Source code for pyscf.tdscf.ghf

#!/usr/bin/env python
# Copyright 2021-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
# Ref:
# Chem Phys Lett, 256, 454
# J. Mol. Struct. THEOCHEM, 914, 3
# Recent Advances in Density Functional Methods, Chapter 5, M. E. Casida
#


from functools import reduce
import numpy
from pyscf import lib
from pyscf import dft
from pyscf.dft import numint
from pyscf import ao2mo
from pyscf import symm
from pyscf.lib import logger
from pyscf.tdscf import rhf
from pyscf.scf import ghf_symm
from pyscf.data import nist
from pyscf import __config__

OUTPUT_THRESHOLD = getattr(__config__, 'tdscf_rhf_get_nto_threshold', 0.3)
REAL_EIG_THRESHOLD = getattr(__config__, 'tdscf_rhf_TDDFT_pick_eig_threshold', 1e-4)


[docs] def gen_tda_operation(mf, fock_ao=None, wfnsym=None): '''A x Kwargs: wfnsym : int or str Point group symmetry irrep symbol or ID for excited CIS wavefunction. ''' mol = mf.mol mo_coeff = mf.mo_coeff mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff.shape occidx = numpy.where(mo_occ == 1)[0] viridx = numpy.where(mo_occ == 0)[0] nocc = len(occidx) nvir = len(viridx) orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] if wfnsym is not None and mol.symmetry: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup orbsym = ghf_symm.get_orbsym(mol, mo_coeff) orbsym_in_d2h = numpy.asarray(orbsym) % 10 # convert to D2h irreps sym_forbid = (orbsym_in_d2h[occidx,None] ^ orbsym_in_d2h[viridx]) != wfnsym if fock_ao is None: #dm0 = mf.make_rdm1(mo_coeff, mo_occ) #fock_ao = mf.get_hcore() + mf.get_veff(mol, dm0) foo = numpy.diag(mo_energy[occidx]) fvv = numpy.diag(mo_energy[viridx]) else: fock = reduce(numpy.dot, (mo_coeff.conj().T, fock_ao, mo_coeff)) foo = fock[occidx[:,None],occidx] fvv = fock[viridx[:,None],viridx] hdiag = fvv.diagonal() - foo.diagonal()[:,None] if wfnsym is not None and mol.symmetry: hdiag[sym_forbid] = 0 hdiag = hdiag.ravel().real mo_coeff = numpy.asarray(numpy.hstack((orbo,orbv)), order='F') vresp = mf.gen_response(hermi=0) def vind(zs): zs = numpy.asarray(zs).reshape(-1,nocc,nvir) if wfnsym is not None and mol.symmetry: zs = numpy.copy(zs) zs[:,sym_forbid] = 0 dmov = lib.einsum('xov,qv,po->xpq', zs, orbv.conj(), orbo) v1ao = vresp(dmov) v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo.conj(), orbv) v1ov += lib.einsum('xqs,sp->xqp', zs, fvv) v1ov -= lib.einsum('xpr,sp->xsr', zs, foo) if wfnsym is not None and mol.symmetry: v1ov[:,sym_forbid] = 0 return v1ov.reshape(v1ov.shape[0],-1) return vind, hdiag
gen_tda_hop = gen_tda_operation
[docs] def get_ab(mf, mo_energy=None, mo_coeff=None, mo_occ=None): r'''A and B matrices for TDDFT response function. A[i,a,j,b] = \delta_{ab}\delta_{ij}(E_a - E_i) + (ia||bj) B[i,a,j,b] = (ia||jb) ''' if mo_energy is None: mo_energy = mf.mo_energy if mo_coeff is None: mo_coeff = mf.mo_coeff if mo_occ is None: mo_occ = mf.mo_occ mol = mf.mol nmo = mo_occ.size nao = mol.nao occidx = numpy.where(mo_occ==1)[0] viridx = numpy.where(mo_occ==0)[0] orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] nvir = orbv.shape[1] nocc = orbo.shape[1] mo = numpy.hstack((orbo,orbv)) moa = mo[:nao].copy() mob = mo[nao:].copy() orboa = orbo[:nao] orbob = orbo[nao:] nmo = nocc + nvir e_ia = lib.direct_sum('a-i->ia', mo_energy[viridx], mo_energy[occidx]) a = numpy.diag(e_ia.ravel()).reshape(nocc,nvir,nocc,nvir).astype(mo_coeff.dtype) b = numpy.zeros_like(a) def add_hf_(a, b, hyb=1): if mo_coeff.dtype == numpy.double: eri_mo = ao2mo.general(mol, [orboa,moa,moa,moa], compact=False) eri_mo += ao2mo.general(mol, [orbob,mob,mob,mob], compact=False) eri_mo += ao2mo.general(mol, [orboa,moa,mob,mob], compact=False) eri_mo += ao2mo.general(mol, [orbob,mob,moa,moa], compact=False) eri_mo = eri_mo.reshape(nocc,nmo,nmo,nmo) else: eri_ao = mol.intor('int2e').reshape([nao]*4) eri_mo_a = lib.einsum('pqrs,pi,qj->ijrs', eri_ao, orboa.conj(), moa) eri_mo_a+= lib.einsum('pqrs,pi,qj->ijrs', eri_ao, orbob.conj(), mob) eri_mo = lib.einsum('ijrs,rk,sl->ijkl', eri_mo_a, moa.conj(), moa) eri_mo+= lib.einsum('ijrs,rk,sl->ijkl', eri_mo_a, mob.conj(), mob) a += numpy.einsum('iabj->iajb', eri_mo[:nocc,nocc:,nocc:,:nocc]) a -= numpy.einsum('ijba->iajb', eri_mo[:nocc,:nocc,nocc:,nocc:]) * hyb b += numpy.einsum('iajb->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) b -= numpy.einsum('jaib->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) * hyb return a, b if isinstance(mf, dft.KohnShamDFT): from pyscf.dft import xc_deriv ni = mf._numint ni.libxc.test_deriv_order(mf.xc, 2, raise_error=True) if mf.do_nlc(): raise NotImplementedError('DKS-TDDFT NLC functional') if not mf.collinear: raise NotImplementedError omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, mol.spin) a, b = add_hf_(a, b, hyb) if ni.collinear[0] == 'm': # mcol a = a.astype(numpy.complex128) b = b.astype(numpy.complex128) xctype = ni._xc_type(mf.xc) dm0 = mf.make_rdm1(mo_coeff, mo_occ) mem_now = lib.current_memory()[0] max_memory = max(2000, mf.max_memory*.8-mem_now) def get_mo_value(ao): if ao.ndim == 2: mo_a = lib.einsum('rp,pi->ri', ao, moa) mo_b = lib.einsum('rp,pi->ri', ao, mob) return mo_a[:,:nocc], mo_a[:,nocc:], mo_b[:,:nocc], mo_b[:,nocc:] else: mo_a = lib.einsum('xrp,pi->xri', ao, moa) mo_b = lib.einsum('xrp,pi->xri', ao, mob) return mo_a[:,:,:nocc], mo_a[:,:,nocc:], mo_b[:,:,:nocc], mo_b[:,:,nocc:] def ud2tm(aa, ab, ba, bb): return numpy.stack([aa + bb, # rho ba + ab, # mx (ba - ab) * 1j, # my aa - bb]) # mz if xctype == 'LDA': ao_deriv = 0 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): if ni.collinear[0] == 'm': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) eval_xc = ni.mcfun_eval_xc_adapter(mf.xc) fxc = eval_xc(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = weight * fxc.reshape(4,4,-1) wr, wmx, wmy, wmz = weight * fxc.reshape(4,4,-1) mo_oa, mo_va, mo_ob, mo_vb = get_mo_value(ao) rho_ov_aa = numpy.einsum('ri,ra->ria', mo_oa.conj(), mo_va) rho_ov_ab = numpy.einsum('ri,ra->ria', mo_oa.conj(), mo_vb) rho_ov_ba = numpy.einsum('ri,ra->ria', mo_ob.conj(), mo_va) rho_ov_bb = numpy.einsum('ri,ra->ria', mo_ob.conj(), mo_vb) rho_ov = ud2tm(rho_ov_aa, rho_ov_ab, rho_ov_ba, rho_ov_bb) rho_vo = rho_ov.conj() w_ov = numpy.einsum('tsr,tria->sria', wfxc, rho_ov) a += lib.einsum('sria,srjb->iajb', w_ov, rho_vo) b += lib.einsum('sria,srjb->iajb', w_ov, rho_ov) elif ni.collinear[0] == 'c': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2)[2] wv_a, wv_b = weight * fxc.reshape(2,2,-1) mo_oa, mo_va, mo_ob, mo_vb = get_mo_value(ao) rho_ov_a = numpy.einsum('ri,ra->ria', mo_oa.conj(), mo_va) rho_ov_b = numpy.einsum('ri,ra->ria', mo_ob.conj(), mo_vb) rho_vo_a = rho_ov_a.conj() rho_vo_b = rho_ov_b.conj() w_ov = wv_a[:,:,None,None] * rho_ov_a w_ov += wv_b[:,:,None,None] * rho_ov_b wa_ov, wb_ov = w_ov a += lib.einsum('ria,rjb->iajb', wa_ov, rho_vo_a) a += lib.einsum('ria,rjb->iajb', wb_ov, rho_vo_b) b += lib.einsum('ria,rjb->iajb', wa_ov, rho_ov_a) b += lib.einsum('ria,rjb->iajb', wb_ov, rho_ov_b) else: raise NotImplementedError(ni.collinear) elif xctype == 'GGA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): if ni.collinear[0] == 'm': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) eval_xc = ni.mcfun_eval_xc_adapter(mf.xc) fxc = eval_xc(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = weight * fxc wr, wmx, wmy, wmz = weight * fxc mo_oa, mo_va, mo_ob, mo_vb = get_mo_value(ao) rho_ov_aa = numpy.einsum('ri,xra->xria', mo_oa[0].conj(), mo_va) rho_ov_ab = numpy.einsum('ri,xra->xria', mo_oa[0].conj(), mo_vb) rho_ov_ba = numpy.einsum('ri,xra->xria', mo_ob[0].conj(), mo_va) rho_ov_bb = numpy.einsum('ri,xra->xria', mo_ob[0].conj(), mo_vb) rho_ov_aa[1:4] += numpy.einsum('xri,ra->xria', mo_oa[1:4].conj(), mo_va[0]) rho_ov_ab[1:4] += numpy.einsum('xri,ra->xria', mo_oa[1:4].conj(), mo_vb[0]) rho_ov_ba[1:4] += numpy.einsum('xri,ra->xria', mo_ob[1:4].conj(), mo_va[0]) rho_ov_bb[1:4] += numpy.einsum('xri,ra->xria', mo_ob[1:4].conj(), mo_vb[0]) rho_ov = ud2tm(rho_ov_aa, rho_ov_ab, rho_ov_ba, rho_ov_bb) rho_vo = rho_ov.conj() w_ov = numpy.einsum('txsyr,txria->syria', wfxc, rho_ov) a += lib.einsum('syria,syrjb->iajb', w_ov, rho_vo) b += lib.einsum('syria,syrjb->iajb', w_ov, rho_ov) elif ni.collinear[0] == 'c': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2)[2] wv_a, wv_b = weight * fxc mo_oa, mo_va, mo_ob, mo_vb = get_mo_value(ao) rho_ov_a = numpy.einsum('xri,ra->xria', mo_oa.conj(), mo_va[0]) rho_ov_b = numpy.einsum('xri,ra->xria', mo_ob.conj(), mo_vb[0]) rho_ov_a[1:4] += numpy.einsum('ri,xra->xria', mo_oa[0].conj(), mo_va[1:4]) rho_ov_b[1:4] += numpy.einsum('ri,xra->xria', mo_ob[0].conj(), mo_vb[1:4]) rho_vo_a = rho_ov_a.conj() rho_vo_b = rho_ov_b.conj() w_ov = numpy.einsum('xsyr,xria->syria', wv_a, rho_ov_a) w_ov += numpy.einsum('xsyr,xria->syria', wv_b, rho_ov_b) wa_ov, wb_ov = w_ov a += lib.einsum('xria,xrjb->iajb', wa_ov, rho_vo_a) a += lib.einsum('xria,xrjb->iajb', wb_ov, rho_vo_b) b += lib.einsum('xria,xrjb->iajb', wa_ov, rho_ov_a) b += lib.einsum('xria,xrjb->iajb', wb_ov, rho_ov_b) else: raise NotImplementedError(ni.collinear) elif xctype == 'HF': pass elif xctype == 'NLC': raise NotImplementedError('NLC') elif xctype == 'MGGA': ao_deriv = 1 for ao, mask, weight, coords \ in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory): if ni.collinear[0] == 'm': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) eval_xc = ni.mcfun_eval_xc_adapter(mf.xc) fxc = eval_xc(mf.xc, rho, deriv=2, xctype=xctype)[2] wfxc = weight * fxc wr, wmx, wmy, wmz = weight * fxc mo_oa, mo_va, mo_ob, mo_vb = get_mo_value(ao) rho_ov_aa = numpy.einsum('ri,xra->xria', mo_oa[0].conj(), mo_va) rho_ov_ab = numpy.einsum('ri,xra->xria', mo_oa[0].conj(), mo_vb) rho_ov_ba = numpy.einsum('ri,xra->xria', mo_ob[0].conj(), mo_va) rho_ov_bb = numpy.einsum('ri,xra->xria', mo_ob[0].conj(), mo_vb) rho_ov_aa[1:4] += numpy.einsum('xri,ra->xria', mo_oa[1:4].conj(), mo_va[0]) rho_ov_ab[1:4] += numpy.einsum('xri,ra->xria', mo_oa[1:4].conj(), mo_vb[0]) rho_ov_ba[1:4] += numpy.einsum('xri,ra->xria', mo_ob[1:4].conj(), mo_va[0]) rho_ov_bb[1:4] += numpy.einsum('xri,ra->xria', mo_ob[1:4].conj(), mo_vb[0]) tau_ov_aa = numpy.einsum('xri,xra->ria', mo_oa[1:4].conj(), mo_va[1:4]) * .5 tau_ov_ab = numpy.einsum('xri,xra->ria', mo_oa[1:4].conj(), mo_vb[1:4]) * .5 tau_ov_ba = numpy.einsum('xri,xra->ria', mo_ob[1:4].conj(), mo_va[1:4]) * .5 tau_ov_bb = numpy.einsum('xri,xra->ria', mo_ob[1:4].conj(), mo_vb[1:4]) * .5 rho_ov_aa = numpy.vstack([rho_ov_aa, tau_ov_aa[numpy.newaxis]]) rho_ov_ab = numpy.vstack([rho_ov_ab, tau_ov_ab[numpy.newaxis]]) rho_ov_ba = numpy.vstack([rho_ov_ba, tau_ov_ba[numpy.newaxis]]) rho_ov_bb = numpy.vstack([rho_ov_bb, tau_ov_bb[numpy.newaxis]]) rho_ov = ud2tm(rho_ov_aa, rho_ov_ab, rho_ov_ba, rho_ov_bb) rho_vo = rho_ov.conj() w_ov = numpy.einsum('txsyr,txria->syria', wfxc, rho_ov) a += lib.einsum('syria,syrjb->iajb', w_ov, rho_vo) b += lib.einsum('syria,syrjb->iajb', w_ov, rho_ov) elif ni.collinear[0] == 'c': rho = ni.eval_rho(mol, ao, dm0, mask, xctype, hermi=1, with_lapl=False) fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2)[2] wv_a, wv_b = weight * fxc mo_oa, mo_va, mo_ob, mo_vb = get_mo_value(ao) rho_ov_a = numpy.einsum('xri,ra->xria', mo_oa.conj(), mo_va[0]) rho_ov_b = numpy.einsum('xri,ra->xria', mo_ob.conj(), mo_vb[0]) rho_ov_a[1:4] += numpy.einsum('ri,xra->xria', mo_oa[0].conj(), mo_va[1:4]) rho_ov_b[1:4] += numpy.einsum('ri,xra->xria', mo_ob[0].conj(), mo_vb[1:4]) tau_ov_a = numpy.einsum('xri,xra->ria', mo_oa[1:4].conj(), mo_va[1:4]) * .5 tau_ov_b = numpy.einsum('xri,xra->ria', mo_ob[1:4].conj(), mo_vb[1:4]) * .5 rho_ov_a = numpy.vstack([rho_ov_a, tau_ov_a[numpy.newaxis]]) rho_ov_b = numpy.vstack([rho_ov_b, tau_ov_b[numpy.newaxis]]) rho_vo_a = rho_ov_a.conj() rho_vo_b = rho_ov_b.conj() w_ov = numpy.einsum('xsyr,xria->syria', wv_a, rho_ov_a) w_ov += numpy.einsum('xsyr,xria->syria', wv_b, rho_ov_b) wa_ov, wb_ov = w_ov a += lib.einsum('xria,xrjb->iajb', wa_ov, rho_vo_a) a += lib.einsum('xria,xrjb->iajb', wb_ov, rho_vo_b) b += lib.einsum('xria,xrjb->iajb', wa_ov, rho_ov_a) b += lib.einsum('xria,xrjb->iajb', wb_ov, rho_ov_b) else: raise NotImplementedError(ni.collinear) else: a, b = add_hf_(a, b) return a, b
[docs] def get_nto(tdobj, state=1, threshold=OUTPUT_THRESHOLD, verbose=None): raise NotImplementedError('get_nto')
[docs] def analyze(tdobj, verbose=None): raise NotImplementedError('analyze')
def _contract_multipole(tdobj, ints, hermi=True, xy=None): raise NotImplementedError
[docs] class TDBase(rhf.TDBase):
[docs] @lib.with_doc(get_ab.__doc__) def get_ab(self, mf=None): if mf is None: mf = self._scf return get_ab(mf)
analyze = analyze get_nto = get_nto _contract_multipole = _contract_multipole # needed by transition dipoles
[docs] def nuc_grad_method(self): raise NotImplementedError
[docs] @lib.with_doc(rhf.TDA.__doc__) class TDA(TDBase): singlet = None
[docs] def gen_vind(self, mf=None): '''Generate function to compute Ax''' if mf is None: mf = self._scf return gen_tda_hop(mf, wfnsym=self.wfnsym)
[docs] def init_guess(self, mf, nstates=None, wfnsym=None): if nstates is None: nstates = self.nstates if wfnsym is None: wfnsym = self.wfnsym mo_energy = mf.mo_energy mo_occ = mf.mo_occ occidx = numpy.where(mo_occ==1)[0] viridx = numpy.where(mo_occ==0)[0] e_ia = mo_energy[viridx] - mo_energy[occidx,None] if wfnsym is not None and mf.mol.symmetry: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mf.mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup orbsym = ghf_symm.get_orbsym(mf.mol, mf.mo_coeff) orbsym_in_d2h = numpy.asarray(orbsym) % 10 # convert to D2h irreps e_ia[(orbsym_in_d2h[occidx,None] ^ orbsym_in_d2h[viridx]) != wfnsym] = 1e99 nov = e_ia.size nstates = min(nstates, nov) e_ia = e_ia.ravel() e_threshold = numpy.sort(e_ia)[nstates-1] e_threshold += self.deg_eia_thresh idx = numpy.where(e_ia <= e_threshold)[0] x0 = numpy.zeros((idx.size, nov)) for i, j in enumerate(idx): x0[i, j] = 1 # Koopmans' excitations return x0
[docs] def kernel(self, x0=None, nstates=None): '''TDA diagonalization solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates log = logger.Logger(self.stdout, self.verbose) vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) def pickeig(w, v, nroots, envs): idx = numpy.where(w > self.positive_eig_threshold)[0] return w[idx], v[:,idx], idx if x0 is None: x0 = self.init_guess(self._scf, self.nstates) # FIXME: Is it correct to call davidson1 for complex integrals self.converged, self.e, x1 = \ lib.davidson1(vind, x0, precond, tol=self.conv_tol, nroots=nstates, lindep=self.lindep, max_cycle=self.max_cycle, max_space=self.max_space, pick=pickeig, verbose=log) nocc = (self._scf.mo_occ>0).sum() nmo = self._scf.mo_occ.size nvir = nmo - nocc self.xy = [(xi.reshape(nocc,nvir), 0) for xi in x1] if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDA', *cpu0) self._finalize() return self.e, self.xy
CIS = TDA
[docs] def gen_tdhf_operation(mf, fock_ao=None, wfnsym=None): '''Generate function to compute [ A B ][X] [-B* -A*][Y] ''' mol = mf.mol mo_coeff = mf.mo_coeff mo_energy = mf.mo_energy mo_occ = mf.mo_occ nao, nmo = mo_coeff.shape occidx = numpy.where(mo_occ == 1)[0] viridx = numpy.where(mo_occ == 0)[0] nocc = len(occidx) nvir = len(viridx) orbv = mo_coeff[:,viridx] orbo = mo_coeff[:,occidx] if wfnsym is not None and mol.symmetry: if isinstance(wfnsym, str): wfnsym = symm.irrep_name2id(mol.groupname, wfnsym) wfnsym = wfnsym % 10 # convert to D2h subgroup orbsym = ghf_symm.get_orbsym(mol, mo_coeff) orbsym_in_d2h = numpy.asarray(orbsym) % 10 # convert to D2h irreps sym_forbid = (orbsym_in_d2h[occidx,None] ^ orbsym_in_d2h[viridx]) != wfnsym #dm0 = mf.make_rdm1(mo_coeff, mo_occ) #fock_ao = mf.get_hcore() + mf.get_veff(mol, dm0) #fock = reduce(numpy.dot, (mo_coeff.T, fock_ao, mo_coeff)) #foo = fock[occidx[:,None],occidx] #fvv = fock[viridx[:,None],viridx] foo = numpy.diag(mo_energy[occidx]) fvv = numpy.diag(mo_energy[viridx]) hdiag = fvv.diagonal() - foo.diagonal()[:,None] if wfnsym is not None and mol.symmetry: hdiag[sym_forbid] = 0 hdiag = numpy.hstack((hdiag.ravel(), -hdiag.ravel())).real mo_coeff = numpy.asarray(numpy.hstack((orbo,orbv)), order='F') vresp = mf.gen_response(hermi=0) def vind(xys): xys = numpy.asarray(xys).reshape(-1,2,nocc,nvir) if wfnsym is not None and mol.symmetry: # shape(nz,2,nocc,nvir): 2 ~ X,Y xys = numpy.copy(xys) xys[:,:,sym_forbid] = 0 xs, ys = xys.transpose(1,0,2,3) # dms = AX + BY dms = lib.einsum('xov,qv,po->xpq', xs, orbv.conj(), orbo) dms += lib.einsum('xov,pv,qo->xpq', ys, orbv, orbo.conj()) v1ao = vresp(dms) v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo.conj(), orbv) v1vo = lib.einsum('xpq,qo,pv->xov', v1ao, orbo, orbv.conj()) v1ov += lib.einsum('xqs,sp->xqp', xs, fvv) # AX v1ov -= lib.einsum('xpr,sp->xsr', xs, foo) # AX v1vo += lib.einsum('xqs,sp->xqp', ys, fvv.conj()) # (A*)Y v1vo -= lib.einsum('xpr,sp->xsr', ys, foo.conj()) # (A*)Y if wfnsym is not None and mol.symmetry: v1ov[:,sym_forbid] = 0 v1vo[:,sym_forbid] = 0 # (AX, (-A*)Y) nz = xys.shape[0] hx = numpy.hstack((v1ov.reshape(nz,-1), -v1vo.reshape(nz,-1))) return hx return vind, hdiag
[docs] class TDHF(TDBase): singlet = None
[docs] @lib.with_doc(gen_tdhf_operation.__doc__) def gen_vind(self, mf=None): if mf is None: mf = self._scf return gen_tdhf_operation(mf, wfnsym=self.wfnsym)
[docs] def init_guess(self, mf, nstates=None, wfnsym=None): x0 = TDA.init_guess(self, mf, nstates, wfnsym) y0 = numpy.zeros_like(x0) return numpy.asarray(numpy.block([[x0, y0], [y0, x0.conj()]]))
[docs] def kernel(self, x0=None, nstates=None): '''TDHF diagonalization with non-Hermitian eigenvalue solver ''' cpu0 = (logger.process_clock(), logger.perf_counter()) self.check_sanity() self.dump_flags() if nstates is None: nstates = self.nstates else: self.nstates = nstates log = logger.Logger(self.stdout, self.verbose) vind, hdiag = self.gen_vind(self._scf) precond = self.get_precond(hdiag) ensure_real = self._scf.mo_coeff.dtype == numpy.double def pickeig(w, v, nroots, envs): realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) & (w.real > self.positive_eig_threshold))[0] # FIXME: Should the amplitudes be real? It also affects x2c-tdscf return lib.linalg_helper._eigs_cmplx2real(w, v, realidx, ensure_real) if x0 is None: x0 = self.init_guess(self._scf, self.nstates) self.converged, w, x1 = \ lib.davidson_nosym1(vind, x0, precond, tol=self.conv_tol, nroots=nstates, lindep=self.lindep, max_cycle=self.max_cycle, max_space=self.max_space, pick=pickeig, verbose=log) nocc = (self._scf.mo_occ>0).sum() nmo = self._scf.mo_occ.size nvir = nmo - nocc self.e = w def norm_xy(z): x, y = z.reshape(2,nocc,nvir) norm = lib.norm(x)**2 - lib.norm(y)**2 norm = numpy.sqrt(1./norm) return x*norm, y*norm self.xy = [norm_xy(z) for z in x1] if self.chkfile: lib.chkfile.save(self.chkfile, 'tddft/e', self.e) lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy) log.timer('TDDFT', *cpu0) self._finalize() return self.e, self.xy
RPA = TDGHF = TDHF from pyscf import scf scf.ghf.GHF.TDA = lib.class_as_method(TDA) scf.ghf.GHF.TDHF = lib.class_as_method(TDHF)