#!/usr/bin/env python
# Copyright 2014-2020 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Qiming Sun <osirpt.sun@gmail.com>
#
# Ref:
# Chem Phys Lett, 256, 454
# J. Mol. Struct. THEOCHEM, 914, 3
# Recent Advances in Density Functional Methods, Chapter 5, M. E. Casida
#
from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf import gto
from pyscf import scf
from pyscf import ao2mo
from pyscf import symm
from pyscf.lib import logger
from pyscf.scf import hf_symm
from pyscf.scf import _response_functions
from pyscf.data import nist
from pyscf import __config__
OUTPUT_THRESHOLD = getattr(__config__, 'tdscf_rhf_get_nto_threshold', 0.3)
REAL_EIG_THRESHOLD = getattr(__config__, 'tdscf_rhf_TDDFT_pick_eig_threshold', 1e-4)
MO_BASE = getattr(__config__, 'MO_BASE', 1)
[docs]
def gen_tda_operation(mf, fock_ao=None, singlet=True, wfnsym=None):
'''Generate function to compute A x
Kwargs:
wfnsym : int or str
Point group symmetry irrep symbol or ID for excited CIS wavefunction.
'''
mol = mf.mol
mo_coeff = mf.mo_coeff
# assert (mo_coeff.dtype == numpy.double)
mo_energy = mf.mo_energy
mo_occ = mf.mo_occ
nao, nmo = mo_coeff.shape
occidx = numpy.where(mo_occ==2)[0]
viridx = numpy.where(mo_occ==0)[0]
nocc = len(occidx)
nvir = len(viridx)
orbv = mo_coeff[:,viridx]
orbo = mo_coeff[:,occidx]
if wfnsym is not None and mol.symmetry:
if isinstance(wfnsym, str):
wfnsym = symm.irrep_name2id(mol.groupname, wfnsym)
wfnsym = wfnsym % 10 # convert to D2h subgroup
orbsym = hf_symm.get_orbsym(mol, mo_coeff)
orbsym_in_d2h = numpy.asarray(orbsym) % 10 # convert to D2h irreps
sym_forbid = (orbsym_in_d2h[occidx,None] ^ orbsym_in_d2h[viridx]) != wfnsym
if fock_ao is None:
#dm0 = mf.make_rdm1(mo_coeff, mo_occ)
#fock_ao = mf.get_hcore() + mf.get_veff(mol, dm0)
foo = numpy.diag(mo_energy[occidx])
fvv = numpy.diag(mo_energy[viridx])
else:
fock = reduce(numpy.dot, (mo_coeff.conj().T, fock_ao, mo_coeff))
foo = fock[occidx[:,None],occidx]
fvv = fock[viridx[:,None],viridx]
hdiag = fvv.diagonal() - foo.diagonal()[:,None]
if wfnsym is not None and mol.symmetry:
hdiag[sym_forbid] = 0
hdiag = hdiag.ravel()
mo_coeff = numpy.asarray(numpy.hstack((orbo,orbv)), order='F')
vresp = mf.gen_response(singlet=singlet, hermi=0)
def vind(zs):
zs = numpy.asarray(zs).reshape(-1,nocc,nvir)
if wfnsym is not None and mol.symmetry:
zs = numpy.copy(zs)
zs[:,sym_forbid] = 0
# *2 for double occupancy
dmov = lib.einsum('xov,qv,po->xpq', zs*2, orbv.conj(), orbo)
v1ao = vresp(dmov)
v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo.conj(), orbv)
v1ov += lib.einsum('xqs,sp->xqp', zs, fvv)
v1ov -= lib.einsum('xpr,sp->xsr', zs, foo)
if wfnsym is not None and mol.symmetry:
v1ov[:,sym_forbid] = 0
return v1ov.reshape(v1ov.shape[0],-1)
return vind, hdiag
gen_tda_hop = gen_tda_operation
[docs]
def get_ab(mf, mo_energy=None, mo_coeff=None, mo_occ=None):
r'''A and B matrices for TDDFT response function.
A[i,a,j,b] = \delta_{ab}\delta_{ij}(E_a - E_i) + (ia||bj)
B[i,a,j,b] = (ia||jb)
'''
if mo_energy is None: mo_energy = mf.mo_energy
if mo_coeff is None: mo_coeff = mf.mo_coeff
if mo_occ is None: mo_occ = mf.mo_occ
# assert (mo_coeff.dtype == numpy.double)
mol = mf.mol
nao, nmo = mo_coeff.shape
occidx = numpy.where(mo_occ==2)[0]
viridx = numpy.where(mo_occ==0)[0]
orbv = mo_coeff[:,viridx]
orbo = mo_coeff[:,occidx]
nvir = orbv.shape[1]
nocc = orbo.shape[1]
mo = numpy.hstack((orbo,orbv))
nmo = nocc + nvir
e_ia = lib.direct_sum('a-i->ia', mo_energy[viridx], mo_energy[occidx])
a = numpy.diag(e_ia.ravel()).reshape(nocc,nvir,nocc,nvir)
b = numpy.zeros_like(a)
def add_hf_(a, b, hyb=1):
eri_mo = ao2mo.general(mol, [orbo,mo,mo,mo], compact=False)
eri_mo = eri_mo.reshape(nocc,nmo,nmo,nmo)
a += numpy.einsum('iabj->iajb', eri_mo[:nocc,nocc:,nocc:,:nocc]) * 2
a -= numpy.einsum('ijba->iajb', eri_mo[:nocc,:nocc,nocc:,nocc:]) * hyb
b += numpy.einsum('iajb->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) * 2
b -= numpy.einsum('jaib->iajb', eri_mo[:nocc,nocc:,:nocc,nocc:]) * hyb
if isinstance(mf, scf.hf.KohnShamDFT):
from pyscf.dft import xc_deriv
ni = mf._numint
ni.libxc.test_deriv_order(mf.xc, 2, raise_error=True)
if mf.do_nlc():
logger.warn(mf, 'NLC functional found in DFT object. Its second '
'deriviative is not available. Its contribution is '
'not included in the response function.')
omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, mol.spin)
add_hf_(a, b, hyb)
xctype = ni._xc_type(mf.xc)
dm0 = mf.make_rdm1(mo_coeff, mo_occ)
make_rho = ni._gen_rho_evaluator(mol, dm0, hermi=1, with_lapl=False)[0]
mem_now = lib.current_memory()[0]
max_memory = max(2000, mf.max_memory*.8-mem_now)
if xctype == 'LDA':
ao_deriv = 0
for ao, mask, weight, coords \
in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory):
rho = make_rho(0, ao, mask, xctype)
fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2]
wfxc = fxc[0,0] * weight
rho_o = lib.einsum('rp,pi->ri', ao, orbo)
rho_v = lib.einsum('rp,pi->ri', ao, orbv)
rho_ov = numpy.einsum('ri,ra->ria', rho_o, rho_v)
w_ov = numpy.einsum('ria,r->ria', rho_ov, wfxc)
iajb = lib.einsum('ria,rjb->iajb', rho_ov, w_ov) * 2
a += iajb
b += iajb
elif xctype == 'GGA':
ao_deriv = 1
for ao, mask, weight, coords \
in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory):
rho = make_rho(0, ao, mask, xctype)
fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2]
wfxc = fxc * weight
rho_o = lib.einsum('xrp,pi->xri', ao, orbo)
rho_v = lib.einsum('xrp,pi->xri', ao, orbv)
rho_ov = numpy.einsum('xri,ra->xria', rho_o, rho_v[0])
rho_ov[1:4] += numpy.einsum('ri,xra->xria', rho_o[0], rho_v[1:4])
w_ov = numpy.einsum('xyr,xria->yria', wfxc, rho_ov)
iajb = lib.einsum('xria,xrjb->iajb', w_ov, rho_ov) * 2
a += iajb
b += iajb
elif xctype == 'HF':
pass
elif xctype == 'NLC':
raise NotImplementedError('NLC')
elif xctype == 'MGGA':
ao_deriv = 1
for ao, mask, weight, coords \
in ni.block_loop(mol, mf.grids, nao, ao_deriv, max_memory):
rho = make_rho(0, ao, mask, xctype)
fxc = ni.eval_xc_eff(mf.xc, rho, deriv=2, xctype=xctype)[2]
wfxc = fxc * weight
rho_o = lib.einsum('xrp,pi->xri', ao, orbo)
rho_v = lib.einsum('xrp,pi->xri', ao, orbv)
rho_ov = numpy.einsum('xri,ra->xria', rho_o, rho_v[0])
rho_ov[1:4] += numpy.einsum('ri,xra->xria', rho_o[0], rho_v[1:4])
tau_ov = numpy.einsum('xri,xra->ria', rho_o[1:4], rho_v[1:4]) * .5
rho_ov = numpy.vstack([rho_ov, tau_ov[numpy.newaxis]])
w_ov = numpy.einsum('xyr,xria->yria', wfxc, rho_ov)
iajb = lib.einsum('xria,xrjb->iajb', w_ov, rho_ov) * 2
a += iajb
b += iajb
else:
add_hf_(a, b)
return a, b
[docs]
def get_nto(tdobj, state=1, threshold=OUTPUT_THRESHOLD, verbose=None):
r'''
Natural transition orbital analysis.
The natural transition density matrix between ground state and excited
state :math:`Tia = \langle \Psi_{ex} | i a^\dagger | \Psi_0 \rangle` can
be transformed to diagonal form through SVD
:math:`T = O \sqrt{\lambda} V^\dagger`. O and V are occupied and virtual
natural transition orbitals. The diagonal elements :math:`\lambda` are the
weights of the occupied-virtual orbital pair in the excitation.
Ref: Martin, R. L., JCP, 118, 4775-4777
Note in the TDHF/TDDFT calculations, the excitation part (X) is
interpreted as the CIS coefficients and normalized to 1. The de-excitation
part (Y) is ignored.
Args:
tdobj : TDA, or TDHF, or TDDFT object
state : int
Excited state ID. state = 1 means the first excited state.
If state < 0, state ID is counted from the last excited state.
Kwargs:
threshold : float
Above which the NTO coefficients will be printed in the output.
Returns:
A list (weights, NTOs). NTOs are natural orbitals represented in AO
basis. The first N_occ NTOs are occupied NTOs and the rest are virtual
NTOs.
'''
if state == 0:
logger.warn(tdobj, 'Excited state starts from 1. '
'Set state=1 for first excited state.')
state_id = state
elif state < 0:
state_id = state
else:
state_id = state - 1
mol = tdobj.mol
mo_coeff = tdobj._scf.mo_coeff
mo_occ = tdobj._scf.mo_occ
orbo = mo_coeff[:,mo_occ==2]
orbv = mo_coeff[:,mo_occ==0]
nocc = orbo.shape[1]
nvir = orbv.shape[1]
cis_t1 = tdobj.xy[state_id][0]
# TDDFT (X,Y) has X^2-Y^2=1.
# Renormalizing X (X^2=1) to map it to CIS coefficients
cis_t1 *= 1. / numpy.linalg.norm(cis_t1)
# TODO: Comparing to the NTOs defined in JCP, 142, 244103. JCP, 142, 244103
# provides a method to incorporate the Y matrix in the transition density
# matrix. However, it may break the point group symmetry of the NTO orbitals
# when the system has degenerated irreducible representations.
if mol.symmetry:
orbsym = hf_symm.get_orbsym(mol, mo_coeff)
orbsym_in_d2h = numpy.asarray(orbsym) % 10 # convert to D2h irreps
o_sym = orbsym_in_d2h[mo_occ==2]
v_sym = orbsym_in_d2h[mo_occ==0]
nto_o = numpy.eye(nocc)
nto_v = numpy.eye(nvir)
weights_o = numpy.zeros(nocc)
weights_v = numpy.zeros(nvir)
for ir in set(orbsym_in_d2h):
idx = numpy.where(o_sym == ir)[0]
if idx.size > 0:
dm_oo = numpy.dot(cis_t1[idx], cis_t1[idx].T)
weights_o[idx], nto_o[idx[:,None],idx] = numpy.linalg.eigh(dm_oo)
idx = numpy.where(v_sym == ir)[0]
if idx.size > 0:
dm_vv = numpy.dot(cis_t1[:,idx].T, cis_t1[:,idx])
weights_v[idx], nto_v[idx[:,None],idx] = numpy.linalg.eigh(dm_vv)
# weights in descending order
idx = numpy.argsort(-weights_o)
weights_o = weights_o[idx]
nto_o = nto_o[:,idx]
o_sym = o_sym[idx]
idx = numpy.argsort(-weights_v)
weights_v = weights_v[idx]
nto_v = nto_v[:,idx]
v_sym = v_sym[idx]
nto_orbsym = numpy.hstack((o_sym, v_sym))
if nocc < nvir:
weights = weights_o
else:
weights = weights_v
else:
nto_o, w, nto_vT = numpy.linalg.svd(cis_t1)
nto_v = nto_vT.conj().T
weights = w**2
nto_orbsym = None
idx = numpy.argmax(abs(nto_o.real), axis=0)
nto_o[:,nto_o[idx,numpy.arange(nocc)].real<0] *= -1
idx = numpy.argmax(abs(nto_v.real), axis=0)
nto_v[:,nto_v[idx,numpy.arange(nvir)].real<0] *= -1
occupied_nto = numpy.dot(orbo, nto_o)
virtual_nto = numpy.dot(orbv, nto_v)
nto_coeff = numpy.hstack((occupied_nto, virtual_nto))
if mol.symmetry:
nto_coeff = lib.tag_array(nto_coeff, orbsym=nto_orbsym)
log = logger.new_logger(tdobj, verbose)
if log.verbose >= logger.INFO:
log.info('State %d: %g eV NTO largest component %s',
state_id+1, tdobj.e[state_id]*nist.HARTREE2EV, weights[0])
o_idx = numpy.where(abs(nto_o[:,0]) > threshold)[0]
v_idx = numpy.where(abs(nto_v[:,0]) > threshold)[0]
fmt = '%' + str(lib.param.OUTPUT_DIGITS) + 'f (MO #%d)'
log.info(' occ-NTO: ' +
' + '.join([(fmt % (nto_o[i,0], i+MO_BASE))
for i in o_idx]))
log.info(' vir-NTO: ' +
' + '.join([(fmt % (nto_v[i,0], i+MO_BASE+nocc))
for i in v_idx]))
return weights, nto_coeff
[docs]
def analyze(tdobj, verbose=None):
log = logger.new_logger(tdobj, verbose)
mol = tdobj.mol
mo_coeff = tdobj._scf.mo_coeff
mo_occ = tdobj._scf.mo_occ
nocc = numpy.count_nonzero(mo_occ == 2)
e_ev = numpy.asarray(tdobj.e) * nist.HARTREE2EV
e_wn = numpy.asarray(tdobj.e) * nist.HARTREE2WAVENUMBER
wave_length = 1e7/e_wn
if tdobj.singlet:
log.note('\n** Singlet excitation energies and oscillator strengths **')
else:
log.note('\n** Triplet excitation energies and oscillator strengths **')
if mol.symmetry:
orbsym = hf_symm.get_orbsym(mol, mo_coeff)
x_sym = symm.direct_prod(orbsym[mo_occ==2], orbsym[mo_occ==0], mol.groupname)
else:
x_sym = None
f_oscillator = tdobj.oscillator_strength()
for i, ei in enumerate(tdobj.e):
x, y = tdobj.xy[i]
if x_sym is None:
log.note('Excited State %3d: %12.5f eV %9.2f nm f=%.4f',
i+1, e_ev[i], wave_length[i], f_oscillator[i])
else:
wfnsym = analyze_wfnsym(tdobj, x_sym, x)
log.note('Excited State %3d: %4s %12.5f eV %9.2f nm f=%.4f',
i+1, wfnsym, e_ev[i], wave_length[i], f_oscillator[i])
if log.verbose >= logger.INFO:
o_idx, v_idx = numpy.where(abs(x) > 0.1)
for o, v in zip(o_idx, v_idx):
log.info(' %4d -> %-4d %12.5f',
o+MO_BASE, v+MO_BASE+nocc, x[o,v])
if log.verbose >= logger.INFO:
log.info('\n** Transition electric dipole moments (AU) **')
log.info('state X Y Z Dip. S. Osc.')
trans_dip = tdobj.transition_dipole()
for i, ei in enumerate(tdobj.e):
dip = trans_dip[i]
log.info('%3d %11.4f %11.4f %11.4f %11.4f %11.4f',
i+1, dip[0], dip[1], dip[2], numpy.dot(dip, dip),
f_oscillator[i])
log.info('\n** Transition velocity dipole moments (imaginary part, AU) **')
log.info('state X Y Z Dip. S. Osc.')
trans_v = tdobj.transition_velocity_dipole()
f_v = tdobj.oscillator_strength(gauge='velocity', order=0)
for i, ei in enumerate(tdobj.e):
v = trans_v[i]
log.info('%3d %11.4f %11.4f %11.4f %11.4f %11.4f',
i+1, v[0], v[1], v[2], numpy.dot(v, v), f_v[i])
log.info('\n** Transition magnetic dipole moments (imaginary part, AU) **')
log.info('state X Y Z')
trans_m = tdobj.transition_magnetic_dipole()
for i, ei in enumerate(tdobj.e):
m = trans_m[i]
log.info('%3d %11.4f %11.4f %11.4f',
i+1, m[0], m[1], m[2])
return tdobj
[docs]
def analyze_wfnsym(tdobj, x_sym, x):
'''Guess the wfn symmetry of TDDFT X amplitude'''
possible_sym = x_sym[(x > 1e-7) | (x < -1e-7)]
if numpy.all(possible_sym == symm.MULTI_IRREPS):
if tdobj.wfnsym is None:
wfnsym = '???'
else:
wfnsym = tdobj.wfnsym
else:
ids = possible_sym[possible_sym != symm.MULTI_IRREPS]
ids = numpy.unique(ids)
if ids.size == 1:
wfnsym = symm.irrep_id2name(tdobj.mol.groupname, ids[0])
else:
wfnsym = '???'
return wfnsym
[docs]
def transition_dipole(tdobj, xy=None):
'''Transition dipole moments in the length gauge'''
mol = tdobj.mol
with mol.with_common_orig(_charge_center(mol)):
ints = mol.intor_symmetric('int1e_r', comp=3)
return tdobj._contract_multipole(ints, hermi=True, xy=xy)
[docs]
def transition_velocity_dipole(tdobj, xy=None):
'''Transition dipole moments in the velocity gauge (imaginary part only)
'''
ints = tdobj.mol.intor('int1e_ipovlp', comp=3, hermi=2)
v = tdobj._contract_multipole(ints, hermi=False, xy=xy)
return -v
[docs]
def transition_magnetic_dipole(tdobj, xy=None):
'''Transition magnetic dipole moments (imaginary part only)'''
mol = tdobj.mol
with mol.with_common_orig(_charge_center(mol)):
ints = mol.intor('int1e_cg_irxp', comp=3, hermi=2)
m_pol = tdobj._contract_multipole(ints, hermi=False, xy=xy)
return -m_pol
[docs]
def transition_quadrupole(tdobj, xy=None):
'''Transition quadrupole moments in the length gauge'''
mol = tdobj.mol
nao = mol.nao_nr()
with mol.with_common_orig(_charge_center(mol)):
ints = mol.intor('int1e_rr', comp=9, hermi=0).reshape(3,3,nao,nao)
quad = tdobj._contract_multipole(ints, hermi=True, xy=xy)
return quad
[docs]
def transition_velocity_quadrupole(tdobj, xy=None):
'''Transition quadrupole moments in the velocity gauge (imaginary part only)
'''
mol = tdobj.mol
nao = mol.nao_nr()
with mol.with_common_orig(_charge_center(mol)):
ints = mol.intor('int1e_irp', comp=9, hermi=0).reshape(3,3,nao,nao)
ints = ints + ints.transpose(1,0,3,2)
quad = tdobj._contract_multipole(ints, hermi=True, xy=xy)
return -quad
[docs]
def transition_magnetic_quadrupole(tdobj, xy=None):
'''Transition magnetic quadrupole moments (imaginary part only)'''
XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ = range(9)
mol = tdobj.mol
nao = mol.nao_nr()
with mol.with_common_orig(_charge_center(mol)):
ints = mol.intor('int1e_irrp', comp=27, hermi=0).reshape(3,9,nao,nao)
m_ints = (ints[:,[YZ,ZX,XY]] - ints[:,[ZY,XZ,YX]]).transpose(1,0,2,3)
with mol.with_common_orig(_charge_center(mol)):
ints = mol.intor('int1e_irpr', comp=27, hermi=0).reshape(9,3,nao,nao)
m_ints += ints[[YZ,ZX,XY]] - ints[[ZY,XZ,YX]]
m_quad = tdobj._contract_multipole(m_ints, hermi=True, xy=xy)
return -m_quad
[docs]
def transition_octupole(tdobj, xy=None):
'''Transition octupole moments in the length gauge'''
mol = tdobj.mol
nao = mol.nao_nr()
with mol.with_common_orig(_charge_center(mol)):
ints = mol.intor('int1e_rrr', comp=27, hermi=0).reshape(3,3,3,nao,nao)
o_pol = tdobj._contract_multipole(ints, hermi=True, xy=xy)
return o_pol
[docs]
def transition_velocity_octupole(tdobj, xy=None):
'''Transition octupole moments in the velocity gauge (imaginary part only)
'''
mol = tdobj.mol
nao = mol.nao_nr()
with mol.with_common_orig(_charge_center(mol)):
ints = mol.intor('int1e_irrp', comp=27, hermi=0).reshape(3,3,3,nao,nao)
ints = ints + ints.transpose(2,1,0,4,3)
with mol.with_common_orig(_charge_center(mol)):
ints += mol.intor('int1e_irpr', comp=27, hermi=0).reshape(3,3,3,nao,nao)
o_pol = tdobj._contract_multipole(ints, hermi=True, xy=xy)
return -o_pol
def _charge_center(mol):
charges = mol.atom_charges()
coords = mol.atom_coords()
return numpy.einsum('z,zr->r', charges, coords)/charges.sum()
def _contract_multipole(tdobj, ints, hermi=True, xy=None):
if xy is None: xy = tdobj.xy
mo_coeff = tdobj._scf.mo_coeff
mo_occ = tdobj._scf.mo_occ
orbo = mo_coeff[:,mo_occ==2]
orbv = mo_coeff[:,mo_occ==0]
nstates = len(xy)
pol_shape = ints.shape[:-2]
nao = ints.shape[-1]
#Incompatible to old numpy version
#ints = numpy.einsum('...pq,pi,qj->...ij', ints, orbo.conj(), orbv)
ints = lib.einsum('xpq,pi,qj->xij', ints.reshape(-1,nao,nao), orbo.conj(), orbv)
pol = numpy.array([numpy.einsum('xij,ij->x', ints, x) * 2 for x,y in xy])
if isinstance(xy[0][1], numpy.ndarray):
if hermi:
pol += [numpy.einsum('xij,ij->x', ints, y) * 2 for x,y in xy]
else: # anti-Hermitian
pol -= [numpy.einsum('xij,ij->x', ints, y) * 2 for x,y in xy]
pol = pol.reshape((nstates,)+pol_shape)
return pol
[docs]
def oscillator_strength(tdobj, e=None, xy=None, gauge='length', order=0):
if e is None: e = tdobj.e
if gauge == 'length':
trans_dip = transition_dipole(tdobj, xy)
f = 2./3. * numpy.einsum('s,sx,sx->s', e, trans_dip, trans_dip)
return f
else: # velocity gauge
# Ref. JCP, 143, 234103
trans_dip = transition_velocity_dipole(tdobj, xy)
f = 2./3. * numpy.einsum('s,sx,sx->s', 1./e, trans_dip, trans_dip)
if order > 0:
m_dip = .5 * transition_magnetic_dipole(tdobj, xy)
f_m = numpy.einsum('s,sx,sx->s', e, m_dip, m_dip)
f_m = nist.ALPHA**2/6 * f_m.real
f += f_m
quad = .5 * transition_velocity_quadrupole(tdobj, xy)
f_quad = numpy.einsum('s,sxy,sxy->s', e, quad, quad)
f_quad-= 1./3 * numpy.einsum('s,sxx,sxx->s', e, quad, quad)
f_quad = nist.ALPHA**2/20 * f_quad.real
f += f_quad
logger.debug(tdobj, ' First order correction to oscillator '
'strength (velocity gague)')
logger.debug(tdobj, ' %s', f_m+f_quad)
if order > 1:
m_quad = -1./6 * 1j*transition_magnetic_quadrupole(tdobj, xy)
f_m = numpy.einsum('s,sy,szx,xyz->s', e, trans_dip*1j, m_quad,
lib.LeviCivita)
f_m = nist.ALPHA**3/9 * f_m.real
f += f_m
o_pol = -1./6 * 1j*transition_velocity_octupole(tdobj, xy)
f_o = numpy.einsum('s,sy,sxxy->s', e, trans_dip*1j, o_pol)
f_o = -2*nist.ALPHA**2/45 * f_o.real
f += f_o
logger.debug(tdobj, ' Second order correction to oscillator '
'strength (velocity gague)')
logger.debug(tdobj, ' %s', f_m+f_o)
return f
[docs]
def as_scanner(td):
'''Generating a scanner/solver for TDA/TDHF/TDDFT PES.
The returned solver is a function. This function requires one argument
"mol" as input and returns total TDA/TDHF/TDDFT energy.
The solver will automatically use the results of last calculation as the
initial guess of the new calculation. All parameters assigned in the
TDA/TDDFT and the underlying SCF objects (conv_tol, max_memory etc) are
automatically applied in the solver.
Note scanner has side effects. It may change many underlying objects
(_scf, with_df, with_x2c, ...) during calculation.
Examples::
>>> from pyscf import gto, scf, tdscf
>>> mol = gto.M(atom='H 0 0 0; F 0 0 1')
>>> td_scanner = tdscf.TDHF(scf.RHF(mol)).as_scanner()
>>> de = td_scanner(gto.M(atom='H 0 0 0; F 0 0 1.1'))
[ 0.34460866 0.34460866 0.7131453 ]
>>> de = td_scanner(gto.M(atom='H 0 0 0; F 0 0 1.5'))
[ 0.14844013 0.14844013 0.47641829]
'''
if isinstance(td, lib.SinglePointScanner):
return td
logger.info(td, 'Set %s as a scanner', td.__class__)
name = td.__class__.__name__ + TD_Scanner.__name_mixin__
return lib.set_class(TD_Scanner(td), (TD_Scanner, td.__class__), name)
[docs]
class TD_Scanner(lib.SinglePointScanner):
def __init__(self, td):
self.__dict__.update(td.__dict__)
self._scf = td._scf.as_scanner()
def __call__(self, mol_or_geom, **kwargs):
if isinstance(mol_or_geom, gto.MoleBase):
mol = mol_or_geom
else:
mol = self.mol.set_geom_(mol_or_geom, inplace=False)
self.reset(mol)
mf_scanner = self._scf
mf_e = mf_scanner(mol)
self.kernel(**kwargs)
return mf_e + self.e
[docs]
class TDBase(lib.StreamObject):
conv_tol = getattr(__config__, 'tdscf_rhf_TDA_conv_tol', 1e-9)
nstates = getattr(__config__, 'tdscf_rhf_TDA_nstates', 3)
singlet = getattr(__config__, 'tdscf_rhf_TDA_singlet', True)
lindep = getattr(__config__, 'tdscf_rhf_TDA_lindep', 1e-12)
level_shift = getattr(__config__, 'tdscf_rhf_TDA_level_shift', 0)
max_space = getattr(__config__, 'tdscf_rhf_TDA_max_space', 50)
max_cycle = getattr(__config__, 'tdscf_rhf_TDA_max_cycle', 100)
# Low excitation filter to avoid numerical instability
positive_eig_threshold = getattr(__config__, 'tdscf_rhf_TDDFT_positive_eig_threshold', 1e-3)
# Threshold to handle degeneracy in init guess
deg_eia_thresh = getattr(__config__, 'tdscf_rhf_TDDFT_deg_eia_thresh', 1e-3)
_keys = {
'conv_tol', 'nstates', 'singlet', 'lindep', 'level_shift', 'max_space',
'max_cycle', 'mol', 'chkfile', 'wfnsym', 'converged', 'e', 'xy',
}
def __init__(self, mf):
self.verbose = mf.verbose
self.stdout = mf.stdout
self.mol = mf.mol
self._scf = mf
self.max_memory = mf.max_memory
self.chkfile = mf.chkfile
self.wfnsym = None
# xy = (X,Y), normalized to 1/2: 2(XX-YY) = 1
# In TDA, Y = 0
self.converged = None
self.e = None
self.xy = None
@property
def nroots(self):
return self.nstates
@nroots.setter
def nroots(self, x):
self.nstates = x
@property
def e_tot(self):
'''Excited state energies'''
return self._scf.e_tot + self.e
[docs]
def dump_flags(self, verbose=None):
log = logger.new_logger(self, verbose)
log.info('\n')
log.info('******** %s for %s ********',
self.__class__, self._scf.__class__)
if self.singlet is None:
log.info('nstates = %d', self.nstates)
elif self.singlet:
log.info('nstates = %d singlet', self.nstates)
else:
log.info('nstates = %d triplet', self.nstates)
log.info('deg_eia_thresh = %.3e', self.deg_eia_thresh)
log.info('wfnsym = %s', self.wfnsym)
log.info('conv_tol = %g', self.conv_tol)
log.info('eigh lindep = %g', self.lindep)
log.info('eigh level_shift = %g', self.level_shift)
log.info('eigh max_space = %d', self.max_space)
log.info('eigh max_cycle = %d', self.max_cycle)
log.info('chkfile = %s', self.chkfile)
log.info('max_memory %d MB (current use %d MB)',
self.max_memory, lib.current_memory()[0])
if not self._scf.converged:
log.warn('Ground state SCF is not converged')
log.info('\n')
[docs]
def check_sanity(self):
if self._scf.mo_coeff is None:
raise RuntimeError('SCF object is not initialized')
lib.StreamObject.check_sanity(self)
[docs]
def reset(self, mol=None):
if mol is not None:
self.mol = mol
self._scf.reset(mol)
return self
[docs]
def gen_vind(self, mf=None):
raise NotImplementedError
[docs]
@lib.with_doc(get_ab.__doc__)
def get_ab(self, mf=None):
if mf is None: mf = self._scf
return get_ab(mf)
[docs]
def get_precond(self, hdiag):
def precond(x, e, x0):
diagd = hdiag - (e-self.level_shift)
diagd[abs(diagd)<1e-8] = 1e-8
return x/diagd
return precond
analyze = analyze
get_nto = get_nto
oscillator_strength = oscillator_strength
_contract_multipole = _contract_multipole # needed by following methods
transition_dipole = transition_dipole
transition_quadrupole = transition_quadrupole
transition_octupole = transition_octupole
transition_velocity_dipole = transition_velocity_dipole
transition_velocity_quadrupole = transition_velocity_quadrupole
transition_velocity_octupole = transition_velocity_octupole
transition_magnetic_dipole = transition_magnetic_dipole
transition_magnetic_quadrupole = transition_magnetic_quadrupole
as_scanner = as_scanner
[docs]
def nuc_grad_method(self):
from pyscf.grad import tdrhf
return tdrhf.Gradients(self)
def _finalize(self):
'''Hook for dumping results and clearing up the object.'''
if not all(self.converged):
logger.note(self, 'TD-SCF states %s not converged.',
[i for i, x in enumerate(self.converged) if not x])
logger.note(self, 'Excited State energies (eV)\n%s', self.e * nist.HARTREE2EV)
return self
[docs]
def to_gpu(self):
raise NotImplementedError
[docs]
class TDA(TDBase):
'''Tamm-Dancoff approximation
Attributes:
conv_tol : float
Diagonalization convergence tolerance. Default is 1e-9.
nstates : int
Number of TD states to be computed. Default is 3.
Saved results:
converged : bool
Diagonalization converged or not
e : 1D array
excitation energy for each excited state.
xy : A list of two 2D arrays
The two 2D arrays are Excitation coefficients X (shape [nocc,nvir])
and de-excitation coefficients Y (shape [nocc,nvir]) for each
excited state. (X,Y) are normalized to 1/2 in RHF/RKS methods and
normalized to 1 for UHF/UKS methods. In the TDA calculation, Y = 0.
'''
[docs]
def gen_vind(self, mf=None):
'''Generate function to compute Ax'''
if mf is None:
mf = self._scf
return gen_tda_hop(mf, singlet=self.singlet, wfnsym=self.wfnsym)
[docs]
def init_guess(self, mf, nstates=None, wfnsym=None):
if nstates is None: nstates = self.nstates
if wfnsym is None: wfnsym = self.wfnsym
mo_energy = mf.mo_energy
mo_occ = mf.mo_occ
occidx = numpy.where(mo_occ==2)[0]
viridx = numpy.where(mo_occ==0)[0]
e_ia = mo_energy[viridx] - mo_energy[occidx,None]
if wfnsym is not None and mf.mol.symmetry:
if isinstance(wfnsym, str):
wfnsym = symm.irrep_name2id(mf.mol.groupname, wfnsym)
wfnsym = wfnsym % 10 # convert to D2h subgroup
orbsym = hf_symm.get_orbsym(mf.mol, mf.mo_coeff)
orbsym_in_d2h = numpy.asarray(orbsym) % 10 # convert to D2h irreps
e_ia[(orbsym_in_d2h[occidx,None] ^ orbsym_in_d2h[viridx]) != wfnsym] = 1e99
nov = e_ia.size
nstates = min(nstates, nov)
e_ia = e_ia.ravel()
e_threshold = numpy.sort(e_ia)[nstates-1]
e_threshold += self.deg_eia_thresh
idx = numpy.where(e_ia <= e_threshold)[0]
x0 = numpy.zeros((idx.size, nov))
for i, j in enumerate(idx):
x0[i, j] = 1 # Koopmans' excitations
return x0
[docs]
def kernel(self, x0=None, nstates=None):
'''TDA diagonalization solver
'''
cpu0 = (logger.process_clock(), logger.perf_counter())
self.check_sanity()
self.dump_flags()
if nstates is None:
nstates = self.nstates
else:
self.nstates = nstates
log = logger.Logger(self.stdout, self.verbose)
vind, hdiag = self.gen_vind(self._scf)
precond = self.get_precond(hdiag)
def pickeig(w, v, nroots, envs):
idx = numpy.where(w > self.positive_eig_threshold)[0]
return w[idx], v[:,idx], idx
if x0 is None:
x0 = self.init_guess(self._scf, self.nstates)
self.converged, self.e, x1 = \
lib.davidson1(vind, x0, precond,
tol=self.conv_tol,
nroots=nstates, lindep=self.lindep,
max_cycle=self.max_cycle,
max_space=self.max_space, pick=pickeig,
verbose=log)
nocc = (self._scf.mo_occ>0).sum()
nmo = self._scf.mo_occ.size
nvir = nmo - nocc
# 1/sqrt(2) because self.x is for alpha excitation amplitude and 2(X^+*X) = 1
self.xy = [(xi.reshape(nocc,nvir)*numpy.sqrt(.5),0) for xi in x1]
if self.chkfile:
lib.chkfile.save(self.chkfile, 'tddft/e', self.e)
lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy)
log.timer('TDA', *cpu0)
self._finalize()
return self.e, self.xy
to_gpu = lib.to_gpu
CIS = TDA
[docs]
def gen_tdhf_operation(mf, fock_ao=None, singlet=True, wfnsym=None):
'''Generate function to compute
[ A B][X]
[-B -A][Y]
'''
mol = mf.mol
mo_coeff = mf.mo_coeff
# assert (mo_coeff.dtype == numpy.double)
mo_energy = mf.mo_energy
mo_occ = mf.mo_occ
nao, nmo = mo_coeff.shape
occidx = numpy.where(mo_occ==2)[0]
viridx = numpy.where(mo_occ==0)[0]
nocc = len(occidx)
nvir = len(viridx)
orbv = mo_coeff[:,viridx]
orbo = mo_coeff[:,occidx]
if wfnsym is not None and mol.symmetry:
if isinstance(wfnsym, str):
wfnsym = symm.irrep_name2id(mol.groupname, wfnsym)
wfnsym = wfnsym % 10 # convert to D2h subgroup
orbsym = hf_symm.get_orbsym(mol, mo_coeff)
orbsym_in_d2h = numpy.asarray(orbsym) % 10 # convert to D2h irreps
sym_forbid = (orbsym_in_d2h[occidx,None] ^ orbsym_in_d2h[viridx]) != wfnsym
#dm0 = mf.make_rdm1(mo_coeff, mo_occ)
#fock_ao = mf.get_hcore() + mf.get_veff(mol, dm0)
#fock = reduce(numpy.dot, (mo_coeff.T, fock_ao, mo_coeff))
#foo = fock[occidx[:,None],occidx]
#fvv = fock[viridx[:,None],viridx]
foo = numpy.diag(mo_energy[occidx])
fvv = numpy.diag(mo_energy[viridx])
hdiag = fvv.diagonal() - foo.diagonal()[:,None]
if wfnsym is not None and mol.symmetry:
hdiag[sym_forbid] = 0
hdiag = numpy.hstack((hdiag.ravel(), -hdiag.ravel()))
mo_coeff = numpy.asarray(numpy.hstack((orbo,orbv)), order='F')
vresp = mf.gen_response(singlet=singlet, hermi=0)
def vind(xys):
xys = numpy.asarray(xys).reshape(-1,2,nocc,nvir)
if wfnsym is not None and mol.symmetry:
# shape(nz,2,nocc,nvir): 2 ~ X,Y
xys = numpy.copy(xys)
xys[:,:,sym_forbid] = 0
xs, ys = xys.transpose(1,0,2,3)
# dms = AX + BY
# *2 for double occupancy
dms = lib.einsum('xov,qv,po->xpq', xs*2, orbv.conj(), orbo)
dms += lib.einsum('xov,pv,qo->xpq', ys*2, orbv, orbo.conj())
v1ao = vresp(dms)
v1ov = lib.einsum('xpq,po,qv->xov', v1ao, orbo.conj(), orbv)
v1vo = lib.einsum('xpq,qo,pv->xov', v1ao, orbo, orbv.conj())
v1ov += lib.einsum('xqs,sp->xqp', xs, fvv) # AX
v1ov -= lib.einsum('xpr,sp->xsr', xs, foo) # AX
v1vo += lib.einsum('xqs,sp->xqp', ys, fvv) # AY
v1vo -= lib.einsum('xpr,sp->xsr', ys, foo) # AY
if wfnsym is not None and mol.symmetry:
v1ov[:,sym_forbid] = 0
v1vo[:,sym_forbid] = 0
# (AX, -AY)
nz = xys.shape[0]
hx = numpy.hstack((v1ov.reshape(nz,-1), -v1vo.reshape(nz,-1)))
return hx
return vind, hdiag
[docs]
class TDHF(TDA):
'''Time-dependent Hartree-Fock
Attributes:
conv_tol : float
Diagonalization convergence tolerance. Default is 1e-9.
nstates : int
Number of TD states to be computed. Default is 3.
Saved results:
converged : bool
Diagonalization converged or not
e : 1D array
excitation energy for each excited state.
xy : A list of two 2D arrays
The two 2D arrays are Excitation coefficients X (shape [nocc,nvir])
and de-excitation coefficients Y (shape [nocc,nvir]) for each
excited state. (X,Y) are normalized to 1/2 in RHF/RKS methods and
normalized to 1 for UHF/UKS methods. In the TDA calculation, Y = 0.
'''
[docs]
@lib.with_doc(gen_tdhf_operation.__doc__)
def gen_vind(self, mf=None):
if mf is None:
mf = self._scf
return gen_tdhf_operation(mf, singlet=self.singlet, wfnsym=self.wfnsym)
[docs]
def init_guess(self, mf, nstates=None, wfnsym=None):
x0 = TDA.init_guess(self, mf, nstates, wfnsym)
y0 = numpy.zeros_like(x0)
return numpy.asarray(numpy.block([[x0, y0], [y0, x0.conj()]]))
[docs]
def kernel(self, x0=None, nstates=None):
'''TDHF diagonalization with non-Hermitian eigenvalue solver
'''
cpu0 = (logger.process_clock(), logger.perf_counter())
self.check_sanity()
self.dump_flags()
if nstates is None:
nstates = self.nstates
else:
self.nstates = nstates
log = logger.Logger(self.stdout, self.verbose)
vind, hdiag = self.gen_vind(self._scf)
precond = self.get_precond(hdiag)
# handle single kpt PBC SCF
if getattr(self._scf, 'kpt', None) is not None:
from pyscf.pbc.lib.kpts_helper import gamma_point
real_system = (gamma_point(self._scf.kpt) and
self._scf.mo_coeff[0].dtype == numpy.double)
else:
real_system = True
# We only need positive eigenvalues
def pickeig(w, v, nroots, envs):
realidx = numpy.where((abs(w.imag) < REAL_EIG_THRESHOLD) &
(w.real > self.positive_eig_threshold))[0]
# If the complex eigenvalue has small imaginary part, both the
# real part and the imaginary part of the eigenvector can
# approximately be used as the "real" eigen solutions.
return lib.linalg_helper._eigs_cmplx2real(w, v, realidx, real_system)
if x0 is None:
x0 = self.init_guess(self._scf, self.nstates)
self.converged, w, x1 = \
lib.davidson_nosym1(vind, x0, precond,
tol=self.conv_tol,
nroots=nstates, lindep=self.lindep,
max_cycle=self.max_cycle,
max_space=self.max_space, pick=pickeig,
verbose=log)
nocc = (self._scf.mo_occ>0).sum()
nmo = self._scf.mo_occ.size
nvir = nmo - nocc
self.e = w
def norm_xy(z):
x, y = z.reshape(2,nocc,nvir)
norm = lib.norm(x)**2 - lib.norm(y)**2
norm = numpy.sqrt(.5/norm) # normalize to 0.5 for alpha spin
return x*norm, y*norm
self.xy = [norm_xy(z) for z in x1]
if self.chkfile:
lib.chkfile.save(self.chkfile, 'tddft/e', self.e)
lib.chkfile.save(self.chkfile, 'tddft/xy', self.xy)
log.timer('TDDFT', *cpu0)
self._finalize()
return self.e, self.xy
[docs]
def nuc_grad_method(self):
from pyscf.grad import tdrhf
return tdrhf.Gradients(self)
to_gpu = lib.to_gpu
RPA = TDRHF = TDHF
scf.hf.RHF.TDA = lib.class_as_method(TDA)
scf.hf.RHF.TDHF = lib.class_as_method(TDHF)
scf.rohf.ROHF.TDA = None
scf.rohf.ROHF.TDHF = None
scf.hf_symm.ROHF.TDA = None
scf.hf_symm.ROHF.TDHF = None
del (OUTPUT_THRESHOLD)