mol, m)).max() > 1e-9: raise RuntimeError('Matrix does have time reversal symmetry') def _time_reversal_triu_(mol, vj): n2c = vj.shape[1] idx, idy = numpy.triu_indices(n2c, 1) if vj.ndim == 2: Tvj = time_reversal_matrix(mol, vj) vj[idx,idy] = Tvj[idy,idx].conj() else: for i in range(vj.shape[0]): Tvj = time_reversal_matrix(mol, vj[i]) vj[i,idx,idy] = Tvj[idy,idx].conj() return vj def _mat_hermi_(vk, hermi): if hermi == 1: if vk.ndim == 2: vk = lib.hermi_triu(vk, hermi) else: for i in range(vk.shape[0]): vk[i] = lib.hermi_triu(vk[i], hermi) return vk def _jk_triu_(mol, vj, vk, hermi): if hermi == 0: return _time_reversal_triu_(mol, vj), vk else: return _mat_hermi_(vj, hermi), _mat_hermi_(vk, hermi) def _call_veff_llll(mol, dm, hermi=1, mf_opt=None): if isinstance(dm, numpy.ndarray) and dm.ndim == 2: n2c = dm.shape[0] // 2 dms = dm[:n2c,:n2c].copy() else: n2c = dm.shape[1] // 2 dms = dm[:,:n2c,:n2c].copy() vj, vk = _vhf.rdirect_mapdm('int2e_spinor', 's8', ('ji->s2kl', 'jk->s1il'), dms, 1, mol._atm, mol._bas, mol._env, mf_opt) return _jk_triu_(mol, vj, vk, hermi) def _call_veff_ssll(mol, dm, hermi=1, mf_opt=None): if isinstance(dm, numpy.ndarray) and dm.ndim == 2: dm1 = dm[numpy.newaxis] else: dm1 = numpy.asarray(dm) n_dm = len(dm1) n2c = dm1.shape[1] // 2 dms = numpy.vstack([dm1[:,:n2c,:n2c], dm1[:,n2c:,n2c:], dm1[:,n2c:,:n2c], dm1[:,:n2c,n2c:]]) if hermi: jks = (['lk->s2ij'] * n_dm + ['ji->s2kl'] * n_dm + ['jk->s1il'] * n_dm) else: jks = (['lk->s2ij'] * n_dm + ['ji->s2kl'] * n_dm + ['jk->s1il'] * n_dm + ['li->s1kj'] * n_dm) c1 = .5 / lib.param.LIGHT_SPEED vx = _vhf.rdirect_bindm('int2e_spsp1_spinor', 's4', jks, dms, 1, mol._atm, mol._bas, mol._env, mf_opt) vx = vx.reshape(-1,n_dm,n2c,n2c) * c1**2 vj = numpy.zeros((n_dm,n2c*2,n2c*2), dtype=numpy.complex128) vk = numpy.zeros((n_dm,n2c*2,n2c*2), dtype=numpy.complex128) if hermi == 0: vj[:,n2c:,n2c:] = _time_reversal_triu_(mol, vx[0]) vj[:,:n2c,:n2c] = _time_reversal_triu_(mol, vx[1]) vk[:,n2c:,:n2c] = vx[2] vk[:,:n2c,n2c:] = vx[3] else: vj[:,n2c:,n2c:] = _mat_hermi_(vx[0], hermi) vj[:,:n2c,:n2c] = _mat_hermi_(vx[1], hermi) vk[:,n2c:,:n2c] = vx[2] vk[:,:n2c,n2c:] = vx[2].conj().transpose(0,2,1) vj = vj.reshape(dm.shape) vk = vk.reshape(dm.shape) return vj, vk def _call_veff_ssss(mol, dm, hermi=1, mf_opt=None): c1 = .5 / lib.param.LIGHT_SPEED if isinstance(dm, numpy.ndarray) and dm.ndim == 2: n2c = dm.shape[0] // 2 dms = dm[n2c:,n2c:].copy() else: n2c = dm[0].shape[0] // 2 dms = [] for dmi in dm: dms.append(dmi[n2c:,n2c:].copy()) vj, vk = _vhf.rdirect_mapdm('int2e_spsp1spsp2_spinor', 's8', ('ji->s2kl', 'jk->s1il'), dms, 1, mol._atm, mol._bas, mol._env, mf_opt) * c1**4 return _jk_triu_(mol, vj, vk, hermi) def _call_veff_gaunt_breit(mol, dm, hermi=1, mf_opt=None, with_breit=False): if with_breit: # integral function int2e_breit_ssp1ssp2_spinor evaluates # -1/2[alpha1*alpha2/r12 + (alpha1*r12)(alpha2*r12)/r12^3] intor_prefix = 'int2e_breit_' else: # integral function int2e_ssp1ssp2_spinor evaluates only # alpha1*alpha2/r12. Minus sign was not included. intor_prefix = 'int2e_' if hermi == 0 and DEBUG: _ensure_time_reversal_symmetry(mol, dm) if isinstance(dm, numpy.ndarray) and dm.ndim == 2: n_dm = 1 n2c = dm.shape[0] // 2 dmls = dm[:n2c,n2c:].copy() dmsl = dm[n2c:,:n2c].copy() dmll = dm[:n2c,:n2c].copy() dmss = dm[n2c:,n2c:].copy() dms = [dmsl, dmsl, dmls, dmll, dmss] else: n_dm = len(dm) n2c = dm[0].shape[0] // 2 dmll = [dmi[:n2c,:n2c].copy() for dmi in dm] dmls = [dmi[:n2c,n2c:].copy() for dmi in dm] dmsl = [dmi[n2c:,:n2c].copy() for dmi in dm] dmss = [dmi[n2c:,n2c:].copy() for dmi in dm] dms = dmsl + dmsl + dmls + dmll + dmss vj = numpy.zeros((n_dm,n2c*2,n2c*2), dtype=numpy.complex128) vk = numpy.zeros((n_dm,n2c*2,n2c*2), dtype=numpy.complex128) jks = ('lk->s1ij',) * n_dm \ + ('jk->s1il',) * n_dm vx = _vhf.rdirect_bindm(intor_prefix+'ssp1ssp2_spinor', 's1', jks, dms[:n_dm*2], 1, mol._atm, mol._bas, mol._env, mf_opt) vj[:,:n2c,n2c:] = vx[:n_dm,:,:] vk[:,:n2c,n2c:] = vx[n_dm:,:,:] jks = ('lk->s1ij',) * n_dm \ + ('li->s1kj',) * n_dm \ + ('jk->s1il',) * n_dm vx = _vhf.rdirect_bindm(intor_prefix+'ssp1sps2_spinor', 's1', jks, dms[n_dm*2:], 1, mol._atm, mol._bas, mol._env, mf_opt) vj[:,:n2c,n2c:]+= vx[ :n_dm ,:,:] vk[:,n2c:,n2c:] = vx[n_dm :n_dm*2,:,:] vk[:,:n2c,:n2c] = vx[n_dm*2: ,:,:] if hermi == 1: vj[:,n2c:,:n2c] = vj[:,:n2c,n2c:].transpose(0,2,1).conj() vk[:,n2c:,:n2c] = vk[:,:n2c,n2c:].transpose(0,2,1).conj() elif hermi == 2: vj[:,n2c:,:n2c] = -vj[:,:n2c,n2c:].transpose(0,2,1).conj() vk[:,n2c:,:n2c] = -vk[:,:n2c,n2c:].transpose(0,2,1).conj() else: raise NotImplementedError vj = vj.reshape(dm.shape) vk = vk.reshape(dm.shape) c1 = .5 / lib.param.LIGHT_SPEED if with_breit: vj *= c1**2 vk *= c1**2 else: vj *= -c1**2 vk *= -c1**2 return vj, vk def _proj_dmll(mol_nr, dm_nr, mol): '''Project non-relativistic atomic density matrix to large component spinor representation ''' from pyscf.scf import addons proj = addons.project_mo_nr2r(mol_nr, numpy.eye(mol_nr.nao_nr()), mol) n2c = proj.shape[0] n4c = n2c * 2 dm = numpy.zeros((n4c,n4c), dtype=numpy.complex128) # *.5 because alpha and beta are summed in project_mo_nr2r dm_ll = reduce(numpy.dot, (proj, dm_nr*.5, proj.T.conj())) dm[:n2c,:n2c] = (dm_ll + time_reversal_matrix(mol, dm_ll)) * .5 return dm class _VHFOpt(_vhf._VHFOpt): def set_dm(self, dm, atm, bas, env): if self._dmcondname is None: return mol = self.mol if isinstance(dm, numpy.ndarray) and dm.ndim == 2: n_dm = 1 else: n_dm = len(dm) dm = numpy.asarray(dm, order='C') ao_loc = mol.ao_loc_2c() if isinstance(self._dmcondname, ctypes._CFuncPtr): fdmcond = self._dmcondname else: fdmcond = getattr(_vhf.libcvhf, self._dmcondname) nbas = mol.nbas dm_cond = numpy.empty((n_dm*2, nbas, nbas)) fdmcond(dm_cond.ctypes, dm.ctypes, ctypes.c_int(n_dm), ao_loc.ctypes, mol._atm.ctypes, ctypes.c_int(mol.natm), mol._bas.ctypes, ctypes.c_int(nbas), mol._env.ctypes) self.dm_cond = dm_cond if __name__ == '__main__': import pyscf.gto mol = pyscf.gto.Mole() mol.verbose = 5 mol.output = 'out_dhf' mol.atom.extend([['He', (0.,0.,0.)], ]) mol.basis = { 'He': [(0, 0, (1, 1)), (0, 0, (3, 1)), (1, 0, (1, 1)), ]} mol.build() ############## # SCF result method = UHF(mol) energy = method.scf() #-2.38146942868 print(energy) method.with_gaunt = True print(method.scf()) # -2.38138339005 method.with_breit = True print(method.scf()) # -2.38138339005