Source code for pyscf.soscf.newton_ah

#!/usr/bin/env python
# Copyright 2014-2021 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#

'''
Co-iterative augmented hessian second order SCF solver (CIAH-SOSCF)
'''

import sys

from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf import gto
from pyscf.lib import logger
from pyscf.scf import chkfile
from pyscf.scf import addons
from pyscf.scf import hf_symm, uhf_symm, ghf_symm
from pyscf.scf import hf, rohf, uhf, dhf
# import _response_functions to load gen_response methods in SCF class
from pyscf.scf import _response_functions  # noqa
from pyscf.soscf import ciah
from pyscf import __config__

WITH_EX_EY_DEGENERACY = getattr(__config__, 'soscf_newton_ah_Ex_Ey_degeneracy', True)


# http://scicomp.stackexchange.com/questions/1234/matrix-exponential-of-a-skew-hermitian-matrix-with-fortran-95-and-lapack
[docs] def expmat(a): return scipy.linalg.expm(a)
# kwarg with_symmetry is required the stability analysis. It controls whether # the stability analysis can break the point group symmetry.
[docs] def gen_g_hop_rhf(mf, mo_coeff, mo_occ, fock_ao=None, h1e=None, with_symmetry=True): mo_coeff0 = mo_coeff mol = mf.mol if getattr(mf, '_scf', None) and mf._scf.mol != mol: #TODO: construct vind with dual-basis treatment, (see also JCP, 118, 9497) # To project Hessians from another basis if different basis sets are used # in newton solver and underlying mean-filed solver. mo_coeff = addons.project_mo_nr2nr(mf._scf.mol, mo_coeff, mol) occidx = numpy.where(mo_occ==2)[0] viridx = numpy.where(mo_occ==0)[0] nocc = len(occidx) nvir = len(viridx) orbo = mo_coeff[:,occidx] orbv = mo_coeff[:,viridx] if with_symmetry and mol.symmetry: orbsym = hf_symm.get_orbsym(mol, mo_coeff) sym_forbid = orbsym[viridx,None] != orbsym[occidx] if fock_ao is None: # dm0 is the density matrix in projected basis. Computing fock in # projected basis. if getattr(mf, '_scf', None) and mf._scf.mol != mol: h1e = mf.get_hcore(mol) dm0 = mf.make_rdm1(mo_coeff, mo_occ) fock_ao = mf.get_fock(h1e, dm=dm0) fock = reduce(numpy.dot, (mo_coeff.conj().T, fock_ao, mo_coeff)) else: # If fock is given, it corresponds to main basis. It needs to be # diagonalized with the mo_coeff of the main basis. fock = reduce(numpy.dot, (mo_coeff0.conj().T, fock_ao, mo_coeff0)) g = fock[viridx[:,None],occidx] * 2 foo = fock[occidx[:,None],occidx] fvv = fock[viridx[:,None],viridx] h_diag = (fvv.diagonal().real[:,None] - foo.diagonal().real) * 2 if with_symmetry and mol.symmetry: g[sym_forbid] = 0 h_diag[sym_forbid] = 0 vind = mf.gen_response(mo_coeff, mo_occ, singlet=None, hermi=1) def h_op(x): x = x.reshape(nvir,nocc) if with_symmetry and mol.symmetry: x = x.copy() x[sym_forbid] = 0 x2 = numpy.einsum('ps,sq->pq', fvv, x) #x2-= .5*numpy.einsum('ps,rp->rs', foo, x) #x2-= .5*numpy.einsum('sp,rp->rs', foo, x) x2-= numpy.einsum('ps,rp->rs', foo, x) # *2 for double occupancy d1 = reduce(numpy.dot, (orbv, x*2, orbo.conj().T)) dm1 = d1 + d1.conj().T v1 = vind(dm1) x2 += reduce(numpy.dot, (orbv.conj().T, v1, orbo)) if with_symmetry and mol.symmetry: x2[sym_forbid] = 0 return x2.ravel() * 2 return g.reshape(-1), h_op, h_diag.reshape(-1)
[docs] def gen_g_hop_rohf(mf, mo_coeff, mo_occ, fock_ao=None, h1e=None, with_symmetry=True): if getattr(fock_ao, 'focka', None) is None: dm0 = mf.make_rdm1(mo_coeff, mo_occ) fock_ao = mf.get_fock(h1e, dm=dm0) fock_ao = fock_ao.focka, fock_ao.fockb mo_occa = occidxa = mo_occ > 0 mo_occb = occidxb = mo_occ ==2 ug, uh_op, uh_diag = gen_g_hop_uhf(mf, (mo_coeff,)*2, (mo_occa,mo_occb), fock_ao, None, with_symmetry) viridxa = ~occidxa viridxb = ~occidxb uniq_var_a = viridxa[:,None] & occidxa uniq_var_b = viridxb[:,None] & occidxb uniq_ab = uniq_var_a | uniq_var_b nmo = mo_coeff.shape[-1] nocca = numpy.count_nonzero(mo_occa) nvira = nmo - nocca def sum_ab(x): x1 = numpy.zeros((nmo,nmo), dtype=x.dtype) x1[uniq_var_a] = x[:nvira*nocca] x1[uniq_var_b] += x[nvira*nocca:] return x1[uniq_ab] g = sum_ab(ug) h_diag = sum_ab(uh_diag) def h_op(x): x1 = numpy.zeros((nmo,nmo), dtype=x.dtype) # unpack ROHF rotation parameters x1[uniq_ab] = x x1 = numpy.hstack((x1[uniq_var_a],x1[uniq_var_b])) return sum_ab(uh_op(x1)) return g, h_op, h_diag
[docs] def gen_g_hop_uhf(mf, mo_coeff, mo_occ, fock_ao=None, h1e=None, with_symmetry=True): mol = mf.mol mo_coeff0 = mo_coeff if getattr(mf, '_scf', None) and mf._scf.mol != mol: #TODO: construct vind with dual-basis treatment, (see also JCP, 118, 9497) mo_coeff = (addons.project_mo_nr2nr(mf._scf.mol, mo_coeff[0], mol), addons.project_mo_nr2nr(mf._scf.mol, mo_coeff[1], mol)) occidxa = numpy.where(mo_occ[0]>0)[0] occidxb = numpy.where(mo_occ[1]>0)[0] viridxa = numpy.where(mo_occ[0]==0)[0] viridxb = numpy.where(mo_occ[1]==0)[0] nocca = len(occidxa) noccb = len(occidxb) nvira = len(viridxa) nvirb = len(viridxb) orboa = mo_coeff[0][:,occidxa] orbob = mo_coeff[1][:,occidxb] orbva = mo_coeff[0][:,viridxa] orbvb = mo_coeff[1][:,viridxb] if with_symmetry and mol.symmetry: orbsyma, orbsymb = uhf_symm.get_orbsym(mol, mo_coeff) sym_forbida = orbsyma[viridxa,None] != orbsyma[occidxa] sym_forbidb = orbsymb[viridxb,None] != orbsymb[occidxb] sym_forbid = numpy.hstack((sym_forbida.ravel(), sym_forbidb.ravel())) if fock_ao is None: if getattr(mf, '_scf', None) and mf._scf.mol != mol: h1e = mf.get_hcore(mol) dm0 = mf.make_rdm1(mo_coeff, mo_occ) fock_ao = mf.get_fock(h1e, dm=dm0) focka = reduce(numpy.dot, (mo_coeff[0].conj().T, fock_ao[0], mo_coeff[0])) fockb = reduce(numpy.dot, (mo_coeff[1].conj().T, fock_ao[1], mo_coeff[1])) else: focka = reduce(numpy.dot, (mo_coeff0[0].conj().T, fock_ao[0], mo_coeff0[0])) fockb = reduce(numpy.dot, (mo_coeff0[1].conj().T, fock_ao[1], mo_coeff0[1])) fooa = focka[occidxa[:,None],occidxa] fvva = focka[viridxa[:,None],viridxa] foob = fockb[occidxb[:,None],occidxb] fvvb = fockb[viridxb[:,None],viridxb] g = numpy.hstack((focka[viridxa[:,None],occidxa].ravel(), fockb[viridxb[:,None],occidxb].ravel())) h_diaga = fvva.diagonal().real[:,None] - fooa.diagonal().real h_diagb = fvvb.diagonal().real[:,None] - foob.diagonal().real h_diag = numpy.hstack((h_diaga.reshape(-1), h_diagb.reshape(-1))) if with_symmetry and mol.symmetry: g[sym_forbid] = 0 h_diag[sym_forbid] = 0 vind = mf.gen_response(mo_coeff, mo_occ, hermi=1) def h_op(x): if with_symmetry and mol.symmetry: x = x.copy() x[sym_forbid] = 0 x1a = x[:nvira*nocca].reshape(nvira,nocca) x1b = x[nvira*nocca:].reshape(nvirb,noccb) x2a = numpy.einsum('pr,rq->pq', fvva, x1a) x2a-= numpy.einsum('sq,ps->pq', fooa, x1a) x2b = numpy.einsum('pr,rq->pq', fvvb, x1b) x2b-= numpy.einsum('sq,ps->pq', foob, x1b) d1a = reduce(numpy.dot, (orbva, x1a, orboa.conj().T)) d1b = reduce(numpy.dot, (orbvb, x1b, orbob.conj().T)) dm1 = numpy.array((d1a+d1a.conj().T,d1b+d1b.conj().T)) v1 = vind(dm1) x2a += reduce(numpy.dot, (orbva.conj().T, v1[0], orboa)) x2b += reduce(numpy.dot, (orbvb.conj().T, v1[1], orbob)) x2 = numpy.hstack((x2a.ravel(), x2b.ravel())) if with_symmetry and mol.symmetry: x2[sym_forbid] = 0 return x2 return g, h_op, h_diag
[docs] def gen_g_hop_ghf(mf, mo_coeff, mo_occ, fock_ao=None, h1e=None, with_symmetry=True): mol = mf.mol occidx = numpy.where(mo_occ==1)[0] viridx = numpy.where(mo_occ==0)[0] nocc = len(occidx) nvir = len(viridx) orbo = mo_coeff[:,occidx] orbv = mo_coeff[:,viridx] if with_symmetry and mol.symmetry: orbsym = ghf_symm.get_orbsym(mol, mo_coeff) sym_forbid = orbsym[viridx,None] != orbsym[occidx] if fock_ao is None: dm0 = mf.make_rdm1(mo_coeff, mo_occ) fock_ao = mf.get_fock(h1e, dm=dm0) fock = reduce(numpy.dot, (mo_coeff.conj().T, fock_ao, mo_coeff)) g = fock[viridx[:,None],occidx] foo = fock[occidx[:,None],occidx] fvv = fock[viridx[:,None],viridx] h_diag = fvv.diagonal().real[:,None] - foo.diagonal().real if with_symmetry and mol.symmetry: g[sym_forbid] = 0 h_diag[sym_forbid] = 0 vind = mf.gen_response(mo_coeff, mo_occ, hermi=1) def h_op(x): x = x.reshape(nvir,nocc) if with_symmetry and mol.symmetry: x = x.copy() x[sym_forbid] = 0 x2 = numpy.einsum('ps,sq->pq', fvv, x) x2-= numpy.einsum('ps,rp->rs', foo, x) d1 = reduce(numpy.dot, (orbv, x, orbo.conj().T)) dm1 = d1 + d1.conj().T v1 = vind(dm1) x2 += reduce(numpy.dot, (orbv.conj().T, v1, orbo)) if with_symmetry and mol.symmetry: x2[sym_forbid] = 0 return x2.ravel() return g.reshape(-1), h_op, h_diag.reshape(-1)
[docs] def gen_g_hop_dhf(mf, mo_coeff, mo_occ, fock_ao=None, h1e=None, with_symmetry=False): return gen_g_hop_ghf(mf, mo_coeff, mo_occ, fock_ao, h1e, with_symmetry)
# Dual basis for gradients and hessian
[docs] def project_mol(mol, dual_basis={}): from pyscf import df uniq_atoms = {a[0] for a in mol._atom} newbasis = {} for symb in uniq_atoms: if gto.charge(symb) <= 10: newbasis[symb] = '321g' elif gto.charge(symb) <= 12: newbasis[symb] = 'dzp' elif gto.charge(symb) <= 18: newbasis[symb] = 'dz' elif gto.charge(symb) <= 86: newbasis[symb] = 'dzp' else: newbasis[symb] = 'sto3g' if isinstance(dual_basis, (dict, tuple, list)): newbasis.update(dual_basis) elif isinstance(dual_basis, str): for k in newbasis: newbasis[k] = dual_basis return df.addons.make_auxmol(mol, newbasis)
# TODO: check whether high order terms in (g_orb, h_op) affects optimization # To include high order terms, we can generate mo_coeff every time u matrix # changed and insert the mo_coeff to g_op, h_op. # Seems the high order terms do not help optimization? def _rotate_orb_cc(mf, h1e, s1e, conv_tol_grad=None, verbose=None): log = logger.new_logger(mf, verbose) if conv_tol_grad is None: conv_tol_grad = numpy.sqrt(mf.conv_tol*.1) #TODO: dynamically adjust max_stepsize, as done in mc1step.py def precond(x, e): hdiagd = h_diag-(e-mf.ah_level_shift) hdiagd[abs(hdiagd)<1e-8] = 1e-8 x = x/hdiagd # Because of DFT, donot norm to 1 which leads 1st DM too large. #norm_x = numpy.linalg.norm(x) #if norm_x < 1e-2: # x *= 1e-2/norm_x return x t3m = (logger.process_clock(), logger.perf_counter()) u = g_kf = g_orb = norm_gorb = dxi = kfcount = jkcount = None dm0 = vhf0 = None g_op = lambda: g_orb while True: mo_coeff, mo_occ, dm0, vhf0, e_tot = (yield u, g_kf, kfcount, jkcount, dm0, vhf0) fock_ao = mf.get_fock(h1e, s1e, vhf0, dm0) g_kf, h_op, h_diag = mf.gen_g_hop(mo_coeff, mo_occ, fock_ao) norm_gkf = numpy.linalg.norm(g_kf) if g_orb is None: log.debug(' |g|= %4.3g (keyframe)', norm_gkf) kf_trust_region = mf.kf_trust_region x0_guess = g_kf else: norm_dg = numpy.linalg.norm(g_kf-g_orb) log.debug(' |g|= %4.3g (keyframe), |g-correction|= %4.3g', norm_gkf, norm_dg) kf_trust_region = min(max(norm_gorb/(norm_dg+1e-9), mf.kf_trust_region), 10) log.debug1('Set kf_trust_region = %g', kf_trust_region) x0_guess = dxi g_orb = g_kf norm_gorb = norm_gkf problem_size = g_orb.size ah_conv_tol = min(norm_gorb**2, mf.ah_conv_tol) # increase the AH accuracy when approach convergence #ah_start_cycle = max(mf.ah_start_cycle, int(-numpy.log10(norm_gorb))) ah_start_cycle = mf.ah_start_cycle imic = 0 dr = 0. u = 1. ukf = None jkcount = 0 kfcount = 0 ikf = 0 ihop = 0 for ah_end, ihop, w, dxi, hdxi, residual, seig \ in ciah.davidson_cc(h_op, g_op, precond, x0_guess, tol=ah_conv_tol, max_cycle=mf.ah_max_cycle, lindep=mf.ah_lindep, verbose=log): norm_residual = numpy.linalg.norm(residual) ah_start_tol = min(norm_gorb*5, mf.ah_start_tol) if (ah_end or ihop == mf.ah_max_cycle or # make sure to use the last step ((norm_residual < ah_start_tol) and (ihop >= ah_start_cycle)) or (seig < mf.ah_lindep)): imic += 1 dxmax = numpy.max(abs(dxi)) if ihop == problem_size: log.debug1('... Hx=g fully converged for small systems') elif dxmax > mf.max_stepsize: scale = mf.max_stepsize / dxmax log.debug1('... scale rotation size %g', scale) dxi *= scale hdxi *= scale dr = dr + dxi g_orb = g_orb + hdxi norm_dr = numpy.linalg.norm(dr) norm_gorb = numpy.linalg.norm(g_orb) norm_dxi = numpy.linalg.norm(dxi) log.debug(' imic %d(%d) |g|= %4.3g |dxi|= %4.3g ' 'max(|x|)= %4.3g |dr|= %4.3g eig= %4.3g seig= %4.3g', imic, ihop, norm_gorb, norm_dxi, dxmax, norm_dr, w, seig) max_cycle = max(mf.max_cycle_inner, mf.max_cycle_inner-int(numpy.log(norm_gkf+1e-9)*2)) log.debug1('Set ah_start_tol %g, ah_start_cycle %d, max_cycle %d', ah_start_tol, ah_start_cycle, max_cycle) ikf += 1 if imic > 3 and norm_gorb > norm_gkf*mf.ah_grad_trust_region: g_orb = g_orb - hdxi dr -= dxi norm_gorb = numpy.linalg.norm(g_orb) log.debug('|g| >> keyframe, Restore previouse step') break elif (imic >= max_cycle or norm_gorb < conv_tol_grad/mf.ah_grad_trust_region): break elif (ikf > 2 and # avoid frequent keyframe #TODO: replace it with keyframe_scheduler (ikf >= max(mf.kf_interval, mf.kf_interval-numpy.log(norm_dr+1e-9)) or # Insert keyframe if the keyframe and the esitimated g_orb are too different norm_gorb < norm_gkf/kf_trust_region)): ikf = 0 u = mf.update_rotate_matrix(dr, mo_occ, mo_coeff=mo_coeff) if ukf is not None: u = mf.rotate_mo(ukf, u) ukf = u dr[:] = 0 mo1 = mf.rotate_mo(mo_coeff, u) dm = mf.make_rdm1(mo1, mo_occ) # use mf._scf.get_veff to avoid density-fit mf polluting get_veff vhf0 = mf._scf.get_veff(mf._scf.mol, dm, dm_last=dm0, vhf_last=vhf0) dm0 = dm # Use API to compute fock instead of "fock=h1e+vhf0". This is because get_fock # is the hook being overloaded in many places. fock_ao = mf.get_fock(h1e, s1e, vhf0, dm0) g_kf1 = mf.get_grad(mo1, mo_occ, fock_ao) norm_gkf1 = numpy.linalg.norm(g_kf1) norm_dg = numpy.linalg.norm(g_kf1-g_orb) jkcount += 1 kfcount += 1 if log.verbose >= logger.DEBUG: e_tot, e_last = mf._scf.energy_tot(dm, h1e, vhf0), e_tot log.debug('Adjust keyframe g_orb to |g|= %4.3g ' '|g-correction|=%4.3g E=%.12g dE=%.5g', norm_gkf1, norm_dg, e_tot, e_tot-e_last) if (norm_dg < norm_gorb*mf.ah_grad_trust_region # kf not too diff #or norm_gkf1 < norm_gkf # grad is decaying # close to solution or norm_gkf1 < conv_tol_grad*mf.ah_grad_trust_region): kf_trust_region = min(max(norm_gorb/(norm_dg+1e-9), mf.kf_trust_region), 10) log.debug1('Set kf_trust_region = %g', kf_trust_region) g_orb = g_kf = g_kf1 norm_gorb = norm_gkf = norm_gkf1 else: g_orb = g_orb - hdxi dr -= dxi norm_gorb = numpy.linalg.norm(g_orb) log.debug('Out of trust region. Restore previouse step') break if ihop > 0: u = mf.update_rotate_matrix(dr, mo_occ, mo_coeff=mo_coeff) if ukf is not None: u = mf.rotate_mo(ukf, u) jkcount += ihop + 1 log.debug(' tot inner=%d %d JK |g|= %4.3g |u-1|= %4.3g', imic, jkcount, norm_gorb, numpy.linalg.norm(dr)) h_op = h_diag = None t3m = log.timer('aug_hess in %d inner iters' % imic, *t3m)
[docs] def kernel(mf, mo_coeff=None, mo_occ=None, dm=None, conv_tol=1e-10, conv_tol_grad=None, max_cycle=50, dump_chk=True, callback=None, verbose=logger.NOTE): cput0 = (logger.process_clock(), logger.perf_counter()) log = logger.new_logger(mf, verbose) mol = mf._scf.mol if mol != mf.mol: logger.warn(mf, 'dual-basis SOSCF is an experimental feature. It is ' 'still in testing.') if conv_tol_grad is None: conv_tol_grad = numpy.sqrt(conv_tol) log.info('Set conv_tol_grad to %g', conv_tol_grad) # call mf._scf.get_hcore, mf._scf.get_ovlp because they might be overloaded h1e = mf._scf.get_hcore(mol) s1e = mf._scf.get_ovlp(mol) if mo_coeff is not None and mo_occ is not None: dm = mf.make_rdm1(mo_coeff, mo_occ) # call mf._scf.get_veff, to avoid "newton().density_fit()" polluting get_veff vhf = mf._scf.get_veff(mol, dm) fock = mf.get_fock(h1e, s1e, vhf, dm, level_shift_factor=0) mo_energy, mo_tmp = mf.eig(fock, s1e) mf.get_occ(mo_energy, mo_tmp) mo_tmp = None else: if dm is None: logger.debug(mf, 'Initial guess density matrix is not given. ' 'Generating initial guess from %s', mf.init_guess) dm = mf.get_init_guess(mf._scf.mol, mf.init_guess) vhf = mf._scf.get_veff(mol, dm) fock = mf.get_fock(h1e, s1e, vhf, dm, level_shift_factor=0) mo_energy, mo_coeff = mf.eig(fock, s1e) mo_occ = mf.get_occ(mo_energy, mo_coeff) dm, dm_last = mf.make_rdm1(mo_coeff, mo_occ), dm vhf = mf._scf.get_veff(mol, dm, dm_last=dm_last, vhf_last=vhf) # Save mo_coeff and mo_occ because they are needed by function rotate_mo mf.mo_coeff, mf.mo_occ = mo_coeff, mo_occ e_tot = mf._scf.energy_tot(dm, h1e, vhf) fock = mf.get_fock(h1e, s1e, vhf, dm, level_shift_factor=0) log.info('Initial guess E= %.15g |g|= %g', e_tot, numpy.linalg.norm(mf._scf.get_grad(mo_coeff, mo_occ, fock))) if dump_chk and mf.chkfile: chkfile.save_mol(mol, mf.chkfile) # Copy the integral file to soscf object to avoid the integrals being # cached twice. if mol is mf.mol and not getattr(mf, 'with_df', None): mf._eri = mf._scf._eri rotaiter = _rotate_orb_cc(mf, h1e, s1e, conv_tol_grad, verbose=log) next(rotaiter) # start the iterator kftot = jktot = 0 norm_gorb = 0. scf_conv = False cput1 = log.timer('initializing second order scf', *cput0) for imacro in range(max_cycle): u, g_orb, kfcount, jkcount, dm_last, vhf = \ rotaiter.send((mo_coeff, mo_occ, dm, vhf, e_tot)) kftot += kfcount + 1 jktot += jkcount + 1 last_hf_e = e_tot norm_gorb = numpy.linalg.norm(g_orb) mo_coeff = mf.rotate_mo(mo_coeff, u, log) dm = mf.make_rdm1(mo_coeff, mo_occ) vhf = mf._scf.get_veff(mol, dm, dm_last=dm_last, vhf_last=vhf) fock = mf.get_fock(h1e, s1e, vhf, dm, level_shift_factor=0) # NOTE: DO NOT change the initial guess mo_occ, mo_coeff if mf.verbose >= logger.DEBUG: mo_energy, mo_tmp = mf.eig(fock, s1e) mf.get_occ(mo_energy, mo_tmp) # call mf._scf.energy_tot for dft, because the (dft).get_veff step saved _exc in mf._scf e_tot = mf._scf.energy_tot(dm, h1e, vhf) log.info('macro= %d E= %.15g delta_E= %g |g|= %g %d KF %d JK', imacro, e_tot, e_tot-last_hf_e, norm_gorb, kfcount+1, jkcount) cput1 = log.timer('cycle= %d'%(imacro+1), *cput1) if callable(mf.check_convergence): scf_conv = mf.check_convergence(locals()) elif abs(e_tot-last_hf_e) < conv_tol and norm_gorb < conv_tol_grad: scf_conv = True if dump_chk: mf.dump_chk(locals()) if callable(callback): callback(locals()) if scf_conv: break if callable(callback): callback(locals()) rotaiter.close() mo_energy, mo_coeff1 = mf._scf.canonicalize(mo_coeff, mo_occ, fock) if mf.canonicalization: log.info('Canonicalize SCF orbitals') mo_coeff = mo_coeff1 if dump_chk: mf.dump_chk(locals()) log.info('macro X = %d E=%.15g |g|= %g total %d KF %d JK', imacro+1, e_tot, norm_gorb, kftot+1, jktot+1) homo = lumo = None if isinstance(mf, dhf.DHF): n2c = mo_energy.size // 2 pos_mo_energy = mo_energy[n2c:] pos_mo_occ = mo_occ[n2c:] if numpy.any(pos_mo_occ==0): homo = pos_mo_energy[pos_mo_occ>0].max() lumo = pos_mo_energy[pos_mo_occ==0].min() else: if numpy.any(mo_occ==0): homo = mo_energy[mo_occ>0].max() lumo = mo_energy[mo_occ==0].min() if lumo is not None and homo > lumo: log.warn('HOMO %s > LUMO %s was found in the canonicalized orbitals.', homo, lumo) return scf_conv, e_tot, mo_energy, mo_coeff, mo_occ
# Note which function that "density_fit" decorated. density-fit have been # considered separatedly for newton_mf and newton_mf._scf, there are 3 cases # 1. both grad and hessian by df, because the input mf obj is decorated by df # newton(scf.density_fit(scf.RHF(mol))) # 2. both grad and hessian in df, because both newton_mf and the input mf objs # are decorated by df # scf.density_fit(newton(scf.density_fit(scf.RHF(mol)))) # 3. grad by explicit scheme, hessian by df, because only newton_mf obj is # decorated by df # scf.density_fit(newton(scf.RHF(mol))) # The following function is not necessary #def density_fit_(mf, auxbasis='weigend+etb'): # mfaux = mf.density_fit(auxbasis) # mf.gen_g_hop = mfaux.gen_g_hop # return mf #def density_fit(mf, auxbasis='weigend+etb'): # return density_fit_(copy.copy(mf), auxbasis) # A tag to label the derived SCF class class _CIAH_SOSCF: ''' Attributes for Newton solver: max_cycle_inner : int AH iterations within eacy macro iterations. Default is 10 max_stepsize : int The step size for orbital rotation. Small step is prefered. Default is 0.05. canonicalization : bool To control whether to canonicalize the orbitals optimized by Newton solver. Default is True. ''' __name_mixin__ = 'SecondOrder' max_cycle_inner = getattr(__config__, 'soscf_newton_ah_SOSCF_max_cycle_inner', 12) max_stepsize = getattr(__config__, 'soscf_newton_ah_SOSCF_max_stepsize', .05) canonicalization = getattr(__config__, 'soscf_newton_ah_SOSCF_canonicalization', True) ah_start_tol = getattr(__config__, 'soscf_newton_ah_SOSCF_ah_start_tol', 1e9) ah_start_cycle = getattr(__config__, 'soscf_newton_ah_SOSCF_ah_start_cycle', 1) ah_level_shift = getattr(__config__, 'soscf_newton_ah_SOSCF_ah_level_shift', 0) ah_conv_tol = getattr(__config__, 'soscf_newton_ah_SOSCF_ah_conv_tol', 1e-12) ah_lindep = getattr(__config__, 'soscf_newton_ah_SOSCF_ah_lindep', 1e-14) ah_max_cycle = getattr(__config__, 'soscf_newton_ah_SOSCF_ah_max_cycle', 40) ah_grad_trust_region = getattr(__config__, 'soscf_newton_ah_SOSCF_ah_grad_trust_region', 2.5) kf_interval = getattr(__config__, 'soscf_newton_ah_SOSCF_kf_interval', 4) kf_trust_region = getattr(__config__, 'soscf_newton_ah_SOSCF_kf_trust_region', 5) _keys = { 'max_cycle_inner', 'max_stepsize', 'canonicalization', 'ah_start_tol', 'ah_start_cycle', 'ah_level_shift', 'ah_conv_tol', 'ah_lindep', 'ah_max_cycle', 'ah_grad_trust_region', 'kf_interval', 'kf_trust_region', } def __init__(self, mf): self.__dict__.update(mf.__dict__) self._scf = mf def undo_soscf(self): '''Remove the SOSCF Mixin''' from pyscf.df.df_jk import _DFHF if isinstance(self, _DFHF) and not isinstance(self._scf, _DFHF): # where density fitting is only applied on the SOSCF hessian mf = self.undo_df() else: mf = self obj = lib.view(mf, lib.drop_class(mf.__class__, _CIAH_SOSCF)) del obj._scf # When both self and self._scf are DF objects, they may be different df # objects. The DF object of the base scf object should be used. if hasattr(self._scf, 'with_df'): obj.with_df = self._scf.with_df return obj undo_newton = undo_soscf def dump_flags(self, verbose=None): log = logger.new_logger(self, verbose) log.info('\n') super().dump_flags(verbose) log.info('******** %s Newton solver flags ********', self._scf.__class__) log.info('SCF tol = %g', self.conv_tol) log.info('conv_tol_grad = %s', self.conv_tol_grad) log.info('max. SCF cycles = %d', self.max_cycle) log.info('direct_scf = %s', self._scf.direct_scf) if self._scf.direct_scf: log.info('direct_scf_tol = %g', self._scf.direct_scf_tol) if self.chkfile: log.info('chkfile to save SCF result = %s', self.chkfile) log.info('max_cycle_inner = %d', self.max_cycle_inner) log.info('max_stepsize = %g', self.max_stepsize) log.info('ah_start_tol = %g', self.ah_start_tol) log.info('ah_level_shift = %g', self.ah_level_shift) log.info('ah_conv_tol = %g', self.ah_conv_tol) log.info('ah_lindep = %g', self.ah_lindep) log.info('ah_start_cycle = %d', self.ah_start_cycle) log.info('ah_max_cycle = %d', self.ah_max_cycle) log.info('ah_grad_trust_region = %g', self.ah_grad_trust_region) log.info('kf_interval = %d', self.kf_interval) log.info('kf_trust_region = %d', self.kf_trust_region) log.info('canonicalization = %s', self.canonicalization) log.info('max_memory %d MB (current use %d MB)', self.max_memory, lib.current_memory()[0]) return self def build(self, mol=None): if mol is None: mol = self.mol if self.verbose >= logger.WARN: self.check_sanity() self._scf.build(mol) self._opt = {None: None} self._eri = None return self def reset(self, mol=None): if mol is not None: self.mol = mol self._scf.reset(mol) return self def kernel(self, mo_coeff=None, mo_occ=None, dm0=None): cput0 = (logger.process_clock(), logger.perf_counter()) if dm0 is not None: if isinstance(dm0, str): sys.stderr.write('Newton solver reads density matrix from chkfile %s\n' % dm0) dm0 = self.from_chk(dm0) elif mo_coeff is not None and mo_occ is None: logger.warn(self, 'Newton solver expects mo_coeff with ' 'mo_occ as initial guess but mo_occ is not found in ' 'the arguments.\n The given ' 'argument is treated as density matrix.') dm0 = mo_coeff mo_coeff = mo_occ = None else: if mo_coeff is None: mo_coeff = self.mo_coeff if mo_occ is None: mo_occ = self.mo_occ # TODO: assert mo_coeff orth-normality. If not orth-normal, # build dm from mo_coeff and mo_occ then unset mo_coeff and mo_occ. self.build(self.mol) self.dump_flags() self.converged, self.e_tot, \ self.mo_energy, self.mo_coeff, self.mo_occ = \ kernel(self, mo_coeff, mo_occ, dm0, conv_tol=self.conv_tol, conv_tol_grad=self.conv_tol_grad, max_cycle=self.max_cycle, callback=self.callback, verbose=self.verbose) logger.timer(self, 'Second order SCF', *cput0) self._finalize() return self.e_tot def from_dm(self, dm): '''Transform the initial guess density matrix to initial orbital coefficients. Note kernel function can handle initial guess properly in pyscf-1.7 or newer versions. This function is kept for backward compatibility. ''' mf = self._scf mol = mf.mol h1e = mf.get_hcore(mol) s1e = mf.get_ovlp(mol) vhf = mf.get_veff(mol, dm) fock = mf.get_fock(h1e, s1e, vhf, dm) mo_energy, mo_coeff = mf.eig(fock, s1e) mo_occ = mf.get_occ(mo_energy, mo_coeff) return mo_coeff, mo_occ gen_g_hop = gen_g_hop_rhf def update_rotate_matrix(self, dx, mo_occ, u0=1, mo_coeff=None): dr = hf.unpack_uniq_var(dx, mo_occ) if WITH_EX_EY_DEGENERACY: mol = self._scf.mol if mol.symmetry and mol.groupname in ('SO3', 'Dooh', 'Coov'): orbsym = hf_symm.get_orbsym(mol, mo_coeff) if mol.groupname == 'SO3': _force_SO3_degeneracy_(dr, orbsym) else: _force_Ex_Ey_degeneracy_(dr, orbsym) return numpy.dot(u0, expmat(dr)) def rotate_mo(self, mo_coeff, u, log=None): mo = numpy.dot(mo_coeff, u) if self._scf.mol.symmetry: orbsym = hf_symm.get_orbsym(self._scf.mol, mo_coeff) mo = lib.tag_array(mo, orbsym=orbsym) if isinstance(log, logger.Logger) and log.verbose >= logger.DEBUG: idx = self.mo_occ > 0 s = reduce(numpy.dot, (mo[:,idx].conj().T, self._scf.get_ovlp(), self.mo_coeff[:,idx])) log.debug('Overlap to initial guess, SVD = %s', _effective_svd(s, 1e-5)) log.debug('Overlap to last step, SVD = %s', _effective_svd(u[idx][:,idx], 1e-5)) return mo def to_gpu(self): return self.undo_soscf().to_gpu() class _SecondOrderROHF(_CIAH_SOSCF): gen_g_hop = gen_g_hop_rohf class _SecondOrderUHF(_CIAH_SOSCF): gen_g_hop = gen_g_hop_uhf def update_rotate_matrix(self, dx, mo_occ, u0=1, mo_coeff=None): occidxa = mo_occ[0] > 0 occidxb = mo_occ[1] > 0 viridxa = ~occidxa viridxb = ~occidxb nmo = len(occidxa) dr = numpy.zeros((2,nmo,nmo), dtype=dx.dtype) uniq = numpy.array((viridxa[:,None] & occidxa, viridxb[:,None] & occidxb)) dr[uniq] = dx dr = dr - dr.conj().transpose(0,2,1) if WITH_EX_EY_DEGENERACY: mol = self._scf.mol if mol.symmetry and mol.groupname in ('SO3', 'Dooh', 'Coov'): orbsyma, orbsymb = uhf_symm.get_orbsym(mol, mo_coeff) if mol.groupname == 'SO3': _force_SO3_degeneracy_(dr[0], orbsyma) _force_SO3_degeneracy_(dr[1], orbsymb) else: _force_Ex_Ey_degeneracy_(dr[0], orbsyma) _force_Ex_Ey_degeneracy_(dr[1], orbsymb) if isinstance(u0, int) and u0 == 1: return numpy.asarray((expmat(dr[0]), expmat(dr[1]))) else: return numpy.asarray((numpy.dot(u0[0], expmat(dr[0])), numpy.dot(u0[1], expmat(dr[1])))) def rotate_mo(self, mo_coeff, u, log=None): mo = numpy.asarray((numpy.dot(mo_coeff[0], u[0]), numpy.dot(mo_coeff[1], u[1]))) if self._scf.mol.symmetry: orbsym = uhf_symm.get_orbsym(self._scf.mol, mo_coeff) mo = lib.tag_array(mo, orbsym=orbsym) return mo def spin_square(self, mo_coeff=None, s=None): if mo_coeff is None: mo_coeff = (self.mo_coeff[0][:,self.mo_occ[0]>0], self.mo_coeff[1][:,self.mo_occ[1]>0]) if getattr(self, '_scf', None) and self._scf.mol != self.mol: s = self._scf.get_ovlp() return self._scf.spin_square(mo_coeff, s) def kernel(self, mo_coeff=None, mo_occ=None, dm0=None): if isinstance(mo_coeff, numpy.ndarray) and mo_coeff.ndim == 2: mo_coeff = (mo_coeff, mo_coeff) if isinstance(mo_occ, numpy.ndarray) and mo_occ.ndim == 1: mo_occ = (numpy.asarray(mo_occ >0, dtype=numpy.double), numpy.asarray(mo_occ==2, dtype=numpy.double)) return _CIAH_SOSCF.kernel(self, mo_coeff, mo_occ, dm0) class _SecondOrderGHF(_CIAH_SOSCF): gen_g_hop = gen_g_hop_ghf def update_rotate_matrix(self, dx, mo_occ, u0=1, mo_coeff=None): dr = hf.unpack_uniq_var(dx, mo_occ) if WITH_EX_EY_DEGENERACY: mol = self._scf.mol if mol.symmetry and mol.groupname in ('SO3', 'Dooh', 'Coov'): orbsym = ghf_symm.get_orbsym(mol, mo_coeff) if mol.groupname == 'SO3': _force_SO3_degeneracy_(dr, orbsym) else: _force_Ex_Ey_degeneracy_(dr, orbsym) return numpy.dot(u0, expmat(dr)) def rotate_mo(self, mo_coeff, u, log=None): mo = numpy.dot(mo_coeff, u) if self._scf.mol.symmetry: orbsym = ghf_symm.get_orbsym(self._scf.mol, mo_coeff) mo = lib.tag_array(mo, orbsym=orbsym) return mo class _SecondOrderRDHF(_CIAH_SOSCF): gen_g_hop = gen_g_hop_dhf def update_rotate_matrix(self, dx, mo_occ, u0=1, mo_coeff=None): nmo = mo_occ.size nocc = numpy.count_nonzero(mo_occ) nvir = nmo - nocc dx = dx.reshape(nvir, nocc) dx_aa = dx[::2,::2] dr_aa = hf.unpack_uniq_var(dx_aa.ravel(), mo_occ[::2]) u = numpy.zeros((nmo, nmo), dtype=dr_aa.dtype) # Allows only the rotation within the up-up space and down-down space u[::2,::2] = u[1::2,1::2] = expmat(dr_aa) return numpy.dot(u0, u) def rotate_mo(self, mo_coeff, u, log=None): mo = numpy.dot(mo_coeff, u) return mo class _SecondOrderDHF(_CIAH_SOSCF): gen_g_hop = gen_g_hop_dhf def update_rotate_matrix(self, dx, mo_occ, u0=1, mo_coeff=None): dr = hf.unpack_uniq_var(dx, mo_occ) return numpy.dot(u0, expmat(dr)) def rotate_mo(self, mo_coeff, u, log=None): mo = numpy.dot(mo_coeff, u) return mo class _SecondOrderRHF(_CIAH_SOSCF): gen_g_hop = gen_g_hop_rhf
[docs] def newton(mf): '''Co-iterative augmented hessian (CIAH) second order SCF solver Examples: >>> mol = gto.M(atom='H 0 0 0; H 0 0 1.1', basis='cc-pvdz') >>> mf = scf.RHF(mol).run(conv_tol=.5) >>> mf = scf.newton(mf).set(conv_tol=1e-9) >>> mf.kernel() -1.0811707843774987 ''' from pyscf import scf if isinstance(mf, _CIAH_SOSCF): return mf assert isinstance(mf, hf.SCF) if mf.istype('ROHF'): cls = _SecondOrderROHF elif mf.istype('UHF'): cls = _SecondOrderUHF elif mf.istype('GHF'): cls = _SecondOrderGHF elif mf.istype('RDHF'): cls = _SecondOrderRDHF elif mf.istype('DHF'): cls = _SecondOrderDHF else: cls = _SecondOrderRHF return lib.set_class(cls(mf), (cls, mf.__class__))
[docs] def remove_soscf(mf): '''Remove the SOSCF decorator''' return mf.remove_soscf()
SVD_TOL = getattr(__config__, 'soscf_newton_ah_effective_svd_tol', 1e-5) def _effective_svd(a, tol=SVD_TOL): w = numpy.linalg.svd(a)[1] return w[(tol<w) & (w<1-tol)] del (SVD_TOL) def _force_SO3_degeneracy_(dr, orbsym): '''Force orbitals of same angular momentum to use the same rotation matrix''' orbsym = numpy.asarray(orbsym) orbsym_l = orbsym // 100 lmax = max(orbsym_l) for l in range(lmax + 1): idx_l = numpy.where(orbsym_l == l)[0] nso_l = idx_l.size if nso_l > 0: degen = l * 2 + 1 nso_m = nso_l // degen dr_l = dr[idx_l[:,None],idx_l].reshape(degen, nso_m, degen, nso_m) dr_avg = numpy.einsum('ipiq->pq', dr_l) / degen for m in range(degen): dr_l[m,:,m,:] = dr_avg dr[idx_l[:,None],idx_l] = dr_l.reshape(nso_l, nso_l) return dr def _force_Ex_Ey_degeneracy_(dr, orbsym): '''Force the Ex and Ey orbitals to use the same rotation matrix''' # 0,1,4,5 are 1D irreps E_irrep_ids = set(orbsym).difference({0,1,4,5}) orbsym = numpy.asarray(orbsym) for ir in E_irrep_ids: if ir % 2 == 0: Ex = orbsym == ir Ey = orbsym ==(ir + 1) dr_x = dr[Ex[:,None] & Ex] dr_y = dr[Ey[:,None] & Ey] # In certain open-shell systems, the rotation amplitudes dr_x may # be equal to 0 while dr_y are not. In this case, we choose the # larger one to represent the rotation amplitudes for both. if numpy.linalg.norm(dr_x) > numpy.linalg.norm(dr_y): dr[Ey[:,None] & Ey] = dr_x else: dr[Ex[:,None] & Ex] = dr_y return dr if __name__ == '__main__': from pyscf import scf mol = gto.Mole() mol.verbose = 0 mol.atom = [ ['H', ( 1.,-1. , 0. )], ['H', ( 0.,-1. ,-1. )], ['H', ( 1.,-0.5 ,-1. )], ['H', ( 0., 1. , 1. )], ['H', ( 0., 0.5 , 1. )], ['H', ( 1., 0. ,-1. )], ] mol.basis = '6-31g' mol.build() nmo = mol.nao_nr() m = newton(scf.RHF(mol)) e0 = m.kernel() ##################################### mol.basis = '6-31g' mol.spin = 2 mol.build(0, 0) m = scf.RHF(mol) m.max_cycle = 1 #m.verbose = 5 m.scf() e1 = kernel(newton(m), m.mo_coeff, m.mo_occ, max_cycle=50, verbose=5)[1] m = scf.UHF(mol) m.max_cycle = 1 #m.verbose = 5 m.scf() e2 = kernel(newton(m), m.mo_coeff, m.mo_occ, max_cycle=50, verbose=5)[1] m = scf.UHF(mol) m.max_cycle = 1 #m.verbose = 5 m.scf() nrmf = scf.density_fit(newton(m), 'weigend') nrmf.max_cycle = 50 nrmf.conv_tol = 1e-8 nrmf.conv_tol_grad = 1e-5 #nrmf.verbose = 5 e4 = nrmf.kernel() m = scf.density_fit(scf.UHF(mol), 'weigend') m.max_cycle = 1 #m.verbose = 5 m.scf() nrmf = scf.density_fit(newton(m), 'weigend') nrmf.max_cycle = 50 nrmf.conv_tol_grad = 1e-5 e5 = nrmf.kernel() m = newton(scf.GHF(mol)) e6 = m.kernel() print(e0 - -2.93707955256) print(e1 - -2.99456398848) print(e2 - -2.99663808314) print(e4 - -2.99663808186) print(e5 - -2.99634506072) print(e6 - -3.002844505604826)