pyscf.df package#
Subpackages#
- pyscf.df.grad package
- pyscf.df.hessian package
Submodules#
pyscf.df.addons module#
- pyscf.df.addons.aug_etb(mol, beta=2.0)[source]#
To generate the even-tempered auxiliary Gaussian basis
- pyscf.df.addons.aug_etb_for_dfbasis(mol, dfbasis='weigend', beta=2.0, start_at=36)[source]#
augment weigend basis with even-tempered gaussian basis exps = alpha*beta^i for i = 1..N
- class pyscf.df.addons.load(eri, dataname='j3c')[source]#
Bases:
load
load 3c2e integrals from hdf5 file. It can be used in the context manager:
- with load(cderifile) as eri:
print(eri.shape)
- pyscf.df.addons.make_auxbasis(mol, mp2fit=False)[source]#
Depending on the orbital basis, generating even-tempered Gaussians or the optimized auxiliary basis defined in DEFAULT_AUXBASIS
- pyscf.df.addons.make_auxmol(mol, auxbasis=None)[source]#
Generate a fake Mole object which uses the density fitting auxbasis as the basis sets. If auxbasis is not specified, the optimized auxiliary fitting basis set will be generated according to the rules recorded in pyscf.df.addons.DEFAULT_AUXBASIS. If the optimized auxiliary basis is not available (either not specified in DEFAULT_AUXBASIS or the basis set of the required elements not defined in the optimized auxiliary basis), even-tempered Gaussian basis set will be generated.
See also the paper JCTC, 13, 554 about generating auxiliary fitting basis.
pyscf.df.df module#
J-metric density fitting
- class pyscf.df.df.DF(mol, auxbasis=None)[source]#
Bases:
StreamObject
Object to hold 3-index tensor
- Attributes:
- auxbasisstr or dict
Same input format as
Mole.basis
- auxmolMole object
Read only Mole object to hold the auxiliary basis. auxmol is generated automatically in the initialization step based on the given auxbasis. It is used in the rest part of the code to determine the problem size, the integral batches etc. This object should NOT be modified.
- _cderi_to_savestr
If _cderi_to_save is specified, the DF integral tensor will be saved in this file.
- _cderistr or numpy array
If _cderi is specified, the DF integral tensor will be read from this HDF5 file (or numpy array). When the DF integral tensor is provided from the HDF5 file, its dataset name should be consistent with DF._dataname, which is ‘j3c’ by default. The DF integral tensor \(V_{x,ij}\) should be a 2D array in C (row-major) convention, where x corresponds to index of auxiliary basis, and the composite index ij is the orbital pair index. The hermitian symmetry is assumed for the composite ij index, ie the elements of \(V_{x,i,j}\) with \(i\geq j\) are existed in the DF integral tensor. Thus the shape of DF integral tensor is (M,N*(N+1)/2), where M is the number of auxbasis functions and N is the number of basis functions of the orbital basis.
- blockdimint
When reading DF integrals from disk the chunk size to load. It is used to improve IO performance.
- property auxbasis#
- blockdim = 240#
- get_ao_eri()#
- get_mo_eri(mo_coeffs, compact=True)#
- kernel(*args, **kwargs)[source]#
Kernel function is the main driver of a method. Every method should define the kernel function as the entry of the calculation. Note the return value of kernel function is not strictly defined. It can be anything related to the method (such as the energy, the wave-function, the DFT mesh grids etc.).
- range_coulomb(omega)[source]#
Creates a temporary density fitting object for RSH-DF integrals. In this context, only LR or SR integrals for mol and auxmol are computed.
- to_gpu(out=None)#
Convert a method to its corresponding GPU variant, and recursively converts all attributes of a method to cupy objects or gpu4pyscf objects.
pyscf.df.df_jk module#
- pyscf.df.df_jk.density_fit(mf, auxbasis=None, with_df=None, only_dfj=False)[source]#
For the given SCF object, update the J, K matrix constructor with corresponding density fitting integrals.
- Args:
mf : an SCF object
- Kwargs:
- auxbasisstr or basis dict
Same format to the input attribute mol.basis. If auxbasis is None, optimal auxiliary basis based on AO basis (if possible) or even-tempered Gaussian basis will be used.
- only_dfjstr
Compute Coulomb integrals only and no approximation for HF exchange. Same to RIJONX in ORCA
- Returns:
An SCF object with a modified J, K matrix constructor which uses density fitting integrals to compute J and K
Examples:
>>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0) >>> mf = scf.density_fit(scf.RHF(mol)) >>> mf.scf() -100.005306000435510
>>> mol.symmetry = 1 >>> mol.build(0, 0) >>> mf = scf.density_fit(scf.UHF(mol)) >>> mf.scf() -100.005306000435510
pyscf.df.incore module#
- pyscf.df.incore.aux_e1(mol, auxmol_or_auxbasis, intor='int3c2e', aosym='s1', comp=None, out=None)[source]#
3-center 2-electron AO integrals (L|ij), where L is the auxiliary basis.
Note aux_e1 is basically analogous to aux_e2 function. It can be viewed as the version of transposed aux_e2 tensor: if comp == 1:
aux_e1 = aux_e2().T
- else:
aux_e1 = aux_e2().transpose(0,2,1)
The same arguments as function aux_e2 can be input to aux_e1.
- pyscf.df.incore.aux_e2(mol, auxmol_or_auxbasis, intor='int3c2e', aosym='s1', comp=None, out=None, cintopt=None)[source]#
3-center AO integrals (ij|L), where L is the auxiliary basis.
- Kwargs:
- cintoptLibcint-3.14 and newer version support to compute int3c2e
without the opt for the 3rd index. It can be precomputed to reduce the overhead of cintopt initialization repeatedly.
cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, ‘int3c2e’)
- pyscf.df.incore.cholesky_eri(mol, auxbasis='weigend+etb', auxmol=None, int3c='int3c2e', aosym='s2ij', int2c='int2c2e', comp=1, max_memory=2000, decompose_j2c='cd', lindep=1e-07, verbose=0, fauxe2=<function aux_e2>)[source]#
- Returns:
2D array of (naux,nao*(nao+1)/2) in C-contiguous
pyscf.df.outcore module#
- pyscf.df.outcore.cholesky_eri(mol, erifile, auxbasis='weigend+etb', dataname='j3c', tmpdir=None, int3c='int3c2e', aosym='s2ij', int2c='int2c2e', comp=1, max_memory=2000, auxmol=None, verbose=3)[source]#
3-index density-fitting tensor.
- pyscf.df.outcore.cholesky_eri_b(mol, erifile, auxbasis='weigend+etb', dataname='j3c', int3c='int3c2e', aosym='s2ij', int2c='int2c2e', comp=1, max_memory=2000, auxmol=None, decompose_j2c='CD', lindep=1e-07, verbose=3)[source]#
3-center 2-electron DF tensor. Similar to cholesky_eri while this function stores DF tensor in blocks.
- Args:
- dataname: string
Dataset label of the DF tensor in HDF5 file.
- decompose_j2c: string
The method to decompose the metric defined by int2c. It can be set to CD (cholesky decomposition) or ED (eigenvalue decomposition).
- lindepfloat
The threshold to discard linearly dependent basis when decompose_j2c is set to ED.
pyscf.df.r_incore module#
Module contents#
Density fitting#
This module provides the fundamental functions to handle the 3-index tensors (including the 3-center 2-electron AO and MO integrals, the Cholesky decomposed integrals) required by the density fitting method or the RI (resolution of identity) approximation.
Simple usage:
>>> from pyscf import gto, dft
>>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='ccpvdz')
>>> mf = dft.RKS(mol).density_fit().run()