Source code for pyscf.solvent.ddcosmo

#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
domain decomposition COSMO

See also the code on github

https://github.com/filippolipparini/ddPCM

and the papers

[1] Domain decomposition for implicit solvation models.
E. Cances, Y. Maday, B. Stamm
J. Chem. Phys., 139, 054111 (2013)
http://dx.doi.org/10.1063/1.4816767

[2] Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives.
F. Lipparini, B. Stamm, E. Cances, Y. Maday, B. Mennucci
J. Chem. Theory Comput., 9, 3637-3648 (2013)
http://dx.doi.org/10.1021/ct400280b

[3] Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy.
F. Lipparini, G. Scalmani, L. Lagardere, B. Stamm, E. Cances, Y. Maday, J.-P.Piquemal, M. J. Frisch, B. Mennucci
J. Chem. Phys., 141, 184108 (2014)
http://dx.doi.org/10.1063/1.4901304

-- Dielectric constants (from https://gaussian.com/scrf/) --
More dataset can be found in Minnesota Solvent Descriptor Database
(https://comp.chem.umn.edu/solvation)
Water                                  78.3553
Acetonitrile                           35.688
Methanol                               32.613
Ethanol                                24.852
IsoQuinoline                           11.00
Quinoline                              9.16
Chloroform                             4.7113
DiethylEther                           4.2400
Dichloromethane                        8.93
DiChloroEthane                         10.125
CarbonTetraChloride                    2.2280
Benzene                                2.2706
Toluene                                2.3741
ChloroBenzene                          5.6968
NitroMethane                           36.562
Heptane                                1.9113
CycloHexane                            2.0165
Aniline                                6.8882
Acetone                                20.493
TetraHydroFuran                        7.4257
DiMethylSulfoxide                      46.826
Argon                                  1.430
Krypton                                1.519
Xenon                                  1.706
n-Octanol                              9.8629
1,1,1-TriChloroEthane                  7.0826
1,1,2-TriChloroEthane                  7.1937
1,2,4-TriMethylBenzene                 2.3653
1,2-DiBromoEthane                      4.9313
1,2-EthaneDiol                         40.245
1,4-Dioxane                            2.2099
1-Bromo-2-MethylPropane                7.7792
1-BromoOctane                          5.0244
1-BromoPentane                         6.269
1-BromoPropane                         8.0496
1-Butanol                              17.332
1-ChloroHexane                         5.9491
1-ChloroPentane                        6.5022
1-ChloroPropane                        8.3548
1-Decanol                              7.5305
1-FluoroOctane                         3.89
1-Heptanol                             11.321
1-Hexanol                              12.51
1-Hexene                               2.0717
1-Hexyne                               2.615
1-IodoButane                           6.173
1-IodoHexaDecane                       3.5338
1-IodoPentane                          5.6973
1-IodoPropane                          6.9626
1-NitroPropane                         23.73
1-Nonanol                              8.5991
1-Pentanol                             15.13
1-Pentene                              1.9905
1-Propanol                             20.524
2,2,2-TriFluoroEthanol                 26.726
2,2,4-TriMethylPentane                 1.9358
2,4-DiMethylPentane                    1.8939
2,4-DiMethylPyridine                   9.4176
2,6-DiMethylPyridine                   7.1735
2-BromoPropane                         9.3610
2-Butanol                              15.944
2-ChloroButane                         8.3930
2-Heptanone                            11.658
2-Hexanone                             14.136
2-MethoxyEthanol                       17.2
2-Methyl-1-Propanol                    16.777
2-Methyl-2-Propanol                    12.47
2-MethylPentane                        1.89
2-MethylPyridine                       9.9533
2-NitroPropane                         25.654
2-Octanone                             9.4678
2-Pentanone                            15.200
2-Propanol                             19.264
2-Propen-1-ol                          19.011
3-MethylPyridine                       11.645
3-Pentanone                            16.78
4-Heptanone                            12.257
4-Methyl-2-Pentanone                   12.887
4-MethylPyridine                       11.957
5-Nonanone                             10.6
AceticAcid                             6.2528
AcetoPhenone                           17.44
a-ChloroToluene                        6.7175
Anisole                                4.2247
Benzaldehyde                           18.220
BenzoNitrile                           25.592
BenzylAlcohol                          12.457
BromoBenzene                           5.3954
BromoEthane                            9.01
Bromoform                              4.2488
Butanal                                13.45
ButanoicAcid                           2.9931
Butanone                               18.246
ButanoNitrile                          24.291
ButylAmine                             4.6178
ButylEthanoate                         4.9941
CarbonDiSulfide                        2.6105
Cis-1,2-DiMethylCycloHexane            2.06
Cis-Decalin                            2.2139
CycloHexanone                          15.619
CycloPentane                           1.9608
CycloPentanol                          16.989
CycloPentanone                         13.58
Decalin-mixture                        2.196
DiBromomEthane                         7.2273
DiButylEther                           3.0473
DiEthylAmine                           3.5766
DiEthylSulfide                         5.723
DiIodoMethane                          5.32
DiIsoPropylEther                       3.38
DiMethylDiSulfide                      9.6
DiPhenylEther                          3.73
DiPropylAmine                          2.9112
e-1,2-DiChloroEthene                   2.14
e-2-Pentene                            2.051
EthaneThiol                            6.667
EthylBenzene                           2.4339
EthylEthanoate                         5.9867
EthylMethanoate                        8.3310
EthylPhenylEther                       4.1797
FluoroBenzene                          5.42
Formamide                              108.94
FormicAcid                             51.1
HexanoicAcid                           2.6
IodoBenzene                            4.5470
IodoEthane                             7.6177
IodoMethane                            6.8650
IsoPropylBenzene                       2.3712
m-Cresol                               12.44
Mesitylene                             2.2650
MethylBenzoate                         6.7367
MethylButanoate                        5.5607
MethylCycloHexane                      2.024
MethylEthanoate                        6.8615
MethylMethanoate                       8.8377
MethylPropanoate                       6.0777
m-Xylene                               2.3478
n-ButylBenzene                         2.36
n-Decane                               1.9846
n-Dodecane                             2.0060
n-Hexadecane                           2.0402
n-Hexane                               1.8819
NitroBenzene                           34.809
NitroEthane                            28.29
n-MethylAniline                        5.9600
n-MethylFormamide-mixture              181.56
n,n-DiMethylAcetamide                  37.781
n,n-DiMethylFormamide                  37.219
n-Nonane                               1.9605
n-Octane                               1.9406
n-Pentadecane                          2.0333
n-Pentane                              1.8371
n-Undecane                             1.9910
o-ChloroToluene                        4.6331
o-Cresol                               6.76
o-DiChloroBenzene                      9.9949
o-NitroToluene                         25.669
o-Xylene                               2.5454
Pentanal                               10.0
PentanoicAcid                          2.6924
PentylAmine                            4.2010
PentylEthanoate                        4.7297
PerFluoroBenzene                       2.029
p-IsoPropylToluene                     2.2322
Propanal                               18.5
PropanoicAcid                          3.44
PropanoNitrile                         29.324
PropylAmine                            4.9912
PropylEthanoate                        5.5205
p-Xylene                               2.2705
Pyridine                               12.978
sec-ButylBenzene                       2.3446
tert-ButylBenzene                      2.3447
TetraChloroEthene                      2.268
TetraHydroThiophene-s,s-dioxide        43.962
Tetralin                               2.771
Thiophene                              2.7270
Thiophenol                             4.2728
trans-Decalin                          2.1781
TriButylPhosphate                      8.1781
TriChloroEthene                        3.422
TriEthylAmine                          2.3832
Xylene-mixture                         2.3879
z-1,2-DiChloroEthene                   9.2
'''  # noqa: E501

import ctypes
import numpy
from pyscf import lib
from pyscf.lib import logger
from pyscf import gto
from pyscf import df
from pyscf.dft import gen_grid, numint
from pyscf.data import radii
from pyscf.solvent.grad import ddcosmo_grad
from pyscf.symm import sph

from pyscf.solvent import _attach_solvent

[docs] @lib.with_doc(_attach_solvent._for_scf.__doc__) def ddcosmo_for_scf(mf, solvent_obj=None, dm=None): if solvent_obj is None: solvent_obj = DDCOSMO(mf.mol) return _attach_solvent._for_scf(mf, solvent_obj, dm)
[docs] @lib.with_doc(_attach_solvent._for_casscf.__doc__) def ddcosmo_for_casscf(mc, solvent_obj=None, dm=None): if solvent_obj is None: if isinstance(getattr(mc._scf, 'with_solvent', None), DDCOSMO): solvent_obj = mc._scf.with_solvent else: solvent_obj = DDCOSMO(mc.mol) return _attach_solvent._for_casscf(mc, solvent_obj, dm)
[docs] @lib.with_doc(_attach_solvent._for_casci.__doc__) def ddcosmo_for_casci(mc, solvent_obj=None, dm=None): if solvent_obj is None: if isinstance(getattr(mc._scf, 'with_solvent', None), DDCOSMO): solvent_obj = mc._scf.with_solvent else: solvent_obj = DDCOSMO(mc.mol) return _attach_solvent._for_casci(mc, solvent_obj, dm)
[docs] @lib.with_doc(_attach_solvent._for_post_scf.__doc__) def ddcosmo_for_post_scf(method, solvent_obj=None, dm=None): if solvent_obj is None: if isinstance(getattr(method._scf, 'with_solvent', None), DDCOSMO): solvent_obj = method._scf.with_solvent else: solvent_obj = DDCOSMO(method.mol) return _attach_solvent._for_post_scf(method, solvent_obj, dm)
[docs] @lib.with_doc(_attach_solvent._for_tdscf.__doc__) def ddcosmo_for_tdscf(method, solvent_obj=None, dm=None): scf_solvent = getattr(method._scf, 'with_solvent', None) assert scf_solvent is None or isinstance(scf_solvent, DDCOSMO) if solvent_obj is None: solvent_obj = DDCOSMO(method.mol) return _attach_solvent._for_tdscf(method, solvent_obj, dm)
# Inject ddCOSMO into other methods from pyscf import scf from pyscf import mcscf from pyscf import mp, ci, cc from pyscf import tdscf scf.hf.SCF.ddCOSMO = scf.hf.SCF.DDCOSMO = ddcosmo_for_scf mp.mp2.MP2.ddCOSMO = mp.mp2.MP2.DDCOSMO = ddcosmo_for_post_scf ci.cisd.CISD.ddCOSMO = ci.cisd.CISD.DDCOSMO = ddcosmo_for_post_scf cc.ccsd.CCSDBase.ddCOSMO = cc.ccsd.CCSDBase.DDCOSMO = ddcosmo_for_post_scf tdscf.rhf.TDBase.ddCOSMO = tdscf.rhf.TDBase.DDCOSMO = ddcosmo_for_tdscf mcscf.casci.CASCI.ddCOSMO = mcscf.casci.CASCI.DDCOSMO = ddcosmo_for_casci mcscf.mc1step.CASSCF.ddCOSMO = mcscf.mc1step.CASSCF.DDCOSMO = ddcosmo_for_casscf # Keep gen_ddcosmo_solver for backward compatibility
[docs] def gen_ddcosmo_solver(pcmobj, verbose=None): '''Generate ddcosmo function to compute energy and potential matrix ''' return pcmobj._get_vind
[docs] def energy(pcmobj, dm): r''' ddCOSMO energy Es = 1/2 f(eps) \int rho(r) W(r) dr ''' epcm = pcmobj._get_vind(dm)[0] return epcm
[docs] def get_atomic_radii(pcmobj): mol = pcmobj.mol vdw_radii = pcmobj.radii_table atom_radii = pcmobj.atom_radii atom_symb = [mol.atom_symbol(i) for i in range(mol.natm)] r_vdw = [vdw_radii[gto.charge(x)] for x in atom_symb] if atom_radii is not None: for i in range(mol.natm): if atom_symb[i] in atom_radii: r_vdw[i] = atom_radii[atom_symb[i]] return numpy.asarray(r_vdw)
[docs] def regularize_xt(t, eta): xt = numpy.zeros_like(t) inner = t <= 1-eta on_shell = (1-eta < t) & (t < 1) xt[inner] = 1 ti = t[on_shell] # JCTC, 9, 3637 xt[on_shell] = 1./eta**5 * (1-ti)**3 * (6*ti**2 + (15*eta-12)*ti + 10*eta**2 - 15*eta + 6) # JCP, 139, 054111 # xt[on_shell] = 1./eta**4 * (1-ti)**2 * (ti-1+2*eta)**2 return xt
[docs] def make_grids_one_sphere(lebedev_order): ngrid_1sph = gen_grid.LEBEDEV_ORDER[lebedev_order] leb_grid = gen_grid.MakeAngularGrid(ngrid_1sph) coords_1sph = leb_grid[:,:3] # Note the Lebedev angular grids are normalized to 1 in pyscf weights_1sph = 4*numpy.pi * leb_grid[:,3] return coords_1sph, weights_1sph
[docs] def make_L(pcmobj, r_vdw, ylm_1sph, fi): # See JCTC, 9, 3637, Eq (18) mol = pcmobj.mol natm = mol.natm lmax = pcmobj.lmax eta = pcmobj.eta nlm = (lmax+1)**2 coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) ngrid_1sph = weights_1sph.size atom_coords = mol.atom_coords() ylm_1sph = ylm_1sph.reshape(nlm,ngrid_1sph) # JCP, 141, 184108 Eq (9), (12) is incorrect # L_diag = <lm|(1/|s-s'|)|l'm'> # Using Laplace expansion for electrostatic potential 1/r # L_diag = 4pi/(2l+1)/|s| <lm|l'm'> L_diag = numpy.zeros((natm,nlm)) p1 = 0 for l in range(lmax+1): p0, p1 = p1, p1 + (l*2+1) L_diag[:,p0:p1] = 4*numpy.pi/(l*2+1) L_diag *= 1./r_vdw.reshape(-1,1) Lmat = numpy.diag(L_diag.ravel()).reshape(natm,nlm,natm,nlm) for ja in range(natm): # scale the weight, precontract d_nj and w_n # see JCTC 9, 3637, Eq (16) - (18) # Note all values are scaled by 1/r_vdw to make the formulas # consistent to Psi in JCP, 141, 184108 part_weights = weights_1sph.copy() part_weights[fi[ja]>1] /= fi[ja,fi[ja]>1] for ka in atoms_with_vdw_overlap(ja, atom_coords, r_vdw): vjk = r_vdw[ja] * coords_1sph + atom_coords[ja] - atom_coords[ka] tjk = lib.norm(vjk, axis=1) / r_vdw[ka] wjk = pcmobj.regularize_xt(tjk, eta) wjk *= part_weights pol = sph.multipoles(vjk, lmax) p1 = 0 for l in range(lmax+1): fac = 4*numpy.pi/(l*2+1) / r_vdw[ka]**(l+1) p0, p1 = p1, p1 + (l*2+1) a = numpy.einsum('xn,n,mn->xm', ylm_1sph, wjk, pol[l]) Lmat[ja,:,ka,p0:p1] += -fac * a return Lmat
[docs] def make_fi(pcmobj, r_vdw): coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) mol = pcmobj.mol eta = pcmobj.eta natm = mol.natm atom_coords = mol.atom_coords() ngrid_1sph = coords_1sph.shape[0] fi = numpy.zeros((natm,ngrid_1sph)) for ia in range(natm): for ja in atoms_with_vdw_overlap(ia, atom_coords, r_vdw): v = r_vdw[ia]*coords_1sph + atom_coords[ia] - atom_coords[ja] rv = lib.norm(v, axis=1) t = rv / r_vdw[ja] xt = pcmobj.regularize_xt(t, eta) fi[ia] += xt fi[fi < 1e-20] = 0 return fi
[docs] def make_phi(pcmobj, dm, r_vdw, ui, ylm_1sph, with_nuc=True): ''' Induced potential of ddCOSMO model Kwargs: with_nuc (bool): Mute the contribution of nuclear charges when computing the second order derivatives of energy ''' mol = pcmobj.mol natm = mol.natm coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) ngrid_1sph = coords_1sph.shape[0] dms = numpy.asarray(dm) is_single_dm = dms.ndim == 2 nao = dms.shape[-1] dms = dms.reshape(-1,nao,nao) n_dm = dms.shape[0] diagidx = numpy.arange(nao) diagidx = diagidx*(diagidx+1)//2 + diagidx tril_dm = lib.pack_tril(dms+dms.transpose(0,2,1)) tril_dm[:,diagidx] *= .5 atom_coords = mol.atom_coords() atom_charges = mol.atom_charges() extern_point_idx = ui > 0 cav_coords = (atom_coords.reshape(natm,1,3) + numpy.einsum('r,gx->rgx', r_vdw, coords_1sph)) v_phi = numpy.zeros((n_dm, natm, ngrid_1sph)) if with_nuc: for ia in range(natm): # Note (-) sign is not applied to atom_charges, because (-) is explicitly # included in rhs and L matrix d_rs = atom_coords.reshape(-1,1,3) - cav_coords[ia] v_phi[:,ia] = numpy.einsum('z,zp->p', atom_charges, 1./lib.norm(d_rs,axis=2)) max_memory = pcmobj.max_memory - lib.current_memory()[0] blksize = int(max(max_memory*.9e6/8/nao**2, 400)) cav_coords = cav_coords[extern_point_idx] v_phi_e = numpy.empty((n_dm, cav_coords.shape[0])) int3c2e = mol._add_suffix('int3c2e') cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e) for i0, i1 in lib.prange(0, cav_coords.shape[0], blksize): fakemol = gto.fakemol_for_charges(cav_coords[i0:i1]) v_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e, aosym='s2ij', cintopt=cintopt) v_phi_e[:,i0:i1] = numpy.einsum('nx,xk->nk', tril_dm, v_nj) v_phi[:,extern_point_idx] -= v_phi_e phi = -numpy.einsum('n,xn,jn,ijn->ijx', weights_1sph, ylm_1sph, ui, v_phi) if is_single_dm: phi = phi[0] return phi
[docs] def make_psi_vmat(pcmobj, dm, r_vdw, ui, ylm_1sph, cached_pol, Xvec, L, with_nuc=True): ''' The first order derivative of E_ddCOSMO wrt density matrix Kwargs: with_nuc (bool): Mute the contribution of nuclear charges when computing the second order derivatives of energy. ''' mol = pcmobj.mol natm = mol.natm lmax = pcmobj.lmax nlm = (lmax+1)**2 dms = numpy.asarray(dm) is_single_dm = dms.ndim == 2 grids = pcmobj.grids ni = numint.NumInt() max_memory = pcmobj.max_memory - lib.current_memory()[0] make_rho, n_dm, nao = ni._gen_rho_evaluator(mol, dms) dms = dms.reshape(n_dm,nao,nao) Xvec = Xvec.reshape(n_dm, natm, nlm) i1 = 0 scaled_weights = numpy.empty((n_dm, grids.weights.size)) for ia in range(natm): fak_pol, leak_idx = cached_pol[mol.atom_symbol(ia)] fac_pol = _vstack_factor_fak_pol(fak_pol, lmax) i0, i1 = i1, i1 + fac_pol.shape[1] scaled_weights[:,i0:i1] = numpy.einsum('mn,im->in', fac_pol, Xvec[:,ia]) scaled_weights *= grids.weights shls_slice = (0, mol.nbas) ao_loc = mol.ao_loc_nr() den = numpy.empty((n_dm, grids.weights.size)) vmat = numpy.zeros((n_dm, nao, nao)) p1 = 0 aow = None for ao, mask, weight, coords \ in ni.block_loop(mol, grids, nao, 0, max_memory): p0, p1 = p1, p1 + weight.size for i in range(n_dm): den[i,p0:p1] = make_rho(i, ao, mask, 'LDA') aow = numint._scale_ao(ao, scaled_weights[i,p0:p1], out=aow) vmat[i] -= numint._dot_ao_ao(mol, ao, aow, mask, shls_slice, ao_loc) den *= grids.weights ao = aow = scaled_weights = None nelec_leak = 0 psi = numpy.zeros((n_dm, natm, nlm)) i1 = 0 for ia in range(natm): fak_pol, leak_idx = cached_pol[mol.atom_symbol(ia)] fac_pol = _vstack_factor_fak_pol(fak_pol, lmax) i0, i1 = i1, i1 + fac_pol.shape[1] nelec_leak += den[:,i0:i1][:,leak_idx].sum(axis=1) psi[:,ia] = -numpy.einsum('in,mn->im', den[:,i0:i1], fac_pol) logger.debug(pcmobj, 'electron leaks %s', nelec_leak) # Contribution of nuclear charges to the total density # The factor numpy.sqrt(4*numpy.pi) is due to the product of 4*pi * Y_0^0 if with_nuc: for ia in range(natm): psi[:,ia,0] += numpy.sqrt(4*numpy.pi)/r_vdw[ia] * mol.atom_charge(ia) # <Psi, L^{-1}g> -> Psi = SL the adjoint equation to LX = g L_S = numpy.linalg.solve(L.reshape(natm*nlm,-1).T, psi.reshape(n_dm,-1).T) L_S = L_S.reshape(natm,nlm,n_dm).transpose(2,0,1) coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) # JCP, 141, 184108, Eq (39) xi_jn = numpy.einsum('n,jn,xn,ijx->ijn', weights_1sph, ui, ylm_1sph, L_S) extern_point_idx = ui > 0 cav_coords = (mol.atom_coords().reshape(natm,1,3) + numpy.einsum('r,gx->rgx', r_vdw, coords_1sph)) cav_coords = cav_coords[extern_point_idx] xi_jn = xi_jn[:,extern_point_idx] max_memory = pcmobj.max_memory - lib.current_memory()[0] blksize = int(max(max_memory*.9e6/8/nao**2, 400)) cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, 'int3c2e') vmat_tril = 0 for i0, i1 in lib.prange(0, cav_coords.shape[0], blksize): fakemol = gto.fakemol_for_charges(cav_coords[i0:i1]) v_nj = df.incore.aux_e2(mol, fakemol, intor='int3c2e', aosym='s2ij', cintopt=cintopt) vmat_tril += numpy.einsum('xn,in->ix', v_nj, xi_jn[:,i0:i1]) vmat += lib.unpack_tril(vmat_tril) if is_single_dm: psi = psi[0] L_S = L_S[0] vmat = vmat[0] return psi, vmat, L_S
[docs] def cache_fake_multipoles(grids, r_vdw, lmax): # For each type of atoms, cache the product of last two terms in # JCP, 141, 184108, Eq (31): # x_{<}^{l} / x_{>}^{l+1} Y_l^m mol = grids.mol atom_grids_tab = grids.gen_atomic_grids(mol) r_vdw_type = {} for ia in range(mol.natm): symb = mol.atom_symbol(ia) if symb not in r_vdw_type: r_vdw_type[symb] = r_vdw[ia] cached_pol = {} for symb in atom_grids_tab: x_nj, w = atom_grids_tab[symb] r = lib.norm(x_nj, axis=1) # Different equations are used in JCTC, 9, 3637. r*Ys (the fake_pole) # is computed as r^l/r_vdw. "leak_idx" is not needed. # Here, the implementation is based on JCP, 141, 184108 leak_idx = r > r_vdw_type[symb] pol = sph.multipoles(x_nj, lmax) fak_pol = [] for l in range(lmax+1): # x_{<}^{l} / x_{>}^{l+1} Y_l^m in JCP, 141, 184108, Eq (31) #:Ys = sph.real_sph_vec(x_nj/r.reshape(-1,1), lmax, True) #:rr = numpy.zeros_like(r) #:rr[r<=r_vdw[ia]] = r[r<=r_vdw[ia]]**l / r_vdw[ia]**(l+1) #:rr[r> r_vdw[ia]] = r_vdw[ia]**l / r[r>r_vdw[ia]]**(l+1) #:xx_ylm = numpy.einsum('n,mn->mn', rr, Ys[l]) xx_ylm = pol[l] * (1./r_vdw_type[symb]**(l+1)) # The line below is not needed for JCTC, 9, 3637 xx_ylm[:,leak_idx] *= (r_vdw_type[symb]/r[leak_idx])**(2*l+1) fak_pol.append(xx_ylm) cached_pol[symb] = (fak_pol, leak_idx) return cached_pol
def _vstack_factor_fak_pol(fak_pol, lmax): fac_pol = [] for l in range(lmax+1): fac = 4*numpy.pi/(l*2+1) fac_pol.append(fac * fak_pol[l]) return numpy.vstack(fac_pol)
[docs] def atoms_with_vdw_overlap(atm_id, atom_coords, r_vdw): atm_dist = atom_coords - atom_coords[atm_id] atm_dist = numpy.einsum('pi,pi->p', atm_dist, atm_dist) atm_dist[atm_id] = 1e200 vdw_sum = r_vdw + r_vdw[atm_id] atoms_nearby = numpy.where(atm_dist < vdw_sum**2)[0] return atoms_nearby
[docs] class ddCOSMO(lib.StreamObject): _keys = { 'mol', 'radii_table', 'atom_radii', 'lebedev_order', 'lmax', 'eta', 'eps', 'grids', 'max_cycle', 'conv_tol', 'state_id', 'frozen', 'equilibrium_solvation', 'e', 'v', } def __init__(self, mol): self.mol = mol self.stdout = mol.stdout self.verbose = mol.verbose self.max_memory = mol.max_memory #self.radii_table = radii.VDW self.radii_table = radii.UFF*1.1 #self.radii_table = radii.MM3 self.atom_radii = None self.lebedev_order = 17 self.lmax = 6 # max angular momentum of spherical harmonics basis self.eta = .1 # regularization parameter self.eps = 78.3553 self.grids = Grids(mol) # The maximum iterations and convergence tolerance to update solvent # effects in CASCI, CC, MP, CI, ... methods self.max_cycle = 20 self.conv_tol = 1e-7 self.state_id = 0 # Set frozen to enable/disable the frozen ddCOSMO solvent potential. # If frozen is set, _dm (density matrix) needs to be specified to # generate the potential. self.frozen = False # In the rapid process (such as vertical excitation), solvent does not # follow the fast change of electronic structure of solutes. A # calculation of non-equilibrium solvation should be used. For slow # process (like geometry optimization), solvent has enough time to # respond to the changes in electronic structure or geometry of # solutes. Equilibrium solvation should be enabled in the calculation. # See for example JPCA, 104, 5631 (2000) # # Note this attribute has no effects if .frozen is enabled. # self.equilibrium_solvation = False ################################################## # don't modify the following attributes, they are not input options # e (the dielectric correction) and v (the additional potential) are # updated during the SCF iterations self.e = None self.v = None self._dm = None self._intermediates = None @property def dm(self): '''Density matrix to generate the frozen ddCOSMO solvent potential.''' return self._dm @dm.setter def dm(self, dm): '''Set dm to enable/disable the frozen ddCOSMO solvent potential. Setting dm to None will disable the frozen potental, i.e. the potential will respond to the change of the density during SCF iterations. ''' if isinstance(dm, numpy.ndarray): self._dm = dm self.e, self.v = self.kernel(dm) else: self.e = self.v = self._dm = None # define epcm and vpcm for backward compatibility @property def epcm(self): return self.e_solvent @epcm.setter def epcm(self, val): self.e_solvent = val @property def vpcm(self): return self.v_solvent @vpcm.setter def vpcm(self, val): self.v_solvent = val def __setattr__(self, key, val): if key in ('radii_table', 'atom_radii', 'lebedev_order', 'lmax', 'eta', 'eps', 'grids'): self.reset() super(DDCOSMO, self).__setattr__(key, val)
[docs] def dump_flags(self, verbose=None): logger.info(self, '******** %s ********', self.__class__) logger.info(self, 'lebedev_order = %s (%d grids per sphere)', self.lebedev_order, gen_grid.LEBEDEV_ORDER[self.lebedev_order]) logger.info(self, 'lmax = %s' , self.lmax) logger.info(self, 'eta = %s' , self.eta) logger.info(self, 'eps = %s' , self.eps) logger.info(self, 'frozen = %s' , self.frozen) logger.info(self, 'equilibrium_solvation = %s', self.equilibrium_solvation) logger.debug2(self, 'radii_table %s', self.radii_table) if self.atom_radii: logger.info(self, 'User specified atomic radii %s', str(self.atom_radii)) self.grids.dump_flags(verbose) return self
# TODO: Testing the value of psi (make_psi_vmat). All intermediates except # psi are tested against ddPCM implementation on github. Psi needs to be # computed by the host program. It requires the numerical integration code.
[docs] def build(self): if self.grids.coords is None: self.grids.build() mol = self.mol natm = mol.natm lmax = self.lmax r_vdw = self.get_atomic_radii() coords_1sph, weights_1sph = make_grids_one_sphere(self.lebedev_order) ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True)) fi = make_fi(self, r_vdw) ui = 1 - fi ui[ui<0] = 0 nexposed = numpy.count_nonzero(ui==1) nbury = numpy.count_nonzero(ui==0) on_shell = numpy.count_nonzero(ui>0) - nexposed logger.debug(self, 'Num points exposed %d', nexposed) logger.debug(self, 'Num points buried %d', nbury) logger.debug(self, 'Num points on shell %d', on_shell) nlm = (lmax+1)**2 Lmat = make_L(self, r_vdw, ylm_1sph, fi) Lmat = Lmat.reshape(natm*nlm,-1) cached_pol = cache_fake_multipoles(self.grids, r_vdw, lmax) self._intermediates = { 'r_vdw': r_vdw, 'ylm_1sph': ylm_1sph, 'ui': ui, 'Lmat': Lmat, 'cached_pol': cached_pol, }
[docs] def kernel(self, dm): '''A single shot solvent effects for given density matrix. ''' self._dm = dm self.e, self.v = self._get_vind(dm) logger.info(self, '%s E_diel = %.15g', self.__class__, self.e) return self.e, self.v
[docs] def reset(self, mol=None): '''Reset mol and clean up relevant attributes for scanner mode''' if mol is not None: self.mol = mol self.grids.reset(mol) self._intermediates = None return self
def _get_vind(self, dm): '''A single shot solvent effects for given density matrix. ''' if not self._intermediates or self.grids.coords is None: self.build() mol = self.mol r_vdw = self._intermediates['r_vdw' ] ylm_1sph = self._intermediates['ylm_1sph' ] ui = self._intermediates['ui' ] Lmat = self._intermediates['Lmat' ] cached_pol = self._intermediates['cached_pol'] if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2): # spin-traced DM for UHF or ROHF dm = dm[0] + dm[1] phi = make_phi(self, dm, r_vdw, ui, ylm_1sph) Xvec = numpy.linalg.solve(Lmat, phi.ravel()).reshape(mol.natm,-1) psi, vmat = make_psi_vmat(self, dm, r_vdw, ui, ylm_1sph, cached_pol, Xvec, Lmat)[:2] dielectric = self.eps if dielectric > 0: f_epsilon = (dielectric-1.)/dielectric else: f_epsilon = 1 epcm = .5 * f_epsilon * numpy.einsum('jx,jx', psi, Xvec) vpcm = .5 * f_epsilon * vmat return epcm, vpcm def _B_dot_x(self, dm): ''' Compute the matrix-vector product B * x. The B matrix, as defined in the paper R. Cammi, JPCA, 104, 5631 (2000), is the second order derivatives of E_solvation wrt density matrices. Note: In ddCOSMO, strictly, B is not symmetric. To make it compatible with the CIS framework, it is symmetrized in current implementation. ''' if not self._intermediates or self.grids.coords is None: self.build() mol = self.mol r_vdw = self._intermediates['r_vdw' ] ylm_1sph = self._intermediates['ylm_1sph' ] ui = self._intermediates['ui' ] Lmat = self._intermediates['Lmat' ] cached_pol = self._intermediates['cached_pol'] natm = mol.natm nlm = (self.lmax+1)**2 dms = numpy.asarray(dm) dm_shape = dms.shape nao = dm_shape[-1] dms = dms.reshape(-1,nao,nao) phi = make_phi(self, dms, r_vdw, ui, ylm_1sph, with_nuc=False) Xvec = numpy.linalg.solve(Lmat, phi.reshape(-1,natm*nlm).T) Xvec = Xvec.reshape(natm,nlm,-1).transpose(2,0,1) vmat = make_psi_vmat(self, dms, r_vdw, ui, ylm_1sph, cached_pol, Xvec, Lmat, with_nuc=False)[1] dielectric = self.eps if dielectric > 0: f_epsilon = (dielectric-1.)/dielectric else: f_epsilon = 1 return .5 * f_epsilon * vmat.reshape(dm_shape) energy = energy gen_solver = as_solver = gen_ddcosmo_solver get_atomic_radii = get_atomic_radii
[docs] def regularize_xt(self, t, eta, scale=1): return regularize_xt(t, eta)
[docs] def nuc_grad_method(self, grad_method): '''For grad_method in vacuum, add nuclear gradients of solvent ''' from pyscf import tdscf from pyscf.solvent import _ddcosmo_tdscf_grad if self.frozen: raise RuntimeError('Frozen solvent model is not supported for ' 'energy gradients') if isinstance(grad_method.base, tdscf.rhf.TDBase): return _ddcosmo_tdscf_grad.make_grad_object(grad_method) else: return ddcosmo_grad.make_grad_object(grad_method)
to_gpu = lib.to_gpu
DDCOSMO = ddCOSMO
[docs] class Grids(gen_grid.Grids): '''DFT grids without sorting grids''' alignment = 0
[docs] def build(self, mol=None, *args, **kwargs): assert self.alignment == 0 return super().build(mol, with_non0tab=False, sort_grids=False)
if __name__ == '__main__': from pyscf import scf from pyscf import mcscf from pyscf import cc mol = gto.M(atom='H 0 0 0; H 0 1 1.2; H 1. .1 0; H .5 .5 1') natm = mol.natm r_vdw = [radii.VDW[gto.charge(mol.atom_symbol(i))] for i in range(natm)] r_vdw = numpy.asarray(r_vdw) pcmobj = DDCOSMO(mol) pcmobj.regularize_xt = lambda t, eta, scale: regularize_xt(t, eta) pcmobj.lebedev_order = 7 pcmobj.lmax = 6 pcmobj.eta = 0.1 nlm = (pcmobj.lmax+1)**2 coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) fi = make_fi(pcmobj, r_vdw) ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True)) L = make_L(pcmobj, r_vdw, ylm_1sph, fi) print(lib.fp(L) - 6.2823493771037473) mol = gto.Mole() mol.atom = ''' O 0.00000000 0.00000000 -0.11081188 H -0.00000000 -0.84695236 0.59109389 H -0.00000000 0.89830571 0.52404783 ''' mol.basis = '3-21g' #cc-pvdz' mol.build() cm = DDCOSMO(mol) cm.verbose = 4 mf = ddcosmo_for_scf(scf.RHF(mol), cm)#.newton() mf.verbose = 4 print(mf.kernel() - -75.570364368059) cm.verbose = 3 e = ddcosmo_for_casci(mcscf.CASCI(mf, 4, 4)).kernel()[0] print(e - -75.5743583693215) cc_cosmo = ddcosmo_for_post_scf(cc.CCSD(mf)).run() print(cc_cosmo.e_tot - -75.70961637250134) mol = gto.Mole() mol.atom = ''' Fe 0.00000000 0.00000000 -0.11081188 H -0.00000000 -0.84695236 0.59109389 H -0.00000000 0.89830571 0.52404783 ''' mol.basis = '3-21g' #cc-pvdz' mol.build() cm = DDCOSMO(mol) cm.eps = -1 cm.verbose = 4 mf = ddcosmo_for_scf(scf.ROHF(mol), cm).newton() mf.verbose=4 mf.kernel()