Source code for pyscf.sgx.sgx

#!/usr/bin/env python
# Copyright 2018-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Pseudo-spectral methods (COSX, PS, SN-K)
'''

import numpy
from pyscf import lib
from pyscf import gto
from pyscf import scf
from pyscf import mcscf
from pyscf.scf import _vhf
from pyscf.lib import logger
from pyscf.sgx import sgx_jk
from pyscf.df import df_jk
from pyscf import __config__

[docs] def sgx_fit(mf, auxbasis=None, with_df=None, pjs=False): '''For the given SCF object, update the J, K matrix constructor with corresponding SGX or density fitting integrals. Args: mf : an SCF object Kwargs: auxbasis : str or basis dict Same format to the input attribute mol.basis. If auxbasis is None, optimal auxiliary basis based on AO basis (if possible) or even-tempered Gaussian basis will be used. with_df : SGX Existing SGX object for the system. pjs: bool Whether to perform P-junction screening (screening matrix elements by the density matrix). Default False. If True, dfj is set to True automatically at the beginning of the calculation, as this screening is only for K-matrix elements. Returns: An SCF object with a modified J, K matrix constructor which uses density fitting integrals to compute J and K Examples: >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0) >>> mf = sgx_fit(scf.RHF(mol)) >>> mf.scf() -100.00978770917165 >>> mol.symmetry = 1 >>> mol.build(0, 0) >>> mf = sgx_fit(scf.UHF(mol)) >>> mf.scf() -100.00978770951018 ''' assert (isinstance(mf, scf.hf.SCF)) if with_df is None: with_df = SGX(mf.mol, pjs=pjs) with_df.max_memory = mf.max_memory with_df.stdout = mf.stdout with_df.verbose = mf.verbose with_df.auxbasis = auxbasis if isinstance(mf, _SGXHF): if mf.with_df is None: mf.with_df = with_df elif mf.with_df.auxbasis != auxbasis: #logger.warn(mf, 'DF might have been initialized twice.') mf = mf.copy() mf.with_df = with_df return mf dfmf = _SGXHF(mf, with_df, auxbasis) return lib.set_class(dfmf, (_SGXHF, mf.__class__))
# A tag to label the derived SCF class class _SGXHF: __name_mixin__ = 'SGX' _keys = { 'auxbasis', 'with_df', 'direct_scf_sgx', 'rebuild_nsteps' } def __init__(self, mf, df=None, auxbasis=None): self.__dict__.update(mf.__dict__) self._eri = None self.auxbasis = auxbasis self.with_df = df # Grids/Integral quality varies during SCF. VHF cannot be # constructed incrementally through standard direct SCF. self.direct_scf = False # Set direct_scf_sgx True to use direct SCF for each # grid size with SGX. self.direct_scf_sgx = False # Set rebuild_nsteps to control how many direct SCF steps # are taken between resets of the SGX JK matrix. # Default 5, only used if direct_scf_sgx = True self.rebuild_nsteps = 5 self._last_dm = 0 self._last_vj = 0 self._last_vk = 0 self._in_scf = False def undo_sgx(self): obj = lib.view(self, lib.drop_class(self.__class__, _SGXHF)) del obj.auxbasis del obj.with_df del obj.direct_scf_sgx del obj.rebuild_nsteps del obj._in_scf return obj def build(self, mol=None, **kwargs): if self.direct_scf_sgx: self._nsteps_direct = 0 self._last_dm = 0 self._last_vj = 0 self._last_vk = 0 if self.direct_scf: self.with_df.build(level=self.with_df.grids_level_f) else: self.with_df.build(level=self.with_df.grids_level_i) if self.with_df.pjs: if not self.with_df.dfj: import warnings msg = ''' P-junction screening is not compatible with SGX J-matrix. Setting dfj = True. If you want to use SGX J-matrix, set pjs = False to turn off P-junction screening. ''' warnings.warn(msg) self.with_df.dfj = True # no SGX-J allowed if P-junction screening on return super().build(mol, **kwargs) def reset(self, mol=None): self.with_df.reset(mol) return super().reset(mol) def pre_kernel(self, envs): self.direct_scf = False # should always be False if self.with_df.grids_level_i != self.with_df.grids_level_f: self._in_scf = True def get_jk(self, mol=None, dm=None, hermi=1, with_j=True, with_k=True, omega=None): if dm is None: dm = self.make_rdm1() with_df = self.with_df if not with_df: return super().get_jk(self, mol, dm, hermi, with_j, with_k, omega) if (self._opt.get(omega) is None and self.with_df.direct_j and (not self.with_df.dfj)): with mol.with_range_coulomb(omega): self._opt[omega] = self.init_direct_scf(mol) vhfopt = self._opt.get(omega) if self._in_scf and not self.direct_scf: if numpy.linalg.norm(dm - self._last_dm) < with_df.grids_switch_thrd \ and with_df.grids_level_f != with_df.grids_level_i: # only reset if grids_level_f and grids_level_i differ logger.debug(self, 'Switching SGX grids') with_df.build(level=with_df.grids_level_f) self._nsteps_direct = 0 self._in_scf = False self._last_dm = 0 self._last_vj = 0 self._last_vk = 0 if self.direct_scf_sgx: vj, vk = with_df.get_jk(dm-self._last_dm, hermi, vhfopt, with_j, with_k, self.direct_scf_tol, omega) vj += self._last_vj vk += self._last_vk self._last_dm = numpy.asarray(dm) self._last_vj = vj.copy() self._last_vk = vk.copy() self._nsteps_direct += 1 if self.rebuild_nsteps > 0 and \ self._nsteps_direct >= self.rebuild_nsteps: logger.debug(self, 'Resetting JK matrix') self._nsteps_direct = 0 self._last_dm = 0 self._last_vj = 0 self._last_vk = 0 else: self._last_dm = numpy.asarray(dm) vj, vk = with_df.get_jk(dm, hermi, vhfopt, with_j, with_k, self.direct_scf_tol, omega) return vj, vk def post_kernel(self, envs): self._in_scf = False self._last_dm = 0 self._last_vj = 0 self._last_vk = 0 def to_gpu(self): raise NotImplementedError def method_not_implemented(self, *args, **kwargs): raise NotImplementedError nuc_grad_method = Gradients = method_not_implemented Hessian = method_not_implemented NMR = method_not_implemented NSR = method_not_implemented Polarizability = method_not_implemented RotationalGTensor = method_not_implemented MP2 = method_not_implemented CISD = method_not_implemented CCSD = method_not_implemented CASCI = method_not_implemented CASSCF = method_not_implemented scf.hf.SCF.COSX = sgx_fit mcscf.casci.CASBase.COSX = sgx_fit def _make_opt(mol, pjs=False, direct_scf_tol=getattr(__config__, 'scf_hf_SCF_direct_scf_tol', 1e-13)): '''Optimizer to genrate 3-center 2-electron integrals''' if pjs: vhfopt = _vhf.SGXOpt(mol, 'int1e_grids', 'SGXnr_ovlp_prescreen', dmcondname='SGXnr_dm_cond', direct_scf_tol=direct_scf_tol) else: vhfopt = _vhf._VHFOpt(mol, 'int1e_grids', 'SGXnr_ovlp_prescreen', direct_scf_tol=direct_scf_tol) vhfopt.init_cvhf_direct(mol, 'int1e_ovlp', 'SGXnr_q_cond') return vhfopt
[docs] class SGX(lib.StreamObject): _keys = { 'mol', 'grids_thrd', 'grids_level_i', 'grids_level_f', 'grids_switch_thrd', 'dfj', 'direct_j', 'pjs', 'debug', 'grids', 'blockdim', 'auxmol', } def __init__(self, mol, auxbasis=None, pjs=False): self.mol = mol self.stdout = mol.stdout self.verbose = mol.verbose self.max_memory = mol.max_memory self.grids_thrd = 1e-10 self.grids_level_i = 0 # initial grids level self.grids_level_f = 1 # final grids level self.grids_switch_thrd = 0.03 # compute J matrix using DF and K matrix using SGX. It's identical to # the RIJCOSX method in ORCA self.dfj = False self.direct_j = False self._auxbasis = auxbasis self.pjs = pjs # debug=True generates a dense tensor of the Coulomb integrals at each # grids. debug=False utilizes the sparsity of the integral tensor and # contracts the sparse tensor and density matrices on the fly. self.debug = False self.grids = None self.blockdim = 1200 self.auxmol = None self._vjopt = None self._opt = None self._last_dm = 0 self._rsh_df = {} # Range separated Coulomb DF objects @property def auxbasis(self): return self._auxbasis @auxbasis.setter def auxbasis(self, x): if self._auxbasis != x: self._auxbasis = x self.auxmol = None
[docs] def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info('******** %s ********', self.__class__) log.info('max_memory = %s', self.max_memory) log.info('grids_level_i = %s', self.grids_level_i) log.info('grids_level_f = %s', self.grids_level_f) log.info('grids_thrd = %s', self.grids_thrd) log.info('grids_switch_thrd = %s', self.grids_switch_thrd) log.info('dfj = %s', self.dfj) log.info('auxbasis = %s', self.auxbasis) return self
# To mimic DF object, so that SGX can be used as in DF-SCF method by setting # mf.with_df = SGX(mol) @property def _cderi(self): return self.grids
[docs] def build(self, level=None): if level is None: level = self.grids_level_f self.grids = sgx_jk.get_gridss(self.mol, level, self.grids_thrd) self._opt = _make_opt(self.mol, pjs=self.pjs) # In the RSH-integral temporary treatment, recursively rebuild SGX # objects in _rsh_df. if self._rsh_df: for k, v in self._rsh_df.items(): v.build(level) return self
[docs] def kernel(self, *args, **kwargs): return self.build(*args, **kwargs)
[docs] def reset(self, mol=None): '''Reset mol and clean up relevant attributes for scanner mode''' if mol is not None: self.mol = mol self.grids = None self.auxmol = None self._vjopt = None self._opt = None self._last_dm = 0 self._rsh_df = {} return self
[docs] def get_jk(self, dm, hermi=1, vhfopt=None, with_j=True, with_k=True, direct_scf_tol=getattr(__config__, 'scf_hf_SCF_direct_scf_tol', 1e-13), omega=None): if omega is not None: # A temporary treatment for RSH integrals key = '%.6f' % omega if key in self._rsh_df: rsh_df = self._rsh_df[key] else: rsh_df = self.copy() rsh_df._rsh_df = None # to avoid circular reference # Not all attributes need to be reset. Resetting _vjopt # because it is used by get_j method of regular DF object. rsh_df._vjopt = None self._rsh_df[key] = rsh_df logger.info(self, 'Create RSH-SGX object %s for omega=%s', rsh_df, omega) with rsh_df.mol.with_range_coulomb(omega): return rsh_df.get_jk(dm, hermi, with_j, with_k, direct_scf_tol) if with_j and self.dfj: vj = df_jk.get_j(self, dm, hermi, direct_scf_tol) if with_k: vk = sgx_jk.get_jk(self, dm, hermi, False, with_k, direct_scf_tol)[1] else: vk = None elif with_j and self.direct_j: vj, _ = _vhf.direct(dm, self.mol._atm, self.mol._bas, self.mol._env, vhfopt, hermi, self.mol.cart, True, False) if with_k: vk = sgx_jk.get_jk(self, dm, hermi, False, with_k, direct_scf_tol)[1] else: vk = None else: vj, vk = sgx_jk.get_jk(self, dm, hermi, with_j, with_k, direct_scf_tol) return vj, vk
to_gpu = lib.to_gpu