pyscf.qmmm package#
Submodules#
pyscf.qmmm.itrf module#
QM/MM helper functions that modify the QM methods.
- class pyscf.qmmm.itrf.QMMMGrad(scf_grad)[source]#
Bases:
object
- contract_hcore_mm(dm, mol=None)#
Nuclear gradients of the electronic energy with respect to MM atoms:
- … math::
g = sum_{ij} frac{partial hcore_{ij}}{partial R_{I}} P_{ji},
where I represents MM atoms.
- Args:
- dmarray
The QM density matrix.
- grad_hcore_mm(dm, mol=None)[source]#
Nuclear gradients of the electronic energy with respect to MM atoms:
- … math::
g = sum_{ij} frac{partial hcore_{ij}}{partial R_{I}} P_{ji},
where I represents MM atoms.
- Args:
- dmarray
The QM density matrix.
- pyscf.qmmm.itrf.add_mm_charges(scf_method, atoms_or_coords, charges, radii=None, unit=None)[source]#
Embedding the one-electron (non-relativistic) potential generated by MM point charges into QM Hamiltonian.
The total energy includes the regular QM energy, the interaction between the nuclei in QM region and the MM charges, and the static Coulomb interaction between the electron density and the MM charges. It does not include the static Coulomb interactions of the MM point charges, the MM energy, the vdw interaction or other bonding/non-bonding effects between QM region and MM particles.
- Args:
scf_method : a HF or DFT object
- atoms_or_coords2D array, shape (N,3)
MM particle coordinates
- charges1D array
MM particle charges
- Kwargs:
- radii1D array
The Gaussian charge distribution radii of MM atoms.
- unitstr
Bohr, AU, Ang (case insensitive). Default is the same to mol.unit
- Returns:
Same method object as the input scf_method with modified 1e Hamiltonian
- Note:
1. if MM charge and X2C correction are used together, function mm_charge needs to be applied after X2C decoration (.x2c method), eg mf = mm_charge(scf.RHF(mol).x2c()), [(0.5,0.6,0.8)], [-0.5]). 2. Once mm_charge function is applied on the SCF object, it affects all the post-HF calculations eg MP2, CCSD, MCSCF etc
Examples:
>>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0) >>> mf = mm_charge(dft.RKS(mol), [(0.5,0.6,0.8)], [-0.3]) >>> mf.kernel() -101.940495711284
- pyscf.qmmm.itrf.add_mm_charges_grad(scf_grad, atoms_or_coords, charges, radii=None, unit=None)[source]#
Apply the MM charges in the QM gradients’ method. It affects both the electronic and nuclear parts of the QM fragment.
- Args:
- scf_grada HF or DFT gradient object (grad.HF or grad.RKS etc)
Once the add_mm_charges_grad was applied, it affects all post-HF calculations eg MP2, CCSD, MCSCF etc
- coords2D array, shape (N,3)
MM particle coordinates
- charges1D array
MM particle charges
- Kwargs:
- radii1D array
The Gaussian charge distribution radii of MM atoms.
- unitstr
Bohr, AU, Ang (case insensitive). Default is the same to mol.unit
- Returns:
Same gradeints method object as the input scf_grad method
Examples:
>>> from pyscf import gto, scf, grad >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0) >>> mf = mm_charge(scf.RHF(mol), [(0.5,0.6,0.8)], [-0.3]) >>> mf.kernel() -101.940495711284 >>> hfg = mm_charge_grad(grad.hf.RHF(mf), coords, charges) >>> hfg.kernel() [[-0.25912357 -0.29235976 -0.38245077] [-1.70497052 -1.89423883 1.2794798 ]]
- pyscf.qmmm.itrf.mm_charge(scf_method, atoms_or_coords, charges, radii=None, unit=None)#
Embedding the one-electron (non-relativistic) potential generated by MM point charges into QM Hamiltonian.
The total energy includes the regular QM energy, the interaction between the nuclei in QM region and the MM charges, and the static Coulomb interaction between the electron density and the MM charges. It does not include the static Coulomb interactions of the MM point charges, the MM energy, the vdw interaction or other bonding/non-bonding effects between QM region and MM particles.
- Args:
scf_method : a HF or DFT object
- atoms_or_coords2D array, shape (N,3)
MM particle coordinates
- charges1D array
MM particle charges
- Kwargs:
- radii1D array
The Gaussian charge distribution radii of MM atoms.
- unitstr
Bohr, AU, Ang (case insensitive). Default is the same to mol.unit
- Returns:
Same method object as the input scf_method with modified 1e Hamiltonian
- Note:
1. if MM charge and X2C correction are used together, function mm_charge needs to be applied after X2C decoration (.x2c method), eg mf = mm_charge(scf.RHF(mol).x2c()), [(0.5,0.6,0.8)], [-0.5]). 2. Once mm_charge function is applied on the SCF object, it affects all the post-HF calculations eg MP2, CCSD, MCSCF etc
Examples:
>>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0) >>> mf = mm_charge(dft.RKS(mol), [(0.5,0.6,0.8)], [-0.3]) >>> mf.kernel() -101.940495711284
- pyscf.qmmm.itrf.mm_charge_grad(scf_grad, atoms_or_coords, charges, radii=None, unit=None)#
Apply the MM charges in the QM gradients’ method. It affects both the electronic and nuclear parts of the QM fragment.
- Args:
- scf_grada HF or DFT gradient object (grad.HF or grad.RKS etc)
Once the add_mm_charges_grad was applied, it affects all post-HF calculations eg MP2, CCSD, MCSCF etc
- coords2D array, shape (N,3)
MM particle coordinates
- charges1D array
MM particle charges
- Kwargs:
- radii1D array
The Gaussian charge distribution radii of MM atoms.
- unitstr
Bohr, AU, Ang (case insensitive). Default is the same to mol.unit
- Returns:
Same gradeints method object as the input scf_grad method
Examples:
>>> from pyscf import gto, scf, grad >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0) >>> mf = mm_charge(scf.RHF(mol), [(0.5,0.6,0.8)], [-0.3]) >>> mf.kernel() -101.940495711284 >>> hfg = mm_charge_grad(grad.hf.RHF(mf), coords, charges) >>> hfg.kernel() [[-0.25912357 -0.29235976 -0.38245077] [-1.70497052 -1.89423883 1.2794798 ]]
pyscf.qmmm.mm_mole module#
Mole class for MM particles
- class pyscf.qmmm.mm_mole.Mole(atoms, charges=None, zeta=None)[source]#
Bases:
Mole
Mole class for MM particles.
- Args:
atoms : geometry of MM particles (unit Bohr).
[[atom1, (x, y, z)],[atom2, (x, y, z)],…[atomN, (x, y, z)]]- Kwargs:
- charges1D array
fractional charges of MM particles
- zeta1D array
Gaussian charge distribution parameter. rho(r) = charge * Norm * exp(-zeta * r^2)
- pyscf.qmmm.mm_mole.create_mm_mol(atoms_or_coords, charges=None, radii=None, unit='Angstrom')[source]#
Create an MM object based on the given coordinates and charges of MM particles.
- Args:
- atoms_or_coordsarray-like
Cartesian coordinates of MM atoms, in the form of a 2D array: [(x1, y1, z1), (x2, y2, z2), …]
- Kwargs:
- charges1D array
The charges of MM atoms.
- radii1D array
The Gaussian charge distribuction radii of MM atoms.
- unitstring
The unit of the input. Default is ‘Angstrom’.