#!/usr/bin/env python
# Copyright 2014-2022 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
X2C 2-component HF methods
'''
from functools import reduce
import numpy
import scipy.linalg
from pyscf import lib
from pyscf.gto import mole
from pyscf.lib import logger
from pyscf.scf import hf, ghf, dhf
from pyscf.scf import _vhf
from pyscf.data import nist
from pyscf import __config__
LINEAR_DEP_THRESHOLD = 1e-9
[docs]
class X2CHelperBase(lib.StreamObject):
'''2-component X2c (including spin-free and spin-dependent terms) in
the j-adapted spinor basis.
'''
approx = getattr(__config__, 'x2c_X2C_approx', '1e') # 'atom1e'
xuncontract = getattr(__config__, 'x2c_X2C_xuncontract', True)
basis = getattr(__config__, 'x2c_X2C_basis', None)
def __init__(self, mol):
self.mol = mol
self.stdout = mol.stdout
self.verbose = mol.verbose
[docs]
def dump_flags(self, verbose=None):
log = logger.new_logger(self, verbose)
log.info('\n')
log.info('******** %s ********', self.__class__)
log.info('approx = %s', self.approx)
log.info('xuncontract = %d', self.xuncontract)
if self.basis is not None:
log.info('basis for X matrix = %s', self.basis)
return self
[docs]
def get_xmol(self, mol=None):
if mol is None:
mol = self.mol
if self.basis is not None:
xmol = mol.copy(deep=False)
xmol.build(False, False, basis=self.basis)
return xmol, None
elif self.xuncontract:
xmol, contr_coeff = _uncontract_mol(mol, self.xuncontract)
return xmol, contr_coeff
else:
return mol, None
[docs]
def get_hcore(self, mol=None):
'''2-component X2c Foldy-Wouthuysen (FW) Hamiltonian (including
spin-free and spin-dependent terms) in the j-adapted spinor basis.
'''
if mol is None: mol = self.mol
if mol.has_ecp():
raise NotImplementedError
xmol, contr_coeff_nr = self.get_xmol(mol)
c = lib.param.LIGHT_SPEED
assert ('1E' in self.approx.upper())
s = xmol.intor_symmetric('int1e_ovlp_spinor')
t = xmol.intor_symmetric('int1e_spsp_spinor') * .5
v = xmol.intor_symmetric('int1e_nuc_spinor')
w = xmol.intor_symmetric('int1e_spnucsp_spinor')
if 'get_xmat' in self.__dict__:
# If the get_xmat method is overwritten by user, build the X
# matrix with the external get_xmat method
x = self.get_xmat(xmol)
h1 = _get_hcore_fw(t, v, w, s, x, c)
elif 'ATOM' in self.approx.upper():
atom_slices = xmol.offset_2c_by_atom()
n2c = xmol.nao_2c()
x = numpy.zeros((n2c,n2c), dtype=numpy.complex128)
for ia in range(xmol.natm):
ish0, ish1, p0, p1 = atom_slices[ia]
shls_slice = (ish0, ish1, ish0, ish1)
s1 = xmol.intor('int1e_ovlp_spinor', shls_slice=shls_slice)
t1 = xmol.intor('int1e_spsp_spinor', shls_slice=shls_slice) * .5
with xmol.with_rinv_at_nucleus(ia):
z = -xmol.atom_charge(ia)
v1 = z*xmol.intor('int1e_rinv_spinor', shls_slice=shls_slice)
w1 = z*xmol.intor('int1e_sprinvsp_spinor', shls_slice=shls_slice)
x[p0:p1,p0:p1] = _x2c1e_xmatrix(t1, v1, w1, s1, c)
h1 = _get_hcore_fw(t, v, w, s, x, c)
else:
h1 = _x2c1e_get_hcore(t, v, w, s, c)
if self.basis is not None:
s22 = xmol.intor_symmetric('int1e_ovlp_spinor')
s21 = mole.intor_cross('int1e_ovlp_spinor', xmol, mol)
c = lib.cho_solve(s22, s21)
h1 = reduce(numpy.dot, (c.T.conj(), h1, c))
elif self.xuncontract:
np, nc = contr_coeff_nr.shape
contr_coeff = numpy.zeros((np*2,nc*2))
contr_coeff[0::2,0::2] = contr_coeff_nr
contr_coeff[1::2,1::2] = contr_coeff_nr
h1 = reduce(numpy.dot, (contr_coeff.T.conj(), h1, contr_coeff))
return h1
def _picture_change(self, xmol, even_operator=(None, None), odd_operator=None):
'''Picture change for even_operator + odd_operator
even_operator has two terms at diagonal blocks
[ v 0 ]
[ 0 w ]
odd_operator has the term at off-diagonal blocks
[ 0 p ]
[ p^T 0 ]
v, w, and p can be strings (integral name) or matrices.
'''
c = lib.param.LIGHT_SPEED
v_op, w_op = even_operator
if isinstance(v_op, str):
v_op = xmol.intor(v_op)
if isinstance(w_op, str):
w_op = xmol.intor(w_op)
w_op *= (.5/c)**2
if isinstance(odd_operator, str):
odd_operator = xmol.intor(odd_operator) * (.5/c)
if v_op is not None:
shape = v_op.shape
elif w_op is not None:
shape = w_op.shape
elif odd_operator is not None:
shape = odd_operator.shape
else:
raise RuntimeError('No operators provided')
x = self.get_xmat()
r = self._get_rmat(x)
def transform(mat):
nao = mat.shape[-1] // 2
xv = mat[:nao] + x.conj().T.dot(mat[nao:])
h = xv[:,:nao] + xv[:,nao:].dot(x)
return reduce(numpy.dot, (r.T.conj(), h, r))
nao = shape[-1]
dtype = numpy.result_type(v_op, w_op, odd_operator)
if len(shape) == 2:
mat = numpy.zeros((nao*2,nao*2), dtype)
if v_op is not None:
mat[:nao,:nao] = v_op
if w_op is not None:
mat[nao:,nao:] = w_op
if odd_operator is not None:
mat[:nao,nao:] = odd_operator
mat[nao:,:nao] = odd_operator.conj().T
pc_mat = transform(mat)
else:
assert len(shape) == 3
mat = numpy.zeros((shape[0],nao*2,nao*2), dtype)
if v_op is not None:
mat[:,:nao,:nao] = v_op
if w_op is not None:
mat[:,nao:,nao:] = w_op
if odd_operator is not None:
mat[:,:nao,nao:] = odd_operator
mat[:,nao:,:nao] = odd_operator.conj().transpose(0,2,1)
pc_mat = numpy.asarray([transform(m) for m in mat])
return pc_mat
[docs]
def picture_change(self, even_operator=(None, None), odd_operator=None):
'''Picture change for even_operator + odd_operator
even_operator has two terms at diagonal blocks
[ v 0 ]
[ 0 w ]
odd_operator has the term at off-diagonal blocks
[ 0 p ]
[ p^T 0 ]
v, w, and p can be strings (integral name) or matrices.
'''
mol = self.mol
xmol, contr_coeff_nr = self.get_xmol(mol)
pc_mat = self._picture_change(xmol, even_operator, odd_operator)
if self.basis is not None:
s22 = xmol.intor_symmetric('int1e_ovlp_spinor')
s21 = mole.intor_cross('int1e_ovlp_spinor', xmol, mol)
c = lib.cho_solve(s22, s21)
elif self.xuncontract:
np, nc = contr_coeff_nr.shape
c = numpy.zeros((np*2,nc*2))
c[0::2,0::2] = contr_coeff_nr
c[1::2,1::2] = contr_coeff_nr
else:
return pc_mat
if pc_mat.ndim == 2:
return lib.einsum('pi,pq,qj->ij', c.conj(), pc_mat, c)
else:
return lib.einsum('pi,xpq,qj->xij', c.conj(), pc_mat, c)
[docs]
def get_xmat(self, mol=None):
if mol is None:
xmol = self.get_xmol(mol)[0]
else:
xmol = mol
c = lib.param.LIGHT_SPEED
assert ('1E' in self.approx.upper())
if 'ATOM' in self.approx.upper():
atom_slices = xmol.offset_2c_by_atom()
n2c = xmol.nao_2c()
x = numpy.zeros((n2c,n2c), dtype=numpy.complex128)
for ia in range(xmol.natm):
ish0, ish1, p0, p1 = atom_slices[ia]
shls_slice = (ish0, ish1, ish0, ish1)
s1 = xmol.intor('int1e_ovlp_spinor', shls_slice=shls_slice)
t1 = xmol.intor('int1e_spsp_spinor', shls_slice=shls_slice) * .5
with xmol.with_rinv_at_nucleus(ia):
z = -xmol.atom_charge(ia)
v1 = z*xmol.intor('int1e_rinv_spinor', shls_slice=shls_slice)
w1 = z*xmol.intor('int1e_sprinvsp_spinor', shls_slice=shls_slice)
x[p0:p1,p0:p1] = _x2c1e_xmatrix(t1, v1, w1, s1, c)
else:
s = xmol.intor_symmetric('int1e_ovlp_spinor')
t = xmol.intor_symmetric('int1e_spsp_spinor') * .5
v = xmol.intor_symmetric('int1e_nuc_spinor')
w = xmol.intor_symmetric('int1e_spnucsp_spinor')
x = _x2c1e_xmatrix(t, v, w, s, c)
return x
def _get_rmat(self, x=None):
'''The matrix (in AO basis) that changes metric from NESC metric to NR metric'''
xmol = self.get_xmol()[0]
if x is None:
x = self.get_xmat(xmol)
c = lib.param.LIGHT_SPEED
s = xmol.intor_symmetric('int1e_ovlp_spinor')
t = xmol.intor_symmetric('int1e_spsp_spinor') * .5
s1 = s + reduce(numpy.dot, (x.conj().T, t, x)) * (.5/c**2)
return _get_r(s, s1)
[docs]
def reset(self, mol):
'''Reset mol and clean up relevant attributes for scanner mode'''
self.mol = mol
return self
[docs]
class SpinorX2CHelper(X2CHelperBase):
'''2-component X2c (including spin-free and spin-dependent terms) in
the j-adapted spinor basis.
'''
pass
X2C = SpinorX2CHelper
[docs]
class SpinOrbitalX2CHelper(X2CHelperBase):
'''2-component X2c (including spin-free and spin-dependent terms) in
the Gaussian type spin-orbital basis (as the spin-orbital basis in GHF)
'''
[docs]
def get_hcore(self, mol=None):
if mol is None: mol = self.mol
if mol.has_ecp():
raise NotImplementedError
xmol, contr_coeff = self.get_xmol(mol)
c = lib.param.LIGHT_SPEED
assert ('1E' in self.approx.upper())
t = _block_diag(xmol.intor_symmetric('int1e_kin'))
v = _block_diag(xmol.intor_symmetric('int1e_nuc'))
s = _block_diag(xmol.intor_symmetric('int1e_ovlp'))
w = _sigma_dot(xmol.intor('int1e_spnucsp'))
if 'get_xmat' in self.__dict__:
# If the get_xmat method is overwritten by user, build the X
# matrix with the external get_xmat method
x = self.get_xmat(xmol)
h1 = _get_hcore_fw(t, v, w, s, x, c)
elif 'ATOM' in self.approx.upper():
atom_slices = xmol.offset_nr_by_atom()
# spin-orbital basis is twice the size of NR basis
atom_slices[:,2:] *= 2
nao = xmol.nao_nr() * 2
x = numpy.zeros((nao,nao))
for ia in range(xmol.natm):
ish0, ish1, p0, p1 = atom_slices[ia]
shls_slice = (ish0, ish1, ish0, ish1)
t1 = _block_diag(xmol.intor('int1e_kin', shls_slice=shls_slice))
s1 = _block_diag(xmol.intor('int1e_ovlp', shls_slice=shls_slice))
with xmol.with_rinv_at_nucleus(ia):
z = -xmol.atom_charge(ia)
v1 = _block_diag(z * xmol.intor('int1e_rinv', shls_slice=shls_slice))
w1 = _sigma_dot(z * xmol.intor('int1e_sprinvsp', shls_slice=shls_slice))
x[p0:p1,p0:p1] = _x2c1e_xmatrix(t1, v1, w1, s1, c)
h1 = _get_hcore_fw(t, v, w, s, x, c)
else:
h1 = _x2c1e_get_hcore(t, v, w, s, c)
if self.basis is not None:
s22 = xmol.intor_symmetric('int1e_ovlp')
s21 = mole.intor_cross('int1e_ovlp', xmol, mol)
c = _block_diag(lib.cho_solve(s22, s21))
h1 = reduce(lib.dot, (c.T, h1, c))
if self.xuncontract and contr_coeff is not None:
contr_coeff = _block_diag(contr_coeff)
h1 = reduce(lib.dot, (contr_coeff.T, h1, contr_coeff))
return h1
[docs]
@lib.with_doc(X2CHelperBase.picture_change.__doc__)
def picture_change(self, even_operator=(None, None), odd_operator=None):
mol = self.mol
xmol, c = self.get_xmol(mol)
pc_mat = self._picture_change(xmol, even_operator, odd_operator)
if self.basis is not None:
s22 = xmol.intor_symmetric('int1e_ovlp')
s21 = mole.intor_cross('int1e_ovlp', xmol, mol)
c = lib.cho_solve(s22, s21)
elif self.xuncontract:
pass
else:
return pc_mat
c = _block_diag(c)
if pc_mat.ndim == 2:
return lib.einsum('pi,pq,qj->ij', c, pc_mat, c)
else:
return lib.einsum('pi,xpq,qj->xij', c, pc_mat, c)
[docs]
def get_xmat(self, mol=None):
if mol is None:
xmol = self.get_xmol(mol)[0]
else:
xmol = mol
c = lib.param.LIGHT_SPEED
assert ('1E' in self.approx.upper())
if 'ATOM' in self.approx.upper():
atom_slices = xmol.offset_nr_by_atom()
# spin-orbital basis is twice the size of NR basis
atom_slices[:,2:] *= 2
nao = xmol.nao_nr() * 2
x = numpy.zeros((nao,nao))
for ia in range(xmol.natm):
ish0, ish1, p0, p1 = atom_slices[ia]
shls_slice = (ish0, ish1, ish0, ish1)
t1 = _block_diag(xmol.intor('int1e_kin', shls_slice=shls_slice))
s1 = _block_diag(xmol.intor('int1e_ovlp', shls_slice=shls_slice))
with xmol.with_rinv_at_nucleus(ia):
z = -xmol.atom_charge(ia)
v1 = _block_diag(z * xmol.intor('int1e_rinv', shls_slice=shls_slice))
w1 = _sigma_dot(z * xmol.intor('int1e_sprinvsp', shls_slice=shls_slice))
x[p0:p1,p0:p1] = _x2c1e_xmatrix(t1, v1, w1, s1, c)
else:
t = _block_diag(xmol.intor_symmetric('int1e_kin'))
v = _block_diag(xmol.intor_symmetric('int1e_nuc'))
s = _block_diag(xmol.intor_symmetric('int1e_ovlp'))
w = _sigma_dot(xmol.intor('int1e_spnucsp'))
x = _x2c1e_xmatrix(t, v, w, s, c)
return x
def _get_rmat(self, x=None):
'''The matrix (in AO basis) that changes metric from NESC metric to NR metric'''
xmol = self.get_xmol()[0]
if x is None:
x = self.get_xmat(xmol)
c = lib.param.LIGHT_SPEED
s = _block_diag(xmol.intor_symmetric('int1e_ovlp'))
t = _block_diag(xmol.intor_symmetric('int1e_kin'))
s1 = s + reduce(numpy.dot, (x.conj().T, t, x)) * (.5/c**2)
return _get_r(s, s1)
[docs]
def get_hcore(mol):
'''2-component X2c hcore Hamiltonian (including spin-free and
spin-dependent terms) in the j-adapted spinor basis.
'''
return SpinorX2CHelper(mol).get_hcore(mol)
[docs]
def get_jk(mol, dm, hermi=1, mf_opt=None, with_j=True, with_k=True, omega=None):
'''non-relativistic J/K matrices (without SSO,SOO etc) in the j-adapted
spinor basis.
'''
vj, vk = _vhf.rdirect_mapdm('int2e_spinor', 's8',
('ji->s2kl', 'jk->s1il'), dm, 1,
mol._atm, mol._bas, mol._env, mf_opt)
vj = vj.reshape(dm.shape)
vk = vk.reshape(dm.shape)
return dhf._jk_triu_(mol, vj, vk, hermi)
make_rdm1 = hf.make_rdm1
[docs]
def init_guess_by_minao(mol):
'''Initial guess in terms of the overlap to minimal basis.'''
dm = hf.init_guess_by_minao(mol)
return _proj_dmll(mol, dm, mol)
[docs]
def init_guess_by_1e(mol):
'''Initial guess from one electron system.'''
mf = UHF(mol)
return mf.init_guess_by_1e(mol)
[docs]
def init_guess_by_atom(mol):
'''Initial guess from atom calculation.'''
dm = hf.init_guess_by_atom(mol)
return _proj_dmll(mol, dm, mol)
[docs]
def init_guess_by_chkfile(mol, chkfile_name, project=None):
dm = dhf.init_guess_by_chkfile(mol, chkfile_name, project)
n2c = dm.shape[0] // 2
return dm[:n2c,:n2c].copy()
[docs]
def get_init_guess(mol, key='minao'):
if callable(key):
return key(mol)
elif key.lower() == '1e':
return init_guess_by_1e(mol)
elif key.lower() == 'atom':
return init_guess_by_atom(mol)
elif key.lower() == 'chkfile':
raise RuntimeError('Call pyscf.scf.hf.init_guess_by_chkfile instead')
else:
return init_guess_by_minao(mol)
[docs]
class SCF(hf.SCF):
'''The full X2C problem (scaler + soc terms) in j-adapted spinor basis'''
_keys = {'with_x2c'}
def __init__(self, mol):
hf.SCF.__init__(self, mol)
self.with_x2c = SpinorX2CHelper(mol)
#self.with_x2c.xuncontract = False
[docs]
def build(self, mol=None):
if self.verbose >= logger.WARN:
self.check_sanity()
if self.direct_scf:
self.opt = self.init_direct_scf(mol)
return self
[docs]
def dump_flags(self, verbose=None):
hf.SCF.dump_flags(self, verbose)
self.with_x2c.dump_flags(verbose)
return self
[docs]
def init_guess_by_minao(self, mol=None):
'''Initial guess in terms of the overlap to minimal basis.'''
if mol is None: mol = self.mol
return init_guess_by_minao(mol)
[docs]
def init_guess_by_atom(self, mol=None):
if mol is None: mol = self.mol
return init_guess_by_atom(mol)
[docs]
def init_guess_by_chkfile(self, chkfile=None, project=None):
if chkfile is None: chkfile = self.chkfile
return init_guess_by_chkfile(self.mol, chkfile, project=project)
def _eigh(self, h, s):
e, c = scipy.linalg.eigh(h, s)
idx = numpy.argmax(abs(c.real), axis=0)
c[:,c[idx,range(len(e))].real<0] *= -1
return e, c
[docs]
def get_hcore(self, mol=None):
if mol is None: mol = self.mol
return self.with_x2c.get_hcore(mol)
[docs]
def get_ovlp(self, mol=None):
if mol is None: mol = self.mol
return mol.intor_symmetric('int1e_ovlp_spinor')
[docs]
def get_occ(self, mo_energy=None, mo_coeff=None):
if mo_energy is None: mo_energy = self.mo_energy
mol = self.mol
mo_occ = numpy.zeros_like(mo_energy)
nocc = mol.nelectron
mo_occ[:nocc] = 1
if nocc < len(mo_energy):
if mo_energy[nocc-1]+1e-3 > mo_energy[nocc]:
logger.warn(self, 'HOMO %.15g == LUMO %.15g',
mo_energy[nocc-1], mo_energy[nocc])
else:
logger.info(self, 'nocc = %d HOMO = %.12g LUMO = %.12g',
nocc, mo_energy[nocc-1], mo_energy[nocc])
else:
logger.info(self, 'nocc = %d HOMO = %.12g no LUMO',
nocc, mo_energy[nocc-1])
logger.debug(self, ' mo_energy = %s', mo_energy)
return mo_occ
make_rdm1 = lib.module_method(make_rdm1, absences=['mo_coeff', 'mo_occ'])
[docs]
def init_direct_scf(self, mol=None):
if mol is None: mol = self.mol
opt = dhf._VHFOpt(mol, 'int2e_spinor', 'CVHFrkbllll_prescreen',
'CVHFrkb_q_cond', 'CVHFrkb_dm_cond',
direct_scf_tol=self.direct_scf_tol)
opt._this.r_vkscreen = _vhf._fpointer('CVHFrkbllll_vkscreen')
return opt
[docs]
def get_jk(self, mol=None, dm=None, hermi=1, with_j=True, with_k=True,
omega=None):
if mol is None: mol = self.mol
if dm is None: dm = self.make_rdm1()
t0 = (logger.process_clock(), logger.perf_counter())
if self.direct_scf and self._opt.get(omega) is None:
with mol.with_range_coulomb(omega):
self._opt[omega] = self.init_direct_scf(mol)
vhfopt = self._opt.get(omega)
vj, vk = get_jk(mol, dm, hermi, vhfopt, with_j, with_k)
logger.timer(self, 'vj and vk', *t0)
return vj, vk
[docs]
def get_veff(self, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1):
'''Dirac-Coulomb'''
if mol is None: mol = self.mol
if dm is None: dm = self.make_rdm1()
if self.direct_scf:
ddm = numpy.array(dm) - numpy.array(dm_last)
vj, vk = self.get_jk(mol, ddm, hermi=hermi)
return numpy.array(vhf_last) + vj - vk
else:
vj, vk = self.get_jk(mol, dm, hermi=hermi)
return vj - vk
[docs]
def analyze(self, verbose=None):
if verbose is None: verbose = self.verbose
return dhf.analyze(self, verbose)
[docs]
def dip_moment(self, mol=None, dm=None, unit='Debye', verbose=logger.NOTE,
picture_change=True, **kwargs):
r''' Dipole moment calculation with picture change correction
Args:
mol: an instance of :class:`Mole`
dm : a 2D ndarrays density matrices
Kwarg:
picture_change (bool) : Whether to compute the dipole moment with
picture change correction.
Return:
A list: the dipole moment on x, y and z component
'''
if mol is None: mol = self.mol
if dm is None: dm =self.make_rdm1()
log = logger.new_logger(mol, verbose)
if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
# UHF denisty matrices
dm = dm[0] + dm[1]
with mol.with_common_orig((0,0,0)):
if picture_change:
ao_dip = self.with_x2c.picture_change(('int1e_r_spinor',
'int1e_sprsp_spinor'))
else:
ao_dip = mol.intor_symmetric('int1e_r_spinor')
el_dip = numpy.einsum('xij,ji->x', ao_dip, dm).real
charges = mol.atom_charges()
coords = mol.atom_coords()
nucl_dip = numpy.einsum('i,ix->x', charges, coords)
mol_dip = nucl_dip - el_dip
if unit.upper() == 'DEBYE':
mol_dip *= nist.AU2DEBYE
log.note('Dipole moment(X, Y, Z, Debye): %8.5f, %8.5f, %8.5f', *mol_dip)
else:
log.note('Dipole moment(X, Y, Z, A.U.): %8.5f, %8.5f, %8.5f', *mol_dip)
return mol_dip
[docs]
def x2c1e(self):
return self
x2c = x2c1e
[docs]
def sfx2c1e(self):
raise NotImplementedError
[docs]
def newton(self):
from pyscf.x2c.newton_ah import newton
return newton(self)
[docs]
def stability(self, internal=None, external=None, verbose=None, return_status=False):
'''
X2C-HF/X2C-KS stability analysis.
See also pyscf.scf.stability.rhf_stability function.
Kwargs:
return_status: bool
Whether to return `stable_i` and `stable_e`
Returns:
If return_status is False (default), the return value includes
two set of orbitals, which are more close to the stable condition.
The first corresponds to the internal stability
and the second corresponds to the external stability.
Else, another two boolean variables (indicating current status:
stable or unstable) are returned.
The first corresponds to the internal stability
and the second corresponds to the external stability.
'''
from pyscf.x2c.stability import x2chf_stability
return x2chf_stability(self, verbose, return_status)
[docs]
def nuc_grad_method(self):
raise NotImplementedError
def _transfer_attrs_(self, dst):
if self.with_x2c and not hasattr(dst, 'with_x2c'):
logger.warn(self, 'Destination object of to_hf/to_ks method is not '
'an X2C object. Convert dst to X2C object.')
dst = dst.x2c()
return hf.SCF._transfer_attrs_(self, dst)
X2C_SCF = SCF
[docs]
class UHF(SCF):
[docs]
def to_ks(self, xc='HF'):
'''Convert the input mean-field object to an X2C-KS object.
Note this conversion only changes the class of the mean-field object.
The total energy and wave-function are the same as them in the input
mean-field object.
'''
from pyscf.x2c import dft
return self._transfer_attrs_(dft.UKS(self.mol, xc=xc))
to_gpu = lib.to_gpu
X2C_UHF = UHF
[docs]
class RHF(SCF):
def __init__(self, mol):
super().__init__(mol)
if dhf.zquatev is None:
raise RuntimeError('zquatev library is required to perform Kramers-restricted X2C-RHF')
def _eigh(self, h, s):
return dhf.zquatev.solve_KR_FCSCE(self.mol, h, s)
[docs]
def to_ks(self, xc='HF'):
'''Convert the input mean-field object to an X2C-KS object.
Note this conversion only changes the class of the mean-field object.
The total energy and wave-function are the same as them in the input
mean-field object.
'''
from pyscf.x2c import dft
return self._transfer_attrs_(dft.RKS(self.mol, xc=xc))
to_gpu = lib.to_gpu
X2C_RHF = RHF
[docs]
def x2c1e_ghf(mf):
'''
For the given *GHF* object, generate X2C-GSCF object in GHF spin-orbital
basis. Note the orbital basis of X2C_GSCF is different to the X2C_RHF and
X2C_UHF objects. X2C_RHF and X2C_UHF use spinor basis.
Args:
mf : an GHF/GKS object
Returns:
An GHF/GKS object
Examples:
>>> mol = pyscf.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0)
>>> mf = scf.GHF(mol).x2c1e().run()
'''
assert isinstance(mf, ghf.GHF)
if isinstance(mf, _X2C_SCF):
if mf.with_x2c is None:
mf.with_x2c = SpinOrbitalX2CHelper(mf.mol)
return mf
elif not isinstance(mf.with_x2c, SpinOrbitalX2CHelper):
# An object associated to sfx2c1e.SpinFreeX2CHelper
raise NotImplementedError
else:
return mf
return lib.set_class(X2C1E_GSCF(mf), (X2C1E_GSCF, mf.__class__))
# A tag to label the derived SCF class
class _X2C_SCF:
def dump_flags(self, verbose=None):
super().dump_flags(verbose)
if self.with_x2c:
self.with_x2c.dump_flags(verbose)
return self
def reset(self, mol):
self.with_x2c.reset(mol)
return super().reset(mol)
[docs]
class X2C1E_GSCF(_X2C_SCF):
'''
Attributes for spin-orbital X2C:
with_x2c : X2C object
'''
__name_mixin__ = 'X2C1e'
_keys = {'with_x2c'}
def __init__(self, mf):
self.__dict__.update(mf.__dict__)
self.with_x2c = SpinOrbitalX2CHelper(mf.mol)
[docs]
def undo_x2c(self):
'''Remove the X2C Mixin'''
obj = lib.view(self, lib.drop_class(self.__class__, X2C1E_GSCF))
del obj.with_x2c
return obj
[docs]
def get_hcore(self, mol=None):
if mol is None: mol = self.mol
return self.with_x2c.get_hcore(mol)
[docs]
def dip_moment(self, mol=None, dm=None, unit='Debye', verbose=logger.NOTE,
picture_change=True, **kwargs):
r''' Dipole moment calculation with picture change correction
Args:
mol: an instance of :class:`Mole`
dm : a 2D ndarrays density matrices
Kwarg:
picture_change (bool) : Whether to compute the dipole moment with
picture change correction.
Return:
A list: the dipole moment on x, y and z component
'''
if mol is None: mol = self.mol
if dm is None: dm = self.make_rdm1()
log = logger.new_logger(mol, verbose)
charges = mol.atom_charges()
coords = mol.atom_coords()
nucl_dip = numpy.einsum('i,ix->x', charges, coords)
with mol.with_common_orig(nucl_dip):
r = mol.intor_symmetric('int1e_r')
ao_dip = numpy.array([_block_diag(x) for x in r])
if picture_change:
xmol = self.with_x2c.get_xmol()[0]
nao = xmol.nao
prp = xmol.intor_symmetric('int1e_sprsp').reshape(3,4,nao,nao)[:,0]
prp = numpy.array([_block_diag(x) for x in prp])
ao_dip = self.with_x2c.picture_change((ao_dip, prp))
mol_dip = -numpy.einsum('xij,ji->x', ao_dip, dm).real
if unit.upper() == 'DEBYE':
mol_dip *= nist.AU2DEBYE
log.note('Dipole moment(X, Y, Z, Debye): %8.5f, %8.5f, %8.5f', *mol_dip)
else:
log.note('Dipole moment(X, Y, Z, A.U.): %8.5f, %8.5f, %8.5f', *mol_dip)
return mol_dip
def _transfer_attrs_(self, dst):
if self.with_x2c and not hasattr(dst, 'with_x2c'):
logger.warn(self, 'Destination object of to_hf/to_ks method is not '
'an X2C object. Convert dst to X2C object.')
dst = dst.x2c()
return hf.SCF._transfer_attrs_(self, dst)
[docs]
def to_ks(self, xc='HF'):
raise NotImplementedError
[docs]
def to_gpu(self):
obj = self.undo_x2c().to_gpu().x2c1e()
return lib.to_gpu(self, obj)
def _uncontract_mol(mol, xuncontract=None, exp_drop=0.2):
'''mol._basis + uncontracted steep functions'''
pmol, contr_coeff = mol.decontract_basis(atoms=xuncontract)
contr_coeff = scipy.linalg.block_diag(*contr_coeff)
return pmol, contr_coeff
def _sqrt(a, tol=1e-14):
e, v = numpy.linalg.eigh(a)
idx = e > tol
return numpy.dot(v[:,idx]*numpy.sqrt(e[idx]), v[:,idx].T.conj())
def _invsqrt(a, tol=1e-14):
e, v = numpy.linalg.eigh(a)
idx = e > tol
return numpy.dot(v[:,idx]/numpy.sqrt(e[idx]), v[:,idx].T.conj())
def _get_hcore_fw(t, v, w, s, x, c):
# s1 = s + (1/2c^2)(X^{\dag}*T*X)
s1 = s + reduce(numpy.dot, (x.T.conj(), t, x)) * (.5/c**2)
# tx = T * X
tx = numpy.dot(t, x)
# h1 = (v + T*X + V^{\dag}*T^{\dag} - (X^{\dag} * T * X) + (X^{\dag} * W * X)*(1/4c^2)
h1 =(v + tx + tx.T.conj() - numpy.dot(x.T.conj(), tx) +
reduce(numpy.dot, (x.T.conj(), w, x)) * (.25/c**2))
# R = S^{-1/2} * (S^{-1/2}\tilde{S}S^{-1/2})^{-1/2} * S^{1/2}
r = _get_r(s, s1)
# H1 = R^{\dag} * H1 * R
h1 = reduce(numpy.dot, (r.T.conj(), h1, r))
return h1
def _get_r(s, snesc):
# R^dag \tilde{S} R = S
# R = S^{-1/2} [S^{-1/2}\tilde{S}S^{-1/2}]^{-1/2} S^{1/2}
w, v = numpy.linalg.eigh(s)
idx = w > 1e-14
v = v[:,idx]
w_sqrt = numpy.sqrt(w[idx])
w_invsqrt = 1 / w_sqrt
# eigenvectors of S as the new basis
snesc = reduce(numpy.dot, (v.conj().T, snesc, v))
r_mid = numpy.einsum('i,ij,j->ij', w_invsqrt, snesc, w_invsqrt)
w1, v1 = numpy.linalg.eigh(r_mid)
idx1 = w1 > 1e-14
v1 = v1[:,idx1]
r_mid = numpy.dot(v1/numpy.sqrt(w1[idx1]), v1.conj().T)
r = numpy.einsum('i,ij,j->ij', w_invsqrt, r_mid, w_sqrt)
# Back transform to AO basis
r = reduce(numpy.dot, (v, r, v.conj().T))
return r
def _x2c1e_xmatrix(t, v, w, s, c):
nao = s.shape[0]
n2 = nao * 2
dtype = numpy.result_type(t, v, w, s)
h = numpy.zeros((n2,n2), dtype=dtype)
m = numpy.zeros((n2,n2), dtype=dtype)
h[:nao,:nao] = v
h[:nao,nao:] = t
h[nao:,:nao] = t
h[nao:,nao:] = w * (.25/c**2) - t
m[:nao,:nao] = s
m[nao:,nao:] = t * (.5/c**2)
try:
e, a = scipy.linalg.eigh(h, m)
cl = a[:nao,nao:]
cs = a[nao:,nao:]
x = numpy.linalg.solve(cl.T, cs.T).T # B = XA
except scipy.linalg.LinAlgError:
d, t = numpy.linalg.eigh(m)
idx = d>LINEAR_DEP_THRESHOLD
t = t[:,idx] / numpy.sqrt(d[idx])
tht = reduce(numpy.dot, (t.T.conj(), h, t))
e, a = numpy.linalg.eigh(tht)
a = numpy.dot(t, a)
idx = e > -c**2
cl = a[:nao,idx]
cs = a[nao:,idx]
# X = B A^{-1} = B A^T S
x = cs.dot(cl.conj().T).dot(m)
return x
def _x2c1e_get_hcore(t, v, w, s, c):
nao = s.shape[0]
n2 = nao * 2
dtype = numpy.result_type(t, v, w, s)
h = numpy.zeros((n2,n2), dtype=dtype)
m = numpy.zeros((n2,n2), dtype=dtype)
h[:nao,:nao] = v
h[:nao,nao:] = t
h[nao:,:nao] = t
h[nao:,nao:] = w * (.25/c**2) - t
m[:nao,:nao] = s
m[nao:,nao:] = t * (.5/c**2)
try:
e, a = scipy.linalg.eigh(h, m)
cl = a[:nao,nao:]
# cs = a[nao:,nao:]
e = e[nao:]
except scipy.linalg.LinAlgError:
d, t = numpy.linalg.eigh(m)
idx = d>LINEAR_DEP_THRESHOLD
t = t[:,idx] / numpy.sqrt(d[idx])
tht = reduce(numpy.dot, (t.T.conj(), h, t))
e, a = numpy.linalg.eigh(tht)
a = numpy.dot(t, a)
idx = e > -c**2
cl = a[:nao,idx]
# cs = a[nao:,idx]
e = e[idx]
# The so obtaied X seems not numerically stable. We changed to the
# transformed matrix
# [1 1] [ V T ] [1 0]
# [0 1] [ T W ] [1 1]
# h[:nao,:nao] = h[:nao,nao:] = h[nao:,:nao] = h[nao:,nao:] = w * (.25/c**2)
# m[:nao,:nao] = m[:nao,nao:] = m[nao:,:nao] = m[nao:,nao:] = t * (.5/c**2)
# h[:nao,:nao]+= v + t
# h[nao:,nao:]-= t
# m[:nao,:nao]+= s
# e, a = scipy.linalg.eigh(h, m)
# cl = a[:nao,nao:]
# cs = a[nao:,nao:]
# x = numpy.eye(nao) + numpy.linalg.solve(cl.T, cs.T).T # B = XA
# h1 = _get_hcore_fw(t, v, w, s, x, c)
# Taking A matrix as basis and rewrite the FW Hcore formula, to avoid inversing matrix
# R^dag \tilde{S} R = S
# R = S^{-1/2} [S^{-1/2}\tilde{S}S^{-1/2}]^{-1/2} S^{1/2}
# Using A matrix as basis, the representation of R is
# R[A] = (A^+ S A)^{1/2} = (A^+ S A)^{-1/2} A^+ S A
# Construct h = R^+ h1 R in two steps, first in basis A matrix, then back
# transformed to AO basis
# h = (A^+)^{-1} R[A]^+ (A^+ h1 A) R[A] A^{-1} (0)
# Using (A^+)^{-1} = \tilde{S} A, h can be transformed to
# h = \tilde{S} A R[A]^+ A^+ h1 A R[A] A^+ \tilde{S} (1)
# Using R[A] = R[A]^{-1} A^+ S A, Eq (0) turns to
# = S A R[A]^{-1}^+ A^+ h1 A R[A]^{-1} A^+ S
# = S A R[A]^{-1}^+ e R[A]^{-1} A^+ S (2)
w, u = numpy.linalg.eigh(reduce(numpy.dot, (cl.T.conj(), s, cl)))
idx = w > 1e-14
# Adopt (2) here becuase X is not appeared in Eq (2).
# R[A] = u w^{1/2} u^+, so R[A]^{-1} A^+ S in Eq (2) is
r = reduce(numpy.dot, (u[:,idx]/numpy.sqrt(w[idx]), u[:,idx].T.conj(),
cl.T.conj(), s))
h1 = reduce(numpy.dot, (r.T.conj()*e, r))
return h1
def _proj_dmll(mol_nr, dm_nr, mol):
from pyscf.scf import addons
proj = addons.project_mo_nr2r(mol_nr, numpy.eye(mol_nr.nao_nr()), mol)
# *.5 because alpha and beta are summed in project_mo_nr2r
dm_ll = reduce(numpy.dot, (proj, dm_nr*.5, proj.T.conj()))
dm_ll = (dm_ll + dhf.time_reversal_matrix(mol, dm_ll)) * .5
return dm_ll
def _block_diag(mat):
'''
[A 0]
[0 A]
'''
return scipy.linalg.block_diag(mat, mat)
def _sigma_dot(mat):
'''sigma dot A x B + A dot B'''
quaternion = numpy.vstack([1j * lib.PauliMatrices, numpy.eye(2)[None,:,:]])
nao = mat.shape[-1] * 2
return lib.einsum('sxy,spq->xpyq', quaternion, mat).reshape(nao, nao)
if __name__ == '__main__':
from pyscf.x2c import dft
mol = mole.Mole()
mol.build(
verbose = 0,
atom = [["O" , (0. , 0. , 0.)],
[1 , (0. , -0.757 , 0.587)],
[1 , (0. , 0.757 , 0.587)] ],
basis = 'ccpvdz-dk',
)
method = hf.RHF(mol)
enr = method.kernel()
print('E(NR) = %.12g' % enr)
method = UHF(mol)
ex2c = method.kernel()
print('E(X2C1E) = %.12g' % ex2c)
method.with_x2c.basis = {'O': 'unc-ccpvqz', 'H':'unc-ccpvdz'}
print('E(X2C1E) = %.12g' % method.kernel())
method.with_x2c.approx = 'atom1e'
print('E(X2C1E) = %.12g' % method.kernel())
method = dft.UKS(mol)
ex2c = method.kernel()
print('E(X2C1E) = %.12g' % ex2c)