Source code for pyscf.scf.rohf

#!/usr/bin/env python
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Restricted Open-shell Hartree-Fock
'''

from functools import reduce
import numpy
import pyscf.gto
from pyscf import lib
from pyscf.lib import logger
from pyscf.scf import hf
from pyscf.scf import uhf
from pyscf import __config__

WITH_META_LOWDIN = getattr(__config__, 'scf_analyze_with_meta_lowdin', True)
MO_BASE = getattr(__config__, 'MO_BASE', 1)


[docs] def init_guess_by_minao(mol): dm = hf.init_guess_by_minao(mol) dm = numpy.array((dm*.5, dm*.5)) if hasattr(dm, 'mo_coeff'): dm = lib.tag_array(dm, mo_coeff=dm.mo_coeff, mo_occ=dm.mo_occ) return dm
[docs] def init_guess_by_atom(mol): dm = hf.init_guess_by_atom(mol) dm = numpy.array((dm*.5, dm*.5)) if hasattr(dm, 'mo_coeff'): dm = lib.tag_array(dm, mo_coeff=dm.mo_coeff, mo_occ=dm.mo_occ) return dm
init_guess_by_huckel = uhf.init_guess_by_huckel init_guess_by_mod_huckel = uhf.init_guess_by_mod_huckel
[docs] def init_guess_by_chkfile(mol, chkfile_name, project=None): '''Read SCF chkfile and make the density matrix for ROHF initial guess. Kwargs: project : None or bool Whether to project chkfile's orbitals to the new basis. Note when the geometry of the chkfile and the given molecule are very different, this projection can produce very poor initial guess. In PES scanning, it is recommended to switch off project. If project is set to None, the projection is only applied when the basis sets of the chkfile's molecule are different to the basis sets of the given molecule (regardless whether the geometry of the two molecules are different). Note the basis sets are considered to be different if the two molecules are derived from the same molecule with different ordering of atoms. ''' dm = uhf.init_guess_by_chkfile(mol, chkfile_name, project) mo_coeff = dm.mo_coeff[0] mo_occ = dm.mo_occ[0] + dm.mo_occ[1] return lib.tag_array(dm, mo_coeff=mo_coeff, mo_occ=mo_occ)
[docs] def get_fock(mf, h1e=None, s1e=None, vhf=None, dm=None, cycle=-1, diis=None, diis_start_cycle=None, level_shift_factor=None, damp_factor=None, fock_last=None): '''Build fock matrix based on Roothaan's effective fock. See also :func:`get_roothaan_fock` ''' if h1e is None: h1e = mf.get_hcore() if s1e is None: s1e = mf.get_ovlp() if vhf is None: vhf = mf.get_veff(mf.mol, dm) if dm is None: dm = mf.make_rdm1() if isinstance(dm, numpy.ndarray) and dm.ndim == 2: dm = numpy.array((dm*.5, dm*.5)) # To Get orbital energy in get_occ, we saved alpha and beta fock, because # Roothaan effective Fock cannot provide correct orbital energy with `eig` # TODO, check other treatment J. Chem. Phys. 133, 141102 focka = h1e + vhf[0] fockb = h1e + vhf[1] f = get_roothaan_fock((focka,fockb), dm, s1e) if cycle < 0 and diis is None: # Not inside the SCF iteration return f if diis_start_cycle is None: diis_start_cycle = mf.diis_start_cycle if level_shift_factor is None: level_shift_factor = mf.level_shift if damp_factor is None: damp_factor = mf.damp dm_tot = dm[0] + dm[1] if 0 <= cycle < diis_start_cycle-1 and abs(damp_factor) > 1e-4 and fock_last is not None: raise NotImplementedError('ROHF Fock-damping') if diis and cycle >= diis_start_cycle: f = diis.update(s1e, dm_tot, f, mf, h1e, vhf, f_prev=fock_last) if abs(level_shift_factor) > 1e-4: f = hf.level_shift(s1e, dm_tot*.5, f, level_shift_factor) f = lib.tag_array(f, focka=focka, fockb=fockb) return f
[docs] def get_roothaan_fock(focka_fockb, dma_dmb, s): '''Roothaan's effective fock. Ref. http://www-theor.ch.cam.ac.uk/people/ross/thesis/node15.html ======== ======== ====== ========= space closed open virtual ======== ======== ====== ========= closed Fc Fb Fc open Fb Fc Fa virtual Fc Fa Fc ======== ======== ====== ========= where Fc = (Fa + Fb) / 2 Returns: Roothaan effective Fock matrix ''' nao = s.shape[0] focka, fockb = focka_fockb dma, dmb = dma_dmb fc = (focka + fockb) * .5 # Projector for core, open-shell, and virtual pc = numpy.dot(dmb, s) po = numpy.dot(dma-dmb, s) pv = numpy.eye(nao) - numpy.dot(dma, s) fock = reduce(numpy.dot, (pc.conj().T, fc, pc)) * .5 fock += reduce(numpy.dot, (po.conj().T, fc, po)) * .5 fock += reduce(numpy.dot, (pv.conj().T, fc, pv)) * .5 fock += reduce(numpy.dot, (po.conj().T, fockb, pc)) fock += reduce(numpy.dot, (po.conj().T, focka, pv)) fock += reduce(numpy.dot, (pv.conj().T, fc, pc)) fock = fock + fock.conj().T fock = lib.tag_array(fock, focka=focka, fockb=fockb) return fock
[docs] def get_occ(mf, mo_energy=None, mo_coeff=None): '''Label the occupancies for each orbital. NOTE the occupancies are not assigned based on the orbital energy ordering. The first N orbitals are assigned to be occupied orbitals. Examples: >>> mol = gto.M(atom='H 0 0 0; O 0 0 1.1', spin=1) >>> mf = scf.hf.SCF(mol) >>> energy = numpy.array([-10., -1., 1, -2., 0, -3]) >>> mf.get_occ(energy) array([2, 2, 2, 2, 1, 0]) ''' if mo_energy is None: mo_energy = mf.mo_energy if getattr(mo_energy, 'mo_ea', None) is not None: mo_ea = mo_energy.mo_ea mo_eb = mo_energy.mo_eb else: mo_ea = mo_eb = mo_energy nmo = mo_ea.size if getattr(mf, 'nelec', None) is None: nelec = mf.mol.nelec else: nelec = mf.nelec if nelec[0] > nelec[1]: nocc, ncore = nelec else: ncore, nocc = nelec nopen = nocc - ncore mo_occ = _fill_rohf_occ(mo_energy, mo_ea, mo_eb, ncore, nopen) if mf.verbose >= logger.INFO and nocc < nmo and ncore > 0: ehomo = max(mo_energy[mo_occ> 0]) elumo = min(mo_energy[mo_occ==0]) if ehomo+1e-3 > elumo: logger.warn(mf, 'HOMO %.15g >= LUMO %.15g', ehomo, elumo) else: logger.info(mf, ' HOMO = %.15g LUMO = %.15g', ehomo, elumo) if nopen > 0 and mf.verbose >= logger.DEBUG: core_idx = mo_occ == 2 open_idx = mo_occ == 1 vir_idx = mo_occ == 0 logger.debug(mf, ' Roothaan | alpha | beta') logger.debug(mf, ' Highest 2-occ = %18.15g | %18.15g | %18.15g', max(mo_energy[core_idx]), max(mo_ea[core_idx]), max(mo_eb[core_idx])) logger.debug(mf, ' Lowest 0-occ = %18.15g | %18.15g | %18.15g', min(mo_energy[vir_idx]), min(mo_ea[vir_idx]), min(mo_eb[vir_idx])) for i in numpy.where(open_idx)[0]: logger.debug(mf, ' 1-occ = %18.15g | %18.15g | %18.15g', mo_energy[i], mo_ea[i], mo_eb[i]) if mf.verbose >= logger.DEBUG: numpy.set_printoptions(threshold=nmo) logger.debug(mf, ' Roothaan mo_energy =\n%s', mo_energy) logger.debug1(mf, ' alpha mo_energy =\n%s', mo_ea) logger.debug1(mf, ' beta mo_energy =\n%s', mo_eb) numpy.set_printoptions(threshold=1000) return mo_occ
def _fill_rohf_occ(mo_energy, mo_energy_a, mo_energy_b, ncore, nopen): mo_occ = numpy.zeros_like(mo_energy) open_idx = [] core_sort = numpy.argsort(mo_energy) core_idx = core_sort[:ncore] if nopen > 0: open_idx = core_sort[ncore:] open_sort = numpy.argsort(mo_energy_a[open_idx]) open_idx = open_idx[open_sort[:nopen]] mo_occ[core_idx] = 2 mo_occ[open_idx] = 1 return mo_occ
[docs] def get_grad(mo_coeff, mo_occ, fock): '''ROHF gradients is the off-diagonal block [co + cv + ov], where [ cc co cv ] [ oc oo ov ] [ vc vo vv ] ''' occidxa = mo_occ > 0 occidxb = mo_occ == 2 viridxa = ~occidxa viridxb = ~occidxb uniq_var_a = viridxa.reshape(-1,1) & occidxa uniq_var_b = viridxb.reshape(-1,1) & occidxb if getattr(fock, 'focka', None) is not None: focka = fock.focka fockb = fock.fockb elif isinstance(fock, (tuple, list)) or getattr(fock, 'ndim', None) == 3: focka, fockb = fock else: focka = fockb = fock focka = mo_coeff.conj().T.dot(focka).dot(mo_coeff) fockb = mo_coeff.conj().T.dot(fockb).dot(mo_coeff) g = numpy.zeros_like(focka) g[uniq_var_a] = focka[uniq_var_a] g[uniq_var_b] += fockb[uniq_var_b] return g[uniq_var_a | uniq_var_b]
[docs] def make_rdm1(mo_coeff, mo_occ, **kwargs): '''One-particle density matrix. mo_occ is a 1D array, with occupancy 1 or 2. ''' if isinstance(mo_occ, numpy.ndarray) and mo_occ.ndim == 1: mo_occa = (mo_occ > 0).astype(numpy.double) mo_occb = (mo_occ ==2).astype(numpy.double) else: mo_occa, mo_occb = mo_occ dm_a = numpy.dot(mo_coeff*mo_occa, mo_coeff.conj().T) dm_b = numpy.dot(mo_coeff*mo_occb, mo_coeff.conj().T) return lib.tag_array((dm_a, dm_b), mo_coeff=mo_coeff, mo_occ=mo_occ)
[docs] def energy_elec(mf, dm=None, h1e=None, vhf=None): if dm is None: dm = mf.make_rdm1() elif isinstance(dm, numpy.ndarray) and dm.ndim == 2: dm = numpy.array((dm*.5, dm*.5)) return uhf.energy_elec(mf, dm, h1e, vhf)
get_veff = uhf.get_veff
[docs] def analyze(mf, verbose=logger.DEBUG, with_meta_lowdin=WITH_META_LOWDIN, **kwargs): '''Analyze the given SCF object: print orbital energies, occupancies; print orbital coefficients; Mulliken population analysis ''' from pyscf.lo import orth from pyscf.tools import dump_mat mo_energy = mf.mo_energy mo_occ = mf.mo_occ mo_coeff = mf.mo_coeff log = logger.new_logger(mf, verbose) if log.verbose >= logger.NOTE: mf.dump_scf_summary(log) log.note('**** MO energy ****') if getattr(mo_energy, 'mo_ea', None) is not None: mo_ea = mo_energy.mo_ea mo_eb = mo_energy.mo_eb log.note(' Roothaan | alpha | beta') for i,c in enumerate(mo_occ): log.note('MO #%-3d energy= %-18.15g | %-18.15g | %-18.15g occ= %g', i+MO_BASE, mo_energy[i], mo_ea[i], mo_eb[i], c) else: for i,c in enumerate(mo_occ): log.note('MO #%-3d energy= %-18.15g occ= %g', i+MO_BASE, mo_energy[i], c) ovlp_ao = mf.get_ovlp() if log.verbose >= logger.DEBUG: label = mf.mol.ao_labels() if with_meta_lowdin: log.debug(' ** MO coefficients (expansion on meta-Lowdin AOs) **') orth_coeff = orth.orth_ao(mf.mol, 'meta_lowdin', s=ovlp_ao) c = reduce(numpy.dot, (orth_coeff.conj().T, ovlp_ao, mo_coeff)) else: log.debug(' ** MO coefficients (expansion on AOs) **') c = mo_coeff dump_mat.dump_rec(mf.stdout, c, label, start=MO_BASE, **kwargs) dm = mf.make_rdm1(mo_coeff, mo_occ) if with_meta_lowdin: pop_and_charge = mf.mulliken_meta(mf.mol, dm, s=ovlp_ao, verbose=log) else: pop_and_charge = mf.mulliken_pop(mf.mol, dm, s=ovlp_ao, verbose=log) dip = mf.dip_moment(mf.mol, dm, verbose=log) return pop_and_charge, dip
mulliken_pop = hf.mulliken_pop mulliken_meta = hf.mulliken_meta
[docs] def canonicalize(mf, mo_coeff, mo_occ, fock=None): '''Canonicalization diagonalizes the Fock matrix within occupied, open, virtual subspaces separatedly (without change occupancy). ''' if getattr(fock, 'focka', None) is None: dm = mf.make_rdm1(mo_coeff, mo_occ) fock = mf.get_fock(dm=dm) mo_e, mo_coeff = hf.canonicalize(mf, mo_coeff, mo_occ, fock) fa, fb = fock.focka, fock.fockb mo_ea = numpy.einsum('pi,pi->i', mo_coeff.conj(), fa.dot(mo_coeff)).real mo_eb = numpy.einsum('pi,pi->i', mo_coeff.conj(), fb.dot(mo_coeff)).real mo_e = lib.tag_array(mo_e, mo_ea=mo_ea, mo_eb=mo_eb) return mo_e, mo_coeff
dip_moment = hf.dip_moment # use UHF init_guess, get_veff, diis, and intermediates such as fock, vhf, dm # keep mo_energy, mo_coeff, mo_occ as RHF structure
[docs] class ROHF(hf.RHF): __doc__ = hf.SCF.__doc__ def __init__(self, mol): hf.SCF.__init__(self, mol) self.nelec = None @property def nelec(self): if getattr(self, '_nelec', None) is not None: return self._nelec else: return self.mol.nelec @nelec.setter def nelec(self, x): self._nelec = x @property def nelectron_alpha(self): return self.nelec[0] @nelectron_alpha.setter def nelectron_alpha(self, x): logger.warn(self, 'WARN: Attribute .nelectron_alpha is deprecated. ' 'Set .nelec instead') #raise RuntimeError('API updates') self.nelec = (x, self.mol.nelectron-x) check_sanity = hf.SCF.check_sanity
[docs] def dump_flags(self, verbose=None): hf.SCF.dump_flags(self, verbose) nelec = self.nelec logger.info(self, 'num. doubly occ = %d num. singly occ = %d', nelec[1], nelec[0]-nelec[1])
get_init_guess = uhf.UHF.get_init_guess
[docs] def init_guess_by_minao(self, mol=None): if mol is None: mol = self.mol return init_guess_by_minao(mol)
[docs] def init_guess_by_atom(self, mol=None): if mol is None: mol = self.mol logger.info(self, 'Initial guess from the superpostion of atomic densties.') return init_guess_by_atom(mol)
[docs] def init_guess_by_huckel(self, mol=None): if mol is None: mol = self.mol logger.info(self, 'Initial guess from on-the-fly Huckel, doi:10.1021/acs.jctc.8b01089.') return init_guess_by_huckel(mol)
[docs] def init_guess_by_mod_huckel(self, mol=None): if mol is None: mol = self.mol logger.info(self, '''Initial guess from on-the-fly Huckel, doi:10.1021/acs.jctc.8b01089, employing the updated GWH rule from doi:10.1021/ja00480a005.''') return init_guess_by_mod_huckel(mol)
[docs] def init_guess_by_1e(self, mol=None): if mol is None: mol = self.mol logger.info(self, 'Initial guess from hcore.') h1e = self.get_hcore(mol) s1e = self.get_ovlp(mol) mo_energy, mo_coeff = self.eig(h1e, s1e) mo_occ = self.get_occ(mo_energy, mo_coeff) return self.make_rdm1(mo_coeff, mo_occ)
[docs] def init_guess_by_chkfile(self, chkfile=None, project=None): if chkfile is None: chkfile = self.chkfile return init_guess_by_chkfile(self.mol, chkfile, project=project)
get_fock = get_fock get_occ = get_occ
[docs] @lib.with_doc(hf.eig.__doc__) def eig(self, fock, s): e, c = self._eigh(fock, s) if getattr(fock, 'focka', None) is not None: mo_ea = numpy.einsum('pi,pi->i', c.conj(), fock.focka.dot(c)).real mo_eb = numpy.einsum('pi,pi->i', c.conj(), fock.fockb.dot(c)).real e = lib.tag_array(e, mo_ea=mo_ea, mo_eb=mo_eb) return e, c
[docs] @lib.with_doc(get_grad.__doc__) def get_grad(self, mo_coeff, mo_occ, fock=None): if fock is None: dm1 = self.make_rdm1(mo_coeff, mo_occ) fock = self.get_hcore(self.mol) + self.get_veff(self.mol, dm1) return get_grad(mo_coeff, mo_occ, fock)
[docs] @lib.with_doc(make_rdm1.__doc__) def make_rdm1(self, mo_coeff=None, mo_occ=None, **kwargs): if mo_coeff is None: mo_coeff = self.mo_coeff if mo_occ is None: mo_occ = self.mo_occ if self.mol.spin < 0: # Flip occupancies of alpha and beta orbitals mo_occ = (numpy.asarray(mo_occ == 2, dtype=numpy.double), numpy.asarray(mo_occ > 0, dtype=numpy.double)) return make_rdm1(mo_coeff, mo_occ, **kwargs)
energy_elec = energy_elec
[docs] @lib.with_doc(uhf.get_veff.__doc__) def get_veff(self, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1): if mol is None: mol = self.mol if dm is None: dm = self.make_rdm1() if isinstance(dm, numpy.ndarray) and dm.ndim == 2: dm = numpy.array((dm*.5, dm*.5)) if self._eri is not None or not self.direct_scf: if hasattr(dm, 'mo_occ') and numpy.ndim(dm.mo_occ) == 1: mo_occa = (dm.mo_occ > 0).astype(numpy.double) mo_occb = (dm.mo_occ ==2).astype(numpy.double) dm = lib.tag_array(dm, mo_coeff=(dm.mo_coeff,)*2, mo_occ=(mo_occa,mo_occb)) vj, vk = self.get_jk(mol, dm, hermi) vhf = vj[0] + vj[1] - vk else: ddm = dm - numpy.asarray(dm_last) vj, vk = self.get_jk(mol, ddm, hermi) vhf = vj[0] + vj[1] - vk vhf += numpy.asarray(vhf_last) return vhf
[docs] @lib.with_doc(analyze.__doc__) def analyze(self, verbose=None, with_meta_lowdin=WITH_META_LOWDIN, **kwargs): if verbose is None: verbose = self.verbose return analyze(self, verbose, with_meta_lowdin, **kwargs)
canonicalize = canonicalize
[docs] def spin_square(self, mo_coeff=None, s=None): '''Spin square and multiplicity of RHF determinant''' neleca, nelecb = self.nelec ms = (neleca - nelecb) * .5 ss = ms * (ms + 1) return ss, ms*2+1
[docs] def stability(self, internal=getattr(__config__, 'scf_stability_internal', True), external=getattr(__config__, 'scf_stability_external', False), verbose=None, return_status=False): ''' ROHF/ROKS stability analysis. See also pyscf.scf.stability.rohf_stability function. Kwargs: internal : bool Internal stability, within the RHF optimization space. external : bool External stability. It is not available in current version. return_status: bool Whether to return `stable_i` and `stable_e` Returns: If return_status is False (default), the return value includes two set of orbitals, which are more close to the stable condition. The first corresponds to the internal stability and the second corresponds to the external stability. Else, another two boolean variables (indicating current status: stable or unstable) are returned. The first corresponds to the internal stability and the second corresponds to the external stability. ''' from pyscf.scf.stability import rohf_stability return rohf_stability(self, internal, external, verbose, return_status)
[docs] def nuc_grad_method(self): from pyscf.grad import rohf return rohf.Gradients(self)
convert_from_ = hf.RHF.convert_from_
[docs] def to_ks(self, xc='HF'): '''Convert to ROKS object. ''' from pyscf import dft return self._transfer_attrs_(dft.ROKS(self.mol, xc=xc))
to_gpu = lib.to_gpu
[docs] class HF1e(ROHF): scf = hf._hf1e_scf
del (WITH_META_LOWDIN)